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Abstract Given the severe harm caused by vulnerabilities, vulnerability mining targeting the software supply chain 
has become a key focus for security researchers. As an effective technique for automated vulnerability mining in 
the software supply chain, this paper applies reinforcement learning algorithms to fuzz testing technology. It 
models the fuzz testing process using reinforcement learning and then employs the DDPG reinforcement learning 
algorithm to select strategies and solve the modeled problem. Additionally, this paper proposes an automated 
software vulnerability repair method based on large models, enhancing the model's vulnerability repair 
performance across three stages: input, model itself, and output. Experimental results show that the target site 
coverage speed of this paper's vulnerability detection method is 3.43 times and 1.45 times faster than the baseline 
method, and the discovery speed of real target vulnerabilities is 3.67 times and 1.84 times faster, demonstrating 
superior software supply chain vulnerability detection capabilities. Compared to other methods, the vulnerability 
repair method proposed in this paper achieves optimal repair effects for different vulnerability types and 
vulnerability program lengths, with recall rates improved by 39.38% to 142.49% in comparative experiments. 
Therefore, the vulnerability repair method proposed in this paper demonstrates superior vulnerability repair 
performance. 
 
Index Terms reinforcement learning, software supply chain, vulnerability detection, fuzz testing, vulnerability repair 

I. Introduction 
Software vulnerabilities, also known as software weaknesses, refer to errors, defects, or flaws in computer 
software that may cause unexpected behavior or incorrect functionality during use. These issues can be exploited 
by malicious users or attackers to perform unauthorized operations, access sensitive information, disrupt system 
functionality, or cause other security issues [1]. Software vulnerabilities can occur in any type of software, including 
operating systems, applications, websites, and mobile applications. Common vulnerabilities may involve logical 
errors in code, insufficient input validation, memory management issues, and more [2]-[4]. According to a report 
published by the CVE Details website, the number of software vulnerabilities disclosed under the Common 
Vulnerabilities and Exposures (CVE) system was 20,153, 25,083, and 29,065 in 2021, 2022, and 2023, 
respectively. Over a five-year period, the number of disclosed software vulnerabilities nearly doubled [5]. 
Additionally, the situation regarding software vulnerabilities is becoming increasingly complex, not only in terms of 
the number of vulnerabilities increasing year by year, but also in terms of the complexity and diversity of their forms. 
These complex circumstances pose a threat to the security of computer systems and software, and there are 
significant potential risks and threats to their stable operation [6]-[8]. 

The presence of software vulnerabilities in safety-critical software is extremely dangerous [9]. Attackers may 
exploit these vulnerabilities to compromise system security or cause unforeseen operational outcomes during 
runtime, potentially leading to memory leaks or issues with security tools, resulting in significant economic losses, 
and even threatening human safety [10]-[12]. Therefore, software vulnerability detection technology plays a crucial 
role in developing high-reliability safety-critical software. 

Software vulnerability detection techniques primarily encompass two categories: static analysis and dynamic 
analysis. Static analysis involves conducting a detailed analysis of software source code or binary code to identify 
potential vulnerabilities [13]. This method can rapidly scan large volumes of code to detect common vulnerability 
types, such as buffer overflows and format string vulnerabilities [14], [15]. However, static analysis is limited by 
code complexity and the accuracy of analysis tools, and may fail to detect some deeply hidden vulnerabilities [16]. 
Dynamic analysis uses various techniques and tools to perform dynamic testing on software, simulating different 
usage scenarios and attack scenarios. By running the software in actual operation, it observes its behavior and 
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state to identify potential vulnerabilities [17]. This includes techniques such as black-box testing, white-box testing, 
and fuzz testing [18]. Dynamic analysis can capture runtime errors and security vulnerabilities such as memory 
leaks and access permission restrictions. However, dynamic analysis requires significant time and resources and 
may be influenced by multiple factors such as the software runtime environment [19]-[21]. Traditional static and 
dynamic analysis methods have certain limitations in large-scale software project practices today, leading to poor 
practical application results. 

Due to the limitations of traditional static and dynamic analysis, in recent years, with the development and 
advancement of artificial intelligence technology, AI has been increasingly applied to various complex and 
large-scale machine learning tasks [22]. Meanwhile, machine learning-based software vulnerability detection 
methods have begun to emerge and have become a mainstream research direction. An increasing number of 
researchers are exploring how to utilize AI technology to improve the efficiency and accuracy of vulnerability 
detection, thereby enhancing the reliability of security-critical software [23]-[26]. For example, [27] proposes a 
machine learning-based vulnerability detection method for predicting software vulnerabilities in Android 
applications, which performs well in terms of accuracy and recall compared to traditional static and dynamic 
detection models. Reference [28] reviews existing research on using deep learning for software vulnerability 
detection, focusing on how neural network technology can be used to understand code semantics and identifying 
challenges in this field. Reference [29] proposes a pattern-based software vulnerability detection method that 
combines traditional static analysis, machine learning, and graph mining to assist code analysts in identifying 
vulnerabilities in complex software systems, thereby overcoming the limitations of traditional automated analysis 
methods. 

In code scenarios, defective code and non-defective code sometimes exhibit high similarity [30]. For example, 
the same single protection value or boundary conditions in other operations may differ only by subtle nuances [31]. 
Machine learning models often struggle to capture these subtle differences. To address this issue, [32] proposed 
the VulSniper model, which uses an attention mechanism to capture key code segments, focusing the defect 
detection task at the functional level. It achieved an F1 score of 80.6% on two defect types in the Sard dataset: 
buffer errors (CWE-119) and resource management (CWE-399). To address the high false positive rate in static 
analysis tools, [33] uses convolutional neural networks and clustering techniques to learn repair patterns from 
recurring violations, then validates their applicability to actual errors based on their acceptance rate. Reference [34] 
leverages transferable knowledge from multiple existing data sources to enhance machine learning-based 
vulnerability detection capabilities. By utilizing cross-domain data sources and deep learning techniques to address 
the cold start problem, its performance surpasses that of traditional models. Reference [35] proposes a model that 
explicitly encodes different levels of control flow, data dependencies, and natural code sequences into a joint graph 
of heterogeneous edges. This integrated representation helps capture as wide a range of vulnerability types and 
patterns as possible and learns better node representations through graph neural networks. The SySeVR 
framework proposed in [36] employs a deep learning technique to systematically identify software vulnerabilities in 
C/C++ programs, demonstrating its effectiveness by detecting 15 unreported vulnerabilities across four software 
products. While these studies exhibit strong performance in feature representation, they incur high training costs 
and involve complex processing algorithms, resulting in slower vulnerability detection models based on traditional 
machine learning approaches. 

