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Abstract This study analyzes spatio-temporal data mining and prediction methods and further constructs a 
prediction model based on spatio-temporal analysis. The LSTM model is used to identify the temporal 
characteristics of the input data, and the time lag cross-correlation function is used to dynamically assess the 
correlation between time series. The spatial component is used to visualize the spatial lag relationship, and finally, 
the component models are integrated and coordinated through a fusion strategy. Based on the study of the effects 
of soil mineral ion-microbial interactions on phosphorus and sulfur cycles, this research achieves spatio-temporal 
distribution predictions for phosphorus and sulfur cycles. The abundance of functional genes related to organic 
phosphorus transformation in soil phosphorus cycle microorganisms, Shannon diversity indices, and soil mineral 
ions all showed significant positive correlations (P < 0.05). Similarly, as soil mineral ion concentrations increased, 
the abundance of sulfur reduction genes and sulfur oxidation genes in soil sulfur cycle microorganisms, as well as 
Shannon diversity indices, also increased. In grasslands, the density of phosphorus and sulfur ions exhibits a 
relatively stable annual distribution trend, while in paddy fields, the density of phosphorus and sulfur ions shows an 
increasing trend over time, being more susceptible to the influence of soil mineral ions. The prediction results of the 
phosphorus and sulfur cycles in non-saline-alkali grasslands for 2024 obtained from this model are generally 
consistent with the measured results. 
 
Index Terms time lag cross-correlation function, LSTM model, spatio-temporal analysis model, phosphorus-sulfur 
cycle 

I. Introduction 
Soil microorganisms are an important component of ecosystems and play a significant role in the decomposition of 
soil organic matter and the fixation and conversion of nutrients, especially in the phosphorus and sulfur cycles and 
the regulation of phosphorus and sulfur element availability in agricultural ecosystems [1]-[4]. 

Phosphorus is one of the essential macronutrients for plant growth, serving as a key component of plant 
nucleotides, phospholipid bilayers, and proteins, and participating in various physiological and biochemical 
processes such as plant growth, cellular metabolism, photosynthetic phosphorylation, and the tricarboxylic acid 
cycle [5]-[7]. Microorganisms can promote the cycling of phosphorus in soil. Soil microorganisms possess multiple 
metabolic mechanisms that enable them to decompose organic phosphorus and convert it into inorganic 
phosphorus that is readily absorbed by plants [8], [9]. Additionally, microbial activity and the decomposition of 
organic matter produce acidic metabolic byproducts that lower soil pH. Changes in pH can influence the form and 
concentration of phosphorus in soil, promoting its activation and release, thereby increasing soil phosphorus 
availability [10]-[13]. Concurrently, soil microorganisms can secrete a series of hydrolases to promote the 
mineralization of soil organic phosphorus and release stable phosphorus, thereby driving the soil phosphorus cycle 
[14], [15]. 

Sulfur, as one of the macronutrients essential for plants, plays a crucial role in the synthesis of proteins, vitamins, 
and other substances vital to plant life [16]. Microorganisms also play a significant role in soil sulfur cycling, 
particularly the rhizosphere microbiome, which mediates sulfur exchange between soil and plants [17], [18]. In 
agricultural ecosystems, there is a close relationship between sulfate and hydrogen sulfide, and the sulfur cycling 
functions of microbial communities theoretically have the potential to enhance plant sulfur nutrient utilization, thereby 
improving crop yield and quality [19]-[21]. 