Reinforcement learning (RL) is a machine learning method based on the Markov decision process, enabling an 
agent to learn optimal strategies through trial and error interactions with the environment [37]. Reference [38] 
developed a deep reinforcement learning algorithm for automated vulnerability mining, reducing operational costs 
and time, and achieving high accuracy in establishing reverse shells in two application scenarios. Reference [39] 
proposed a coverage-guided reinforcement learning-based fuzz testing model that enhances the effectiveness of 
dynamic analysis (gray-box fuzz testing), aiming to significantly improve testing effectiveness for actual programs 
by maximizing code coverage. Reference [40] proposes a reinforcement learning-based prototype verification 
method that generates secure and diverse software configurations to address configuration errors in static analysis. 
By dynamically adjusting settings, this method maximizes the reduction of software vulnerability risks. 

The study adopts fuzz testing technology as a starting point to investigate methods for identifying vulnerabilities 
in supply chain software. Addressing the issue that traditional fuzz testing techniques exhibit significant 
randomness when mutating samples, severely impacting their efficiency, the study abstracts three key 
elements—states, actions, and rewards—from the fuzz testing process and models the fuzz testing problem using 
reinforcement learning. Subsequently, the DDPG reinforcement learning algorithm is employed to guide the 
selection of mutation strategies during fuzz testing, aiming to solve the fuzz testing modeling problem. This study 
proposes a method to improve traditional fuzz testing techniques using the DDPG reinforcement learning algorithm. 
Additionally, we propose a large-model-based automatic software vulnerability repair method, designing prompt 
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engineering and model fine-tuning techniques to help the model better understand vulnerability repair tasks and 
generate higher-quality repair programs. We also construct a reordering algorithm focused on the security of 
generated code to distinguish repair programs ranked in the top k  for security factors. Experiments are 
conducted on the LAVA-M dataset to compare the coverage speed of the proposed method and other methods on 
target sites, followed by CVE vulnerability testing to obtain the vulnerability reproduction speed of the proposed 
method, and to explore the software supply chain vulnerability detection and repair capabilities of the proposed 
method. Similarly, comparative experiments are conducted on the Big-Vul and CVEFixes datasets to evaluate the 
proposed vulnerability repair method, and the repair effectiveness of each method for different defect types and 
vulnerability program lengths is discussed. 

II. Reinforcement learning-based software supply chain vulnerability mining 
technology 

II. A. Fuzzy Testing Technology 
Fuzz testing is a common testing technique used to detect security vulnerabilities in computer software or systems. 
The most widely used fuzz testing framework is AFL, which employs evolutionary algorithms, Fork Server, and 
coverage-guided techniques to mitigate the drawbacks of traditional fuzz testing, such as high randomness and 
lack of directionality. However, it still has many areas that require improvement. Fuzz testing is typically classified 
into three categories based on different dimensions. Depending on the degree of reliance on internal 
characteristics or runtime information of the target program, it can be divided into black-box fuzz testing, white-box 
fuzz testing, and gray-box fuzz testing. Based on sample generation algorithms, it can be categorized into 
mutation-based fuzz testing and generation-based fuzz testing. Depending on path exploration methods, it can be 
classified into directed fuzz testing and undirected fuzz testing. The complete fuzz testing process typically 
includes six stages: selecting the target program, pre-testing preparation, generating test cases, executing the 
target program, checking for anomalies, and classifying vulnerabilities. However, traditional fuzz testing techniques 
have certain limitations. Therefore, this paper introduces reinforcement learning technology into the fuzz testing 
process to study software supply chain vulnerability detection techniques based on reinforcement learning. 
 
II. B. Problem Modeling 
Reinforcement learning problems primarily consist of three elements: states, actions, and rewards. The interaction 
and influence of these three elements form the foundation of reinforcement learning problems. To use 
reinforcement learning algorithms to assist in optimizing traditional fuzz testing processes, it is first necessary to 
abstractly model the traditional fuzz testing process as a problem solvable by reinforcement learning algorithms. 
This involves extracting the three elements—states, actions, and rewards—from the traditional fuzz testing process 
and ensuring they satisfy the Markov property. This section primarily introduces the abstraction and selection 
process of the three elements—states, actions, and rewards—in the modeling of fuzz testing problems based on 
reinforcement learning. 
 
II. B. 1) Environmental conditions 
In fuzz testing, the key factor affecting testing efficiency is whether mutations can generate high-quality mutation 
samples. Based on this, the input samples are treated as environmental states in this problem modeling. 

This paper uses a byte array method to represent the corresponding state s  of the input sample data D , 
where each element 

ie  of s  has a value range of [0, 255], and the maximum length of the array is 
maxL , 

depending on the specific problem environment. If the length 
DL  of the sample data D  is less than 

maxL , it is 

padded with zeros to reach the maximum length. Then: 
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According to FuzzerGym, in order to maximize the probability of finding new paths in the code, the initial seed 
sample set should be empty, i.e., 

0s   . At the same time, in order to better utilize the existing data mutation 

history experience, the system chooses to maintain an effective sample queue 
sQ  and a set of all path 

information executed by existing samples P . If the sample state at time step t  is 
ts , the mutated sample state is 

ts
 , and a new execution path 

tp  is generated during execution, it is appended to the queue 
sQ  and the set P  

is updated, and 
ts
  as the state input for the next time step. Otherwise, a sample data is randomly selected from 

the valid sample queue 
sQ  as the state input for the next time step, as shown in Equation (2): 
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II. B. 2) Variation of movements 
The core of the fuzz testing process lies in mutating the sample data to obtain new samples that can trigger 
abnormal states in the target program. 

The reinforcement learning model selects the mutation action 
ta  from the mutation action space according to 

the strategy   based on the current state s , as shown in Equation (3): 

 ( )t ta s  (3) 

The system then performs mutation processing on the current input data state 
ts  based on the selected action, 

as shown in Equation (4), to fully explore the environment state space and mutation action space, and obtain the 
corresponding state 

ts
  of the mutated sample with higher path coverage: 

 ( , )t t ts Mutate s a   (4) 

II. B. 3) Feedback Rewards 
This paper selects edge coverage as the feedback reward calculation method in problem modeling. According to 
the design of AFL, after the target program inputs the mutated sample state 

ts
  and executes, it records the 

execution path information of this execution to the shared memory, denoted as 
tM , as shown in Equation (5): 

 ( )t tM Execute s   (5) 

Each element m  in the record represents the number of times the jump edge from a basic block 
ib  to another 

basic block jb  has been executed. 

If 0m  , it means that the jump edge has been executed at least once. The subset of records that satisfy this 

condition is denoted as 
tM  , as shown in Equation (6): 

 { 0, 0, }|t i i i tM m m i m M      (6) 

The feedback reward 
tR  is calculated as shown in Equation (7), which is the ratio of the jump edges traversed 

by the current sample during execution to all jump edges in the target program: 

 ( )

( )
t

t
t

size M
R

size M



  (7) 

In summary, the fuzz testing process is abstracted into a problem that can be solved by reinforcement learning. 
The reinforcement learning model intelligently selects actions based on the state to maximize cumulative rewards. 
In the context of reinforcement learning-based fuzzy testing modeling, this means the model can intelligently select 
appropriate mutation strategies based on the current input samples, ensuring that the mutated new input samples 
achieve the highest edge coverage when executed in the target program. This reduces the randomness and 
blindness of mutations in traditional fuzzy testing processes, improves the quality of mutation-generated samples, 
and thereby enhances fuzzy testing efficiency. 

 
II. C. Strategy selection based on DDPG 
In the above reinforcement learning-based fuzz testing problem modeling, the modeling problem has a huge 
environment state space and a variable action space. In order to efficiently explore this space and improve the 
problem-solving efficiency, this paper will use the DDPG algorithm to solve the problem. 
 
II. C. 1) DDPG Algorithm 
The DDPG algorithm, also known as Deep Deterministic Policy Gradient (DDPG), is an offshoot of the Actor-Critic 
(AC) algorithm and is a policy-based reinforcement learning algorithm, meaning that the policy network used to 
generate actions and the value network used to evaluate actions employ different strategies. The Actor-Critic 
algorithm primarily consists of two components: the Actor and the Critic. The Actor uses a policy function to 
generate actions and interact with the environment, while the Critic uses a value function to calculate the value of 
actions and evaluate the Actor's performance, thereby guiding the Actor's action generation in the next phase. In 
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summary, the AC algorithm typically includes a policy network and a value network, denoted as ( , ; )t tQ S A   and 

( ; )tS  , respectively, where   and   represent the parameters of the two neural networks. 

The value network Q  is updated using the temporal difference method. Since the goal is to minimize the TD 
error, the loss function is defined as: 

 2
1 1 1

1
( ) [ ( , ( )) ( , ; )]

2 t t t t tL R Q S S Q S A        (8) 

The gradient of this loss function is calculated as follows: 

 
1 1 1( ) [ ( , ( )) ( , ; )] ( , ; )t t t t t t tL R Q S S Q S A Q S A             (9) 

Then, update the parameters of the value network through gradient descent: 

 ( )L       (10) 

For learning the policy function  , the policy gradient method is used to update the parameters  . Since the 

formula for calculating the policy gradient is difficult to solve directly, we use Monte Carlo approximation. Each time 
a state s  is observed from the environment, it is treated as an observation value of the random variable S . A 

random action is sampled from the current policy network, i.e., ~ ( | ; )a s  , to calculate the gradient: 

 ( , ; ) ( , ) log ( | ; )g s a Q s a a s     (11) 

As an approximation of the policy gradient ( )J  , it is clear that ( , ; )g s a   is an unbiased estimate of ( )J  . 

Substituting the value network ( , ; )Q s a   into the above equation yields the formula for the approximate policy 

gradient: 

 ˆ ( , ; ) ( , ; ) log ( | ; )g s a Q s a a s     (12) 

Finally, since the approximate policy gradient is known, the parameters of the policy function can be updated 
directly through gradient ascent, i.e.: 

 ˆ( , ; )g s a       (13) 

The DDPG algorithm introduces several key technologies based on the AC algorithm: 
(1) Target network: In addition to the policy network and value network, a policy target network and value target 

network are also introduced. The target network operates as an independent network with the same structure as 
the main network, but its parameters are not entirely identical. The update of its parameters follows specific 
replication rules: every C  steps (where C  is a constant), the target network is synchronized with the main 

network either through direct copying (hard update) of the main network's parameters or through exponential 
decay averaging (soft update). 

(2) Experience replay: Also known as experience caching, this involves storing the interaction records between 
the agent and the environment in a finite array of size M , which is also called the experience replay pool. These 
interaction records can be repeatedly used to train the agent, thereby saving on the number of training samples. 
Specifically, the trajectory quadruple 

1( , , , )t t t ts a r s 
 obtained from the agent's interaction with the environment is 

stored in the experience replay pool, and only the latest M  data points are retained. Once the pool is full, the 
oldest data points are immediately deleted. Experience replay breaks the sequence correlation, reusing collected 
experiences to achieve the same performance with fewer samples. 

Traditional experience replay uses uniform random sampling; however, the importance of the obtained sample 
data is not the same, and important samples need to be sampled multiple times. Therefore, scholars have 
proposed priority experience replay, which assigns a weight to each quadruple and then performs non-uniform 
random sampling. Typically, non-uniform sampling uses the absolute value of the TD error as the weight, i.e.: 

 1| | ( , ; ) [ max ( , ; )]j j j t j
a

Q s a r Q s a   
  

A
 (14) 

If the absolute value of the TD error | |j  is large, it indicates that the TD target is significantly different from the 

Q  function, and the reinforcement learning algorithm's assessment of the true value of ( , )j js a  is inaccurate. 

Therefore, a higher weight should be assigned to 
1( , , , )j j j js a r s   
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Since prioritized experience replay uses non-uniform sampling, different samples have different sampling 
probabilities. Assuming that the probability of sampling the quadruple 

1( , , , )j j j js a r s   is 
jp , there are generally 

two ways to define it, one of which is:  

 | |j jp  ò  (15) 

Here, ò  is a very small number used to prevent the sampling probability from approaching 0, ensuring that all 
samples are drawn with a non-zero probability. Another way to define it is to first sort | |j  in descending order, 

then calculate the sampling probability: 

 
1

( )jp rank j
  (16) 

The ( )rank j  is the ordinal number of | |j . The basic principle behind these two definitions is the same, 

namely that samples with larger | |j  have a higher probability of being selected. 

 
II. C. 2) Variation Strategy Selection 
The DDPG algorithm can analyze and process the huge state space and action space obtained from fuzzy testing 
modeling, thereby achieving efficient solution of the modeling problem. 