A wide variety of microorganisms are abundantly present in soil, playing crucial roles in maintaining soil health, 
enhancing soil fertility, improving soil environment, suppressing soil-borne diseases, promoting crop growth, and 
enhancing tolerance to abiotic stress [22]-[25]. Soil microorganisms drive the cycling of elements such as 
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phosphorus and sulfur in soil nutrient cycles, which are closely related to agricultural production and ecosystem 
functions. Tian, J., et al. introduced a microbial community capable of promoting soil phosphate solubilization 
(PSMs). By conducting a detailed analysis of the metabolic and enzymatic mechanisms underlying PSM 
mineralization of organic phosphorus and solubilization of inorganic phosphorus, they provided valuable insights 
into the chemical processes of soil phosphorus cycling [26]. Liu, L et al. demonstrated that long-term application of 
phosphorus fertilizers in soil reduces the expression of phosphorus cycle genes in functional microorganisms, 
proposing that altering soil microbial genes to drive soil nutrient cycling could ultimately achieve high-quality crop 
growth [27]. Hallama, M et al. investigated the phosphorus cycling mechanisms of soil microorganisms under cover 
crops, suggesting that applying these findings to agricultural management could tighten nutrient cycling in 
agricultural systems under different conditions, increase crop phosphorus nutrition and yield, while reducing fertilizer 
inputs [28]. Qi, J et al. studied the functional role and potential of microorganisms in phosphorus and sulfur cycling 
during the succession of soil biocrust (BSC) in desert ecosystems. Experimental results indicated that microbial 
communities and their functional genes were effectively expressed in BSC, enhancing microbial metabolic potential 
for phosphorus and sulfur elements [29]. Zhou, Z., et al. emphasized that microbial-mediated oxidation, reduction, 
and disproportionation reactions of sulfur compounds are crucial for biogeochemical cycles, while also assessing 
the complex involvement of microorganisms in sulfur dynamics [30]. Chaudhary, S et al. pointed out that 
microorganisms participate in sulfur cycling in soil through various processes such as oxidation, reduction, 
mineralization, fixation, and volatilization of sulfur compounds. Therefore, microorganisms can be utilized to 
enhance sulfur cycling between soil and plants, thereby effectively increasing crop yields [31]. 

As research continues to advance, scholars have recently discovered that soil mineral ions also participate in 
biogeochemical processes. Although microorganisms play a dominant role in phosphorus and sulfur cycling, the 
interaction between soil mineral ions and microorganisms is equally worthy of attention. 

This study developed a predictive model based on spatio-temporal data modeling techniques to analyze the 
dynamic transformations in soil phosphorus and sulfur cycles. The model's core components include statistical, 
temporal, and spatial components. The LSTM model was used for temporal feature extraction and training of soil 
phosphorus and sulfur data, followed by evaluation of the correlation between time series using time-lagged cross-
correlation functions to enhance the predictive performance of the temporal model. To accurately analyze the 
dynamic effects of soil mineral ion-microorganism interactions on phosphorus and sulfur cycling, the study 
measured soil properties, performed high-throughput sequencing on soil samples, and conducted spatio-temporal 
distribution predictions of soil phosphorus and sulfur cycling based on the research data. 

II. Prediction model construction based on spatio-temporal data modeling technology 
II. A. Knowledge related to spatio-temporal data mining 
II. A. 1) Spatio-temporal data mining 
Spatio-temporal data mining [32] refers to the process of exploring, analyzing, and extracting spatio-temporal 
relationships, patterns, and trends from data in the spatio-temporal domain. It combines data from both temporal 
and spatial dimensions, aiming to extract useful information and knowledge from spatio-temporal data to support 
decision-making, problem-solving, and prediction. The primary research objective of spatio-temporal data mining is 
to uncover hidden patterns, rules, and associations within spatio-temporal data through analysis, thereby gaining a 
deeper understanding of spatio-temporal processes. The main goal of spatio-temporal prediction is to forecast future 
spatio-temporal events, states, or trends based on past spatio-temporal data. 

Given N   region, T   time steps, and C   spatio-temporal tasks with historical state 
1:Tx  , the goal of spatio-

temporal prediction is to use model f  to mine the dependencies between time series and spatial locations in 

historical data to predict the spatio-temporal attributes 
:T Hy  for the next H  time steps, i.e.: 

 
1: :

f
T T Hx y  (1) 

II. A. 2) Spatio-temporal prediction methods for data 
Spatio-temporal prediction data mainly includes grid data and graph structure data, and these two types of data are 
usually determined by the collection equipment and application scenarios. Different deep learning methods tend to 
favor different types of data. For example, models based on convolutional neural network structures are good at 
handling matrix format data and usually perform well on grid data, while models based on graph rolls and networks 
can effectively extract the relationships between nodes by utilizing graph topological structures and usually perform 
better on graph structure data. 