In the DDPG algorithm for solving problems obtained from fuzzy testing modeling based on reinforcement 
learning, the algorithm model selects a specific data mutation strategy a  based on the current input sample data 
s  using the strategy   learned through training. Then, based on the data mutation strategy a , the system 
modifies and mutates the input sample data s  and inputs it into the preprocessed target to be tested. waits for its 
execution to complete and obtains the coverage reward data r  and new environment state data s  returned by 

the environment, thereby completing a complete interaction process. At the same time, the system updates the 
model parameters and selects the strategy  . Then, the system continues the above execution steps by 
assigning s s  until the predefined training conditions are met, completing the model training process. In this 

process, the DDPG algorithm does not simply select the currently known optimal mutation strategy action when 
choosing a specific mutation strategy. Instead, it introduces OU noise to explore the action space A , thereby 
balancing exploration and exploitation across the entire action space and avoiding getting stuck in a local optimum 
while ignoring other potentially high-value mutation strategies * . 

In summary, this paper uses the DDPG algorithm to intelligently select data mutation strategies, thereby 
generating more high-quality samples and improving the efficiency of fuzz testing. 

III. Software supply chain vulnerability remediation methods based on LLM 
The emergence of large language models (LLMs) has opened up new avenues for automated vulnerability repair. 
However, since the code corpora used in the pre-training process of LLMs do not have security labels, the repair 
programs are generated using a Top-K sorting algorithm based on probability, without considering code security 
factors. To address these issues, this paper proposes a large model-based automated repair method for software 
supply chain vulnerabilities. 
 
III. A. Data Format Definition 
The dataset constructed in this paper is derived from two large-scale vulnerability repair datasets: Big-Vul and 
CVEFixes. In the data format, “[INST]” and “[/INST]” denote the start and end of the model input. In the input 
prompt, “instruction” refers to the instruction, which specifies the model's role and the task to be completed. 
“cwe_id” denotes the CWE ID of the vulnerability code, corresponding to the vulnerability type, while 
“cwe_description” provides specific details about the vulnerability type, aiding the model in understanding the 
underlying principles of the vulnerability. “example” represents a repair case, illustrating the process of fixing a 
vulnerability from identification to logical analysis and ultimately to repair. Different vulnerability types are 
accompanied by distinct repair cases, and it also demonstrates the format of the output data. “source_code” refers 
to the vulnerability code with marked vulnerability locations. For the vulnerability code format input to the model, 
the vulnerability program with marked vulnerability locations is used as input. To distinguish between repair 
locations, two special tokens, <BUGS> and <BUGE>, are used to mark each segment of the vulnerability code that 
needs to be modified in the vulnerability program. For the data representation of the fixed program, two special 
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tokens, <FIXS> and <FIXE>, are used to mark the modified code segments. Each <BUGS> and <BUGE> marked 
vulnerability code segment has a corresponding <FIXS> and <FIXE> marked fixed code segment. 
 
III. B. Model fine-tuning 
The model architecture during the fine-tuning phase follows the Llama model. To endow the model with rich 
pre-trained knowledge, the weight parameters of the Deepseek model are used to initialize the Llama model as the 
base model for fine-tuning. Fine-tuning is performed using the LoRA method. 

The Llama model only adopts the Decoder module structure of the Transformer architecture, i.e., the decoder. 
The decoder is composed of multiple layers of Llama Decoder Layers, each of which includes data normalization, 
multi-head self-attention, and a feedforward neural network. 

Data normalization: For input vectors 
ix  and 

iweight  being learnable parameters, the RMSNorm normalization 

function is calculated as follows: 

 
2

1

*
1

i
in

i
i

x
weight

x eps
n 


 (17) 

Multi-head self-attention: The core component in each layer is the LlamaAttention layer. The attention calculation 
formula is: 

 ( , , ) ( )
T

k

QK
Attention Q K V softmax V

d
  (18) 

Feedforward neural network: A feedforward neural network is a multi-layer perceptron (MLP) that primarily uses 
nonlinear activation functions and linear projections. The MLP module consists of multiple fully connected layers. In 
LLaMA, the fully connected layers use the FFN formula with the SwiGLU activation function: 

 
2 1 2( , , , ) ( ( ) )SwiGLUFFN x W V W Swish xW xV W   (19) 

Among them, W, V, and W2 are the parameters of the linear layer, and the Swish activation function is expressed 
as: 

 ( ) ( )Swish x x x    (20) 

Among them, ( )x  is the Sigmoid function, and   is a learnable parameter. When 1  , the Swish function 

here can be replaced by the SiLU function, resulting in the formula: 

 ( ) ( )SiLU x x x  (21) 

Thus, Swishl(xW) was replaced by SiLU(xW), and the final FFN formula was obtained as follows: 

 
2 2( , , , ) ( ( ) )SwiGLUFFN x W V W SiLU xW xV W   (22) 

III. C. Reordering Algorithm 
III. C. 1) Generating a repair program 
First, the LLM uses Beam Search to generate candidate fixes. To avoid missing high-probability words that are 
hidden, Beam Search uses a best-first search strategy at each time step to select the top n  sequences with the 
highest probability, and continues to generate using these n  sequences at the next time step. n  is typically 
referred to as the beam width or beam size. When generating repair programs, the beam size is set to N , thereby 
generating the top N  candidate repair programs with the highest probabilities. 
 
III. C. 2) Consistency matching 
Compare the N  candidate fixes with the standard answer for consistency. If any of the candidate fixes match the 
standard answer exactly, then that candidate fix is considered a valid fix. 

For those candidate fixes that do not have samples matching the standard answer, the original vulnerability code 
is repaired and replaced at the corresponding location to obtain the candidate complete fix, which is then subjected 
to security sorting. This process consists of two steps: functional correctness screening and code security sorting. 
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III. C. 3) Functional Correctness Screening 
For each candidate complete repair, calculate its CodeBLEU evaluation function score and perform functional 
correctness screening to obtain the m  candidate complete repairs that pass the screening. If no candidate 
complete repairs pass the functional correctness screening, the algorithm ends. The CodeBLEU calculation 
formula is as follows: 

  CodeBLEU weight ast dfScore B Matc aB h M tch            (23) 

Among them, B represents N-GramMatch(BLEU), 
weightB  represents Weighted N-Gram Match(BLEU-weighted), 

astMatch  represents abstract syntax tree matching score, and 
dfMatch  represents data flow matching score. 