(1) Grid data 
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Raster data [33] is a data representation based on a regular grid or raster cells. It divides spatial areas into regular 
cells and assigns a value to each cell. In spatiotemporal forecasting, raster data can represent continuous or discrete 
phenomena, such as temperature, precipitation, and air quality index. Raster data typically uses a regular spatial 
resolution and is observed or measured at different time points. 

(2) Graph-structured data 
Graph-structured data is a data representation based on graphs, where nodes represent spatial locations or 

entities, and edges represent connections or relationships between them. In spatio-temporal forecasting, graph-
structured data can represent complex spatio-temporal relationships, such as transportation networks, social 
networks, and logistics networks. Each node can have attributes that represent the node's characteristics or attribute 
information. Graph-structured data can be used to predict the evolution of node attributes, path planning, and the 
dynamic interactions between nodes. 

 
II. B. Prediction model based on spatiotemporal analysis 
Since the dynamics of the phosphorus-sulfur cycle are related to spatiotemporal factors, this paper proposes a 
spatiotemporal component fusion model for predicting the phosphorus-sulfur cycle, which describes temporal trends 
and spatial distributions based on statistical characteristics and integrates them into the prediction task. Specifically, 
the discussion is based on the following three components. 

(1) Since observed values of phosphorus and sulfur cycles exhibit autocorrelation, this paper employs attribute 
representations from general statistical analysis to construct a statistical component model, analyzing the 
multidimensional statistical characteristics of phosphorus and sulfur cycles at independent time intervals. 

(2) Considering the time lag and cross-correlation between soil mineral ions and microbial interactions, this paper 
constructs a temporal component model with three sub-components to describe the short-, medium-, and long-term 
periodic characteristics of time series. 

(3) Based on spatial clustering analysis, the study evaluates the multivariate spatial dependence of interactions 
between soil mineral ions and microorganisms and constructs a spatial component model with correlation indicators 
as additional features. The model component architecture is shown in Figure 1. 
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Figure 1: Model Component Architecture of our model 

II. B. 1) Formalization of the problem 
Learn about static property characteristics and dynamic spatio-temporal characteristics from a holistic perspective, 
and abstract the spatio-temporal dependencies between soil mineral ions, microorganisms, and phosphorus-sulfur 
cycles. 
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Formulating the aggregation patterns of soil mineral ions and microorganisms into a spatiotemporal structure, 
each time slice t  corresponds to a spatial map ( , )G V A , which includes a grid node set V  of soil mineral ions 

and microorganisms, as well as an adjacency matrix N NA    with N  grid nodes. Assuming the length of the 

time series is T , the temporal records of phosphorus and sulfur cycles are represented as ( 1, 2,..., )D N
tx t T  , 

where each record 
tx  contains D-dimensional features distributed across N nodes. di

ix  denotes the observed 

value of feature d  at node i  in the t th time step. This risk prediction problem can be formalized as follows: given 

the corresponding features 
1 2( , ,..., )X x x x  over   time steps, predict the number ŷ   of interactions between 

soil mineral ions and microorganisms and the phosphorus-sulfur cycle, where   represents the prediction window 

length. 
 

II. B. 2) Statistical Component Construction 
Given that the dynamics of the phosphorus-sulfur cycle exhibit autocorrelation, this paper proposes a statistical 
component model to describe the statistical characteristics of phosphorus-sulfur cycle sequences. The dynamics of 
the phosphorus-sulfur cycle are influenced by the interaction between soil mineral ions and microorganisms. 
Therefore, the time window is set to the cycle period length, and the statistical characteristics within the window are 
calculated. In addition, since the dynamics of the phosphorus-sulfur cycle exhibit seasonality, the input variables of 
the statistical component model are constructed as follows: 

  , , , , , ,t t t t t t t tS Sum Incr Mean Med Max Min SPLY  (2) 

The subscript indicates the time step. 
As the output of the forget gate, 

tf  determines the forget probability of the hidden unit state in the previous layer 

through a nonlinear activation function  , with a value range of [0, 1]. H HW   and H DU   represent the 

coefficient matrix of the hidden state and input vector, where H  is the number of hidden units and b  is the bias 

parameter. 
ti  and 

tf  act on the previous state 
1tC 
 and the candidate vector 

tC  obtained at the current time 

through the tanh activation function, respectively, as weight parameters to update the cell state 
tC , where   is 

the Hadamard product. 
th   is updated through the output gate 

io   to determine the part of the cell state 
iC  

activated by tanh. The output layer calculates the output value ˆty  through the weighted connection of the hidden 

layer sequence 
1 2, ,..., th h h . 

 
II. B. 3) Sequential Component Construction 
This paper proposes a solution that combines short-, medium-, and long-term cycle characteristics, dividing the time 
series into three stages for modeling to flexibly capture the impact of temporal dependencies on forecasting tasks. 
Specifically, a time series component model comprising three subcomponents is constructed to describe the 
associated characteristics of short-, medium-, and long-term cycles, with the corresponding time periods 
represented as , ,s m lT T T . 

This paper selects the Spearman rank correlation coefficient as a measure of monotonic correlation to quantify 
the inter-sequence correlation at a k th  -step lag. Assuming that time series 

1 2, ,..., TX X X   and 
1 2, ,..., TY Y Y  

represent the mosquito-borne mineral ion index sequence and the phosphorus-sulfur cycle sequence, respectively, 
the temporal lag correlation between 

tX  and 
t kY 

 is defined as: 
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 (3) 

where 
t kY 
   and 

iX   represent the positions of 
t kY 

  and 
tX   after sorting, respectively, and T   represents the 

length of the time series. Values range from -1 to 1, with the absolute value indicating the degree of correlation. 
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II. B. 4) Spatial Component Construction 
Divide the geographic space into N grids and extract spatial factors based on the spatial distribution of cases in the 
actual scenario. By analyzing the correlation between the phosphorus-sulfur cycle index y  in Region i  and the 

mineral ion index x   in the adjacent Region j  , spatial lag is extended to a two-dimensional dimension, i.e., 

( )
N

t i ij j
j

L y a x , where 
iy  and 

jx  are both standardized. A self-connection approach is adopted to consider the 

influence of the node itself and calculate the internal correlation. The specific method involves obtaining an 
adjacency matrix A  as spatial weight values based on the geographical distribution of regions, where 

ija  = 1 

indicates that regions i  and j  are adjacent, and A  is updated by adding self-connections 
NA I : 

 

11 12 1

21 22 2

1 2

... 1 0 ... 0

0 1 0

0 0 1

n

n
N

n n nn

a a a

a a a
A A I

a a a

   
   
      
   
   

  

 

       

 

 (4) 

The spatial cross-correlation coefficient between phosphorus-sulfur cycle numbers and microorganisms was 
calculated using the binary local Moran index: 

 
N

i i ij j
j

I Cy a x    (5) 

Among them, 
i ix x x   , 

j jy y y   , and C   are used for standardization. 0iI    indicates that there is a 

spatial positive correlation between the number of cases in region i  and microorganisms in adjacent regions, and 
N

v j
j

a x   indicates the corresponding spatial lag value. 

ConvLSTM was selected as the spatial component model to learn the spatial relationships between the 
phosphorus-sulfur cycle and microorganisms. ConvLSTM is based on the LSTM structure but uses convolution 
instead of state full connection mode. Compared with LSTM, it can further extract spatial information. The update 
formula is: 
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The asterisk (*) denotes a convolution operation, and   denotes a Hadamard product. This can be interpreted 

as meaning that the amount of phosphorus and sulfur cycling in a given region is not only related to the current 
region, but also influenced by other regions. 