 
III. C. 4) Safety Ranking 
For the m  candidate complete fixes that pass the functional correctness screening, calculate their LineVul 
evaluation function scores as their security coefficients. Perform a quick sort based on the security coefficients to 
obtain the top k  candidate complete fixes with the highest security coefficients as the final fix program, ensuring 

the security of the fix program. In this paper, LineVul is used as the evaluation metric for code security. The final 
score formula is: 

 
LineVul P NScore p Pro q Pro     (24) 

Where Prop denotes the probability that the candidate repair program is output as a positive sample by LineVul, 
and 

NPro  denotes the probability that the candidate repair program is output as a negative sample by LineVul. 

Quick sorting process for m  candidate repair programs: 
(1) If m  is less than or equal to k , the sorting ends. 

(2) Select the benchmark element: Select the score value of the LineVul evaluation function of the first candidate 
repair program among the m  candidate repair programs as the benchmark element. 

(3) Partitioning operation: Use two pointers, one scanning from left to right to find numbers less than the 
benchmark element, and the other scanning from right to left to find numbers greater than the benchmark element. 
Swap the found numbers with the benchmark element until the two pointers meet. 

(4) Recursive sorting: Perform quick sort on the subarray to the left of the benchmark element, then perform 
quick sort on the subarray to the right, until the entire array is sorted. 

IV. Experimental verification and analysis 
IV. A. Analysis of Vulnerability Mining Results 
IV. A. 1) Test Set 
LAVA is a technique for inserting vulnerabilities and faults into programs. LAVA technology is widely used to 
construct effect evaluation test sets for various types of fuzz testing. The LAVA-M dataset is a dataset obtained by 
inserting faults into four programs (uniq, who, md5sum, and base64) using LAVA technology. It is a widely used 
effect evaluation test set in the field of fuzz testing. 

In addition, two real programs were selected for crash reproduction in the testing: GNU Binutils is a collection of 
binary analysis tools for the Linux platform. Lib PNG is a relatively low-level image library for reading and writing 
PNG files, with nearly 500,000 lines of code. 

 
IV. A. 2) LAVA-M Test 
This test will compare the performance of AFL, AFLGO, and the proposed method in LAVA-M, evaluating the 
efficiency of each tool in detecting vulnerabilities given a target node. The test will be repeated 15 times, with each 
run lasting 20 hours. The proposed method uses coverage count, average discovery time, and performance gain 
as primary metrics. Coverage count measures the number of unique crashes covering the target node, where a 
unique crash refers to a path that triggers the crash and introduces new nodes. The average discovery time 
represents the average time taken to cover the target node. Performance gain is calculated as the ratio of the 
average discovery time of AFL or AFLGO to the average discovery time of the proposed method. 

Table 1 shows the test results of various fuzz testing tools on the LAVA-M dataset. The proposed method 
achieves the fastest coverage of the target site. Compared to the non-directed fuzz tester AFL, the average speed 
of reaching the target site (i.e., the average performance gain) improved by 3.43 times, and compared to the 
directed fuzz tester AFLGO, the average speed of reaching the target site improved by 1.45 times. In terms of 
coverage count, both the directed AFLGO and the proposed method outperform AFL, demonstrating the 
advantage of directed fuzz testing in vulnerability reproduction. The small difference in test results is because the 
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number of inputs that can cause the target node to crash is limited, and the program size is not very large, so within 
20 hours, both AFL and AFLGO are highly likely to obtain the majority of valid crash inputs. 

Table 1: Experiment results on the LAVA-M dataset 

Test object Tools Coverage times Average discovery time/s Performance gain 

who 

AFL 4 69126 3.74 

AFLGO 5 29466 1.59 

Our method 7 18502 — 

base64 

AFL 5 4035 4.76 

AFLGO 6 1604 1.89 

Our method 6 848 — 

md5sum 

AFL 5 68158 1.77 

AFLGO 5 43090 1.12 

Our method 6 38522 — 

uniq 

AFL 6 52551 3.46 

AFLGO 8 18097 1.19 

Our method 8 15192 — 

 
IV. A. 3) CVE Vulnerability Testing 
To reflect the actual situation, this test selected eight reproducible CVE vulnerabilities from the vulnerability reports 
of Lib PNG and Binutils, and conducted 10 repeated experiments to obtain the average results. These 
vulnerabilities can be identified by their CVE numbers. 

Table 2 presents the experimental results of various fuzz testing tools in terms of reproducing real vulnerabilities. 
The primary metrics for evaluating the performance of fuzz testing tools include average discovery time, 
performance gain, and P-value (the probability of observing results more extreme than the obtained sample 
observations when the null hypothesis is true). The P-value measures the degree of mismatch between the sample 
data and a given statistical model. In multiple experiments, a P-value less than 0.05 is generally considered to 
indicate a low probability of unexpected results due to chance, and the difference between the two is significant 
and stable. Since AFLGO and the fuzzy testing scheme in this paper are both directional fuzzy testing, the 
P-values between the scheme in this paper and AFLGO are provided in the results to demonstrate the superior 
performance of the scheme in this paper. 

From the comparison test results of LibPNG and Binutils, it can be seen that in the reproduction of the 
aforementioned vulnerabilities, the proposed scheme performs better, with an average speed improvement of 3.67 
times compared to AFL and 1.84 times compared to AFLGO. This indicates that the proposed scheme has 
stronger adaptability and specificity, enabling it to complete fuzz testing with higher efficiency under user-specified 
target nodes and achieve vulnerability mining in the software supply chain. Compared with the test results on the 
LAVA-M dataset, the proposed method achieves higher performance gains than AFL and AFLGO, demonstrating 
its superior performance in complex real-world environments. 

For the vulnerabilities CVE-2016-4491 and CVE-2016-6131, the proposed method exhibits a more significant 
advantage over AFL and AFLGO. From the average discovery time, it can be seen that these two vulnerabilities 
are relatively complex and difficult to detect, requiring more time to explore. This reflects that the proposed method, 
through deep reinforcement learning, can more effectively select test samples, making the fuzz testing process 
more targeted and efficient. Additionally, the p-values obtained by comparing with AFLGO are all below 0.05, 
indicating that the proposed method has strong stability. 
IV. B. Analysis of Vulnerability Fix Effectiveness 
IV. B. 1) Experimental Data 
This paper obtains defects from two publicly available vulnerability datasets, Big-Vul and CVEFixes, and constructs 
an experimental dataset. The Big-Vul dataset crawls the CVE database to obtain information such as CVE-ID, CVE 
severity scores, and CVE summaries. CVEFixes directly crawls vulnerabilities from the US National Database and 
changes the data source and retrieval time range. 
 