 
II. B. 5) Component Fusion Strategy 
In order to integrate the advantages of each component learner to improve performance, each individual learner 
should have uniqueness and accuracy. This paper constructs statistical, temporal, and spatial components to 
capture features in three dimensions: statistical attributes, temporal trends, and spatial distribution. Assuming that 
the output sequence 

1 2ˆ ˆ ˆ ˆ[ , ,..., ]TTy y y y , T  represents the length of the time series. For output ˆty   , the multiple 

linear regression model can be expressed as: 

 1 2
0 1 2ˆ ˆ ˆ ˆ... n

t t t n ty y y y         (7) 

Among them, there is a total of n  prediction model, ˆiy
  indicates the prediction result of the i rd model at time 

t , and 
i  is used to measure the impact of different component models on the prediction results. 
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III. Research on the dynamic effects of soil mineral ions and microorganisms on 
phosphorus and sulfur cycles 

III. A. Study Area and Experimental Design 
The study area for this experiment is located at the XX Wetland Ecosystem Field Research and Observation Station 
(110°40′E, 35°56′N), which has a temperate monsoon climate with an average annual precipitation of 653.44 mm. 
Sampling was conducted between 2014 and 2024. Six sampling areas, each containing “grassland, dry field, paddy 
field, wetland, forest land, and bare land,” were selected and named BJ1-3, NW1-2, LF1-2, CJ1-3, LS1-3, and 
TDZ1-3, respectively, totaling 16 samples. The soil in the study area is slightly acidic, with mineral ion concentrations 
ranging from approximately 50 to 300 mg/kg. 
 
III. B. Soil sample collection and pretreatment 
Using a 5 cm diameter drill bit, surface soil samples (0–10 cm) were collected from 2014 to 2024, i.e., two years 
after the construction of the OTCs. During sampling, plant roots and rocks were removed from the soil and placed 
in sealed bags for subsequent soil property analysis. Simultaneously, 1–3 g of soil samples were collected using a 
sterile sampling spoon and placed in 2 mL sterile PVC tubes for subsequent microbial analysis. All soil samples 
were placed in ice boxes and transported to the laboratory within 2 hours. Soil samples for microbial analysis were 
stored at -80°C; approximately one-quarter of the samples for soil property analysis were stored at -20°C for 
measuring soil water content (SWC), salinity, and inorganic nitrogen content; the remaining samples were air-dried, 
with a portion sieved through a 2 mm sieve for future use. 
 
III. C. Soil Sample Measurement and Analysis 
III. C. 1) Determination of physical and chemical properties 
Mix soil with deionized water in a 1:5 ratio, stir with a magnetic stirrer for 1 minute, then let it sit for 40 minutes. 
Immerse the calibrated pH meter electrode ball in the supernatant and measure the pH value of the soil. Fresh soil 
was dried using the oven drying method at 105°C. The fresh and dried soil weights, along with the aluminum 
container mass, were recorded and calculated using a formula to determine the soil's moisture content. The TOC-
L analyzer was used to measure the soil's TOC and TN content. Mix 5 g of fresh soil with 25 mL of 2 mol/L potassium 
chloride solution, shake for 1 hour, then centrifuge for 30 minutes. Extract the supernatant and measure the soil 
NH₄⁺–N and NO₃⁻N content using a flow analyzer. Digest with H₂SO₄–HClO₄ solution and determine the TP content 
using a spectrophotometer. 
 
III. C. 2) High-throughput sequencing 
Use a DNA kit to extract DNA from soil samples. Use the forward primer 519F (5′-CAGCCGCCGCGGTAA-3′), ITS3F 
(5′-GCATCGATGAAGAACGCAGC-3′), and reverse primer 915R (5′-GTGCTCCCCCGCCAATTCCT-3′) and ITS4R 
(5′-TCCTCCGCTTATTGATATGC-3′) to amplify the V4–V5 region of archaea and the ITS2 region of fungi using a 
BioRad S1000 PCR instrument. PCR products were detected by 1% agarose gel electrophoresis, and 
concentrations were compared using GeneTools before mixing. PCR mixture products and target DNA fragments 
were recovered using a recovery kit and buffer. Amplified fragment libraries were constructed according to the 
standard procedure of the NEBNext® Ultra™ DNA Library Prep Kit for Illumina®, and the libraries were sequenced 
using the Illumina Hiseq platform with PE250 read lengths. Quality filtering was performed using Trimmomatic 
software (V0.33), assembly was performed using FLASH software (V1.2.11), and effective assembled fragments 
were obtained using Mothur software (V1.35.1). Using the usearch software (V10) and clustering at 97% similarity, 
multiple operational taxonomic units (OTUs) were identified. The assign_taxonomy.py script from Qiime was used 
to remove chimeras, and the representative sequences of the OTUs were compared with the Silva and Unite 
databases. The RDP Classifier and Blast comparison methods were used to obtain species annotation information 
for 16S and ITS, respectively. 
 