IV. B. 2) Evaluation Indicators 
Since this paper deals with vulnerability repair location identification and vulnerability repair, the evaluation 
indicators in this paper include repair location identification effectiveness evaluation indicators and vulnerability 
repair effectiveness evaluation indicators. 
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Table 2: Experiment results on the crash reproduction 

CVE 

AFL AFLGO Our method 

P value Average discovery 

time/s 
Performance gain 

Average discovery 

time/s 
Performance gain 

Average discovery 

time/s 

CVE-2016-4487 844 2.45 523 1.52 345 0.034 

CVE-2016-4488 1666 3.40 917 1.87 490 0.006 

CVE-2016-4489 1335 3.35 688 1.72 399 0.024 

CVE-2016-4491 31694 2.95 28105 2.61 10760 0.009 

CVE-2016-4492 953 2.45 672 1.73 389 0.042 

CVE-2016-6131 33932 3.45 21293 2.17 9831 0.011 

CVE-2011-2501 2207 4.54 686 1.41 486 0.008 

CVE-2011-3328 12873 6.74 3256 1.70 1910 0.014 

 
(1) Repair location identification effectiveness evaluation indicators 
When evaluating the effectiveness of repair location positioning, this paper uses recall rate @Top-n and MFR 

(mean first rank) as metrics. Recall rate @Top-n is a commonly used evaluation metric in defect localization. This 
paper references its definition to assess the effectiveness of repair location localization, measuring the extent to 
which the standard answer appears among the top n  items in the prediction list. The smaller the value of n , the 
more accurate the defect localization results. In this paper's experiments, the values of n  selected are 1, 5, 10, 
and all. A higher Recall Rate @ Top-n value indicates better defect localization performance. Recall Rate @ Top-all 
is denoted as Recall Rate. MFR is used to calculate the average rank value of the first defect code element in the 
predicted list of suspicious code elements. A lower MFR value indicates higher defect localization accuracy. 

(2) Repair Effect Evaluation Metrics 
This paper adopts the recall rate, a common metric in the field of defect repair, as the evaluation metric. 

Additionally, to more fully measure the effectiveness of patch generation, the recall rate @Top-n, a commonly used 
evaluation metric in the field of automatic program repair, is also adopted. This metric measures the prevalence of 
the standard answer among the top n  items in the prediction list. 

 
IV. B. 3) Comparison of experimental results 
This paper compares the performance of the LLM-based software supply chain vulnerability repair method with 
three baseline methods on a dataset. The comparison results between the proposed method and the baseline 
methods are shown in Figure 1. Compared with the baseline methods, the proposed LLM-based software supply 
chain vulnerability repair method demonstrates significant performance improvements. Specifically, in terms of 
recall, the recall rate of the proposed method reached 33.27%, representing improvements of 142.49%, 92.87%, 
and 39.38% over the baseline methods VRepair, VulRepair, and CotRepair, respectively. This means that the 
proposed method can generate 142.49%, 92.87%, and 39.38% more correct repair programs compared to the 
baseline methods. In terms of recall rate @Top-1, the proposed method achieved improvement rates of 250.50%, 
86.28%, and 36.15% compared to the baseline methods VRepair, VulRepair, and CotRepair, respectively. Similarly, 
the proposed method also outperformed the baseline methods in terms of recall rate @Top-5 and recall rate 
@Top-10. This paper also uses the Wilcoxon signed-rank test to examine whether there are significant differences 
in the rankings of effective repair programs in the prediction results between this method and each baseline 
method, in order to verify whether there are significant differences in repair performance between this method and 
each baseline method. The evaluation results show that the p-values between this method and each baseline 
method are all less than 0.01, indicating that the performance differences between this method and each model are 
highly significant. 

In summary, for software supply chain vulnerability programs, the LLM-based software supply chain vulnerability 
repair method proposed in this paper can effectively repair defects and significantly outperforms the baseline 
methods. 
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Figure 1: The repair performance comparison results of the method and the baseline method 

IV. B. 4) Repair location prediction 
Accurate vulnerability repair requires precise identification of the repair location. The prediction accuracy of various 
methods for repair locations is shown in Figure 2. Compared to the baseline method, the method proposed in this 
paper can more accurately capture the location of defects in the code. Specifically, the recall rate for the repair 
location using the method proposed in this paper is 52.39%, meaning that, without considering the correctness of 
the repair program, 52.39% of the repair programs generated by the method proposed in this paper were modified 
at the correct repair location. The recall rates for VRepair, VulRepair, and CotRepair are 19.25%, 41.54%, and 
34.81%, respectively. Meanwhile, the proposed method also shows a significant improvement in the MFR metric 
compared to the baseline method. Compared to VulRepair, which currently performs well, the proposed method 
reduces the MFR metric by 19.53%, indicating that it can more accurately predict the locations of defects in 
vulnerable code. 

 

Figure 2: The prediction effect of all parties on repair location 

IV. B. 5) Impact of defect types 
Figure 3 shows the performance of the method described in this paper on the 10 most frequently occurring 
vulnerability categories. The method performed best on CWE-264 vulnerabilities, achieving a recall rate of 45.75%, 
and fixed 44.94%, 35.74%, and 35.09% of vulnerabilities in CWE-190, CWE-399, and CWE-416, respectively. The 
worst performance was observed for CWE-476 and CWE-20, with only 20.83% and 24.52% of vulnerabilities fixed, 
respectively. Overall, the recall rate was 33.23%, while the recall rate of the method described in this paper on the 
full dataset was 33.27%, with a small difference in recall rate compared to the top 10 most frequently occurring 
vulnerability categories. This means that the method described in this paper performs similarly on less frequently 
occurring vulnerability categories as it does on the most frequently occurring ones, indicating that it can learn 
vulnerability repair methods without requiring a large amount of vulnerability data. 
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Figure 3: Performance of the 10 highest frequency vulnerabilities 

IV. B. 6) Impact of Vulnerability Length 
Figure 4 shows the performance of each method on vulnerability programs of different lengths. Overall, the 
performance of VRepair, VulRepair, CotRepair, and the method described in this paper decreases as the length of 
the vulnerability program and the number of defective lines increase. Among vulnerability programs shorter than 
100 lines, VulRepair, CotRepair, and the method proposed in this paper repaired 44.67%, 46.05%, and 59.57% of 
the vulnerability programs, respectively. For vulnerability programs with lengths between 300 and 400 lines, they 
repaired 16.75%, 18.08%, and 38.09% of the vulnerability programs, respectively. Compared to VRepair, VulRepair, 
and CotRepair, the method proposed in this paper shows a more significant performance improvement on longer 
vulnerability programs. Specifically, compared to VRepair, VulRepair, and CotRepair, the proposed method 
achieved improvements of 77.03%, 33.36%, and 29.36%, respectively, for vulnerability programs with lengths of 0–
100, and improvements of 168.98%, 74.91%, and 52.18%, respectively, for vulnerability programs with lengths of 
401–500. 

Additionally, this paper investigates the complexity of vulnerability repair by analyzing the average number of 
defective lines in vulnerability programs of different lengths. The study found that in vulnerability programs with 
lengths ranging from 0 to 100, the average number of lines involved in vulnerabilities was only 1.49, while in 
vulnerability programs with lengths ranging from 300 to 400, the average number of lines involved in vulnerabilities 
was 2.61. This indicates that as the average length of vulnerabilities increases, the average number of defect lines 
also significantly increases, leading to a corresponding increase in the difficulty of vulnerability repair. Therefore, 
the performance of various software supply chain vulnerability repair methods decreases as the average number of 
defect lines increases. To investigate the effectiveness of the proposed method in addressing multi-line defects, its 
performance was evaluated on vulnerabilities with more than one defect line. The evaluation results showed that 
the proposed method achieved a recall rate of 19.45% in this scenario, indicating that it can still accurately identify 
and address vulnerability locations even in cases of multi-line defects. 
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(c) Recall/% 

Figure 4: The performance of each algorithm on different length vulnerability program 

V. Conclusion 
The development of network information technology has led to an increase in the scale of software, while the 
likelihood of code containing vulnerabilities has also risen. This study investigates software supply chain 
vulnerability detection methods based on fuzz testing technology, constructs a fuzz testing method based on 
reinforcement learning, and combines it with large language models to propose a software supply chain 
vulnerability repair method. Through experiments, the effectiveness of the proposed vulnerability detection and 
repair methods is verified, with the main results as follows: 

(1) In tests on the LAVA-M dataset, the proposed vulnerability detection method achieves faster target site 
coverage speeds, outperforming the AFL and AFLGO methods by 3.43 times and 1.45 times, respectively. In terms 
of reproducing real vulnerabilities, the proposed method identifies target vulnerabilities on average 3.67 times and 
1.84 times faster, indicating significant improvements in guidance and targeting capabilities, enabling rapid 
identification of potential vulnerability paths. 

(2) The results of multiple metrics for the paper's LLM-based vulnerability repair method outperform other 
methods, with recall rates 39.38% to 142.49% higher, and significant differences of over 1% compared to other 
methods. In the repair programs generated by this method, the recall rate for predicting repair locations reached 
52.39%, while the MFR metric decreased by 19.53% compared to VulRepair, demonstrating excellent performance 
in predicting the repair locations of vulnerability code. Additionally, under different vulnerability types and program 
lengths, it exhibited better repair effects than other methods. 

Fuzz testing, as a vulnerability detection method, can efficiently identify vulnerabilities in software compared to 
manual code audit-based vulnerability detection methods. This paper optimizes fuzz testing technology using the 
DDPG reinforcement learning algorithm and constructs an automated vulnerability repair path for the software 
supply chain, providing security assurance for deploying vulnerability detection and security protection tools across 
all stages of the software supply chain process. 

Funding 
This research was supported by the Science and Technology Major Projects of CNOOC Energy Technology & 
Services Limited: “Research and Application of Software Supply Chain Security Testing Techniques” 
(HYFZ-ZX-XK-2022-02). 

References 
[1] Zhao, S., Zhu, J., & Peng, J. (2024). Software Vulnerability Mining and Analysis Based on Deep Learning. Computers, Materials & 

Continua, 80(2). 
[2] Kalouptsoglou, I., Siavvas, M., Ampatzoglou, A., Kehagias, D., & Chatzigeorgiou, A. (2023). Software vulnerability prediction: A 

systematic mapping study. Information and Software Technology, 164, 107303. 

33.65 44.67 46.05 59.57

15.29 31.48 38.15 47.84

14.62 27.21 33.53 42.77

11.37 16.75 18.08 38.09

14.67 22.56 25.93 39.46

9.73 10.57 14.36 20.82

VRepair VulRepair CotRepair Our method

0–100

101–200

201–300

301–400

401–500

>501

B
ug

 le
ng

th

Methods

9.60 19.60 29.60 39.60 49.60 59.60



Research on Reinforcement Learning-Driven Software Supply Chain Vulnerability Detection and Repair Path Optimization Methods 

8510 

[3] Shamal, P. K., Rahamathulla, K., & Akbar, A. (2017, March). A study on software vulnerability prediction model. In 2017 International 
Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 703-706). IEEE. 

[4] Kalouptsoglou, I., Siavvas, M., Ampatzoglou, A., Kehagias, D., & Chatzigeorgiou, A. (2024, July). Vulnerability classification on source 
code using text mining and deep learning techniques. In 2024 IEEE 24th International Conference on Software Quality, Reliability, and 
Security Companion (QRS-C) (pp. 47-56). IEEE. 

[5] Adithya, A., Vyas, V., Mohan, M., Aaswin, V. A., & Lanka, S. (2024). Vulnerability Scanning by CPE-CVE Matching. Grenze International 
Journal of Engineering & Technology (GIJET), 10. 

[6] Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M., & Xie, W. (2017, August). A mining approach to obtain the software vulnerability 
characteristics. In 2017 fifth international conference on advanced cloud and big data (CBD) (pp. 296-301). IEEE. 

[7] Murtaza, S. S., Khreich, W., Hamou-Lhadj, A., & Bener, A. B. (2016). Mining trends and patterns of software vulnerabilities. Journal of 
Systems and Software, 117, 218-228. 

[8] Guo, W., Fang, Y., Huang, C., Ou, H., Lin, C., & Guo, Y. (2022). HyVulDect: a hybrid semantic vulnerability mining system based on graph 
neural network. Computers & Security, 121, 102823. 

[9] Malhotra, R., & Vidushi. (2024). Text mining based an automatic model for software vulnerability severity prediction. International Journal 
of System Assurance Engineering and Management, 15(8), 3706-3724. 

[10] Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cyber security vulnerabilities, threats, 
attacks, and solutions. Electronics, 12(6), 1333. 

[11] Humayun, M., Niazi, M., Jhanjhi, N. Z., Alshayeb, M., & Mahmood, S. (2020). Cyber security threats and vulnerabilities: a systematic 
mapping study. Arabian Journal for Science and Engineering, 45, 3171-3189. 

[12] Ruohonen, J., Rauti, S., Hyrynsalmi, S., & Leppänen, V. (2018). A case study on software vulnerability coordination. Information and 
Software Technology, 103, 239-257. 

[13] Medeiros, I., Neves, N., & Correia, M. (2015). Detecting and removing web application vulnerabilities with static analysis and data mining. 
IEEE Transactions on Reliability, 65(1), 54-69. 

[14] Pistoia, Marco, et al. "A survey of static analysis methods for identifying security vulnerabilities in software systems." IBM systems journal 
46.2 (2007): 265-288. 

[15] Filus, Katarzyna, et al. "Efficient feature selection for static analysis vulnerability prediction." Sensors 21.4 (2021): 1133. 
[16] Xu, Y., Zhang, M., Wang, X., Chen, J., Liang, R., Zhen, Y., & Zhen, C. (2023, May). A Review of Code Vulnerability Detection Techniques 

Based on Static Analysis. In International Conference on Computational & Experimental Engineering and Sciences (pp. 251-272). Cham: 
Springer Nature Switzerland. 

[17] Li, Y., Ma, L., Shen, L., Lv, J., & Zhang, P. (2019). Open source software security vulnerability detection based on dynamic behavior 
features. Plos one, 14(8), e0221530. 

[18] Afianian, A., Niksefat, S., Sadeghiyan, B., & Baptiste, D. (2019). Malware dynamic analysis evasion techniques: A survey. ACM 
Computing Surveys (CSUR), 52(6), 1-28. 

[19] Li, J., Chen, J., Huang, M., Zhou, M., Xie, W., Zeng, Z., ... & Zhang, Z. (2018). An integration testing framework and evaluation metric for 
vulnerability mining methods. China Communications, 15(2), 190-208. 

[20] Padmanabhuni, B. M., & Tan, H. B. K. (2016). Auditing buffer overflow vulnerabilities using hybrid static–dynamic analysis. IET Software, 
10(2), 54-61. 

[21] Yitagesu, S., Xing, Z., Zhang, X., Feng, Z., Bi, T., Han, L., & Li, X. (2025). Systematic Literature Review on Software Security Vulnerability 
Information Extraction. ACM Transactions on Software Engineering and Methodology. 

[22] Kim, S., Kim, R. Y. C., & Park, Y. B. (2016). Software vulnerability detection methodology combined with static and dynamic analysis. 
Wireless Personal Communications, 89, 777-793. 

[23] Ghaffarian, S. M., & Shahriari, H. R. (2017). Software vulnerability analysis and discovery using machine-learning and data-mining 
techniques: A survey. ACM computing surveys (CSUR), 50(4), 1-36. 

[24] Shah, I. A., Rajper, S., & ZamanJhanjhi, N. (2021). Using ML and Data-Mining Techniques in Automatic Vulnerability Software Discovery. 
International Journal of Advanced Trends in Computer Science and Engineering, 10(3). 

[25] Jie, G., Xiao-Hui, K., & Qiang, L. (2016, June). Survey on software vulnerability analysis method based on machine learning. In 2016 
IEEE first international conference on data science in cyberspace (DSC) (pp. 642-647). IEEE. 

[26] Chernis, B., & Verma, R. (2018, March). Machine learning methods for software vulnerability detection. In Proceedings of the fourth ACM 
international workshop on security and privacy analytics (pp. 31-39). 

[27] Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014). Predicting vulnerable software components via text mining. IEEE 
Transactions on Software Engineering, 40(10), 993-1006. 

[28] Lin, G., Wen, S., Han, Q. L., Zhang, J., & Xiang, Y. (2020). Software vulnerability detection using deep neural networks: a survey. 
Proceedings of the IEEE, 108(10), 1825-1848. 

[29] Yamaguchi, F. (2017). Pattern-based methods for vulnerability discovery. it-Information Technology, 59(2), 101-106. 
[30] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. (2010). Defect prediction from static code features: current results, 

limitations, new approaches. Automated Software Engineering, 17, 375-407. 
[31] Hanif, H., Nasir, M. H. N. M., Ab Razak, M. F., Firdaus, A., & Anuar, N. B. (2021). The rise of software vulnerability: Taxonomy of software 

vulnerabilities detection and machine learning approaches. Journal of Network and Computer Applications, 179, 103009. 
[32] Duan, X., Wu, J., Ji, S., Rui, Z., Luo, T., Yang, M., & Wu, Y. (2019, August). VulSniper: Focus Your Attention to Shoot Fine-Grained 

Vulnerabilities. In IJCAI (pp. 4665-4671). 
[33] Liu, K., Kim, D., Bissyandé, T. F., Yoo, S., & Le Traon, Y. (2018). Mining fix patterns for findbugs violations. IEEE Transactions on Software 

Engineering, 47(1), 165-188. 
[34] Lin, G., Zhang, J., Luo, W., Pan, L., De Vel, O., Montague, P., & Xiang, Y. (2019). Software vulnerability discovery via learning 

multi-domain knowledge bases. IEEE Transactions on Dependable and Secure Computing, 18(5), 2469-2485. 
[35] Ghaffarian, S. M., & Shahriari, H. R. (2021). Neural software vulnerability analysis using rich intermediate graph representations of 

programs. Information Sciences, 553, 189-207. 
[36] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2021). Sysevr: A framework for using deep learning to detect software vulnerabilities. 

IEEE Transactions on Dependable and Secure Computing, 19(4), 2244-2258. 



Research on Reinforcement Learning-Driven Software Supply Chain Vulnerability Detection and Repair Path Optimization Methods 

8511 

[37] Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448. 
[38] AlMajali, A., Al-Abed, L., Ahmad Yousef, K. M., Mohd, B. J., Samamah, Z., & Abu Shhadeh, A. (2024). Automated Vulnerability 

Exploitation Using Deep Reinforcement Learning. Applied Sciences, 14(20), 9331. 
[39] Pham, V. H., Chuong, N. P., Thai, P. T., & Duy, P. T. (2024). A Coverage-guided Fuzzing Method for Automatic Software Vulnerability 

Detection using Reinforcement Learning-enabled Multi-Level Input Mutation. IEEE Access. 
[40] Dass, S., & Siami Namin, A. (2021). Reinforcement learning for generating secure configurations. Electronics, 10(19), 2392. 