III. C. 3) Determination of soil microbial functional genes and data processing 
This study utilized the GeoChip platform from Agilent to measure soil microbial functional genes. Soil sample 
genomic DNA extraction, quality assessment, and final concentration quantification were performed using a kit 
(Guangdong Magigene Biotechnology Co., Ltd., Guangzhou, China), Nanodrop One (Thermo Fisher Scientific, 
Waltham, USA), and FLUOstar Optima microplate reader (BMG Labtech, Jena, Germany), respectively. DNA was 
labeled with Cy3 and purified using random primers, the Klenow fragment of DNA polymerase I, and the QIA kit 
(Qiagen, Valencia, CA, USA). The DNA was dried at 52°C for 50 minutes in the Labconco Centrivap Concentrator 
(Labconco Corp., Kansas City, MO), diluted, incubated at 90°C for 10 minutes, and maintained at 45°C until 
hybridization. The hybridization station (MAUI, BioMicro Systems, Salt Lake City, UT, USA) was preheated at 45°C 
for 10 minutes, and the labeled DNA samples were placed on the array for hybridization for approximately 20 hours. 
The chip was scanned using the NimbleGen MS200 instrument to obtain optical signals. The optical signals were 
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converted into digital signals using ImaGene software, followed by inter-array normalization and false positive 
removal. Signal points with a signal-to-noise ratio (SNR) < 2 were removed to obtain the raw probe signal intensity. 
The raw probe signal intensity was standardized to obtain the standardized probe signal intensity. The standardized 
probe signal intensity for each gene was then aggregated to obtain the gene signal intensity. 
 
III. D. Dynamic effects of soil mineral ions and microorganisms on phosphorus and sulfur cycling 
III. D. 1) Spatial characteristics of microbial functional genes in soil phosphorus cycling 
(1) Abundance of microbial functional genes involved in soil phosphorus cycling and Shannon diversity 

Soil phosphorus cycling functions include organic phosphorus conversion, organic phosphorus synthesis, and 
inorganic phosphorus degradation. The abundance of microbial functional genes involved in soil phosphorus cycling 
is shown in Table 1. The table shows that the abundance of soil microbial genes is highest for inorganic phosphorus 
degradation genes, followed by inorganic phosphorus synthesis genes, and then organic phosphorus conversion 
genes. 

Table 1: Soil phosphorus circulation microbe function gene abundance 

Sampling area Sample number 
Organic phosphorus 

conversion 

Inorganic phosphorus 

synthesis 

Inorganic phosphorus 

degradation 

BJ 

BJ 1 147.03 325.41 914.18 

BJ 2 138.12 298.32 881.91 

BJ 3 143.05 294.79 835.15 

NW 
NW 1 140.55 315.49 861.84 

NW 2 131.55 320.69 851.01 

LF 
LF 1 119.59 282.11 766.61 

LF 2 139.47 309.9 889.86 

CJ 

CJ 1 129.73 305.01 800.85 

CJ 2 125.39 301.05 765.79 

CJ 3 111.42 259.21 732.83 

LS 

LS 1 129.68 296.92 782.6 

LS 2 136.29 285.28 820.78 

LS 3 127.79 294.18 788.49 

TDZ 

TDZ 1 86.93 207.59 564.24 

TDZ 2 95.01 215.24 573.1 

TDZ 3 106.66 232.13 637.84 

Table 2: Soil phosphorus cycle microorganism function gene shannon diversity index 

Sampling area Sample number 
Organic phosphorus 

conversion 

Inorganic phosphorus 

synthesis 

Inorganic phosphorus 

degradation 

BJ 

BJ 1 4.8041 5.6015 6.6997 

BJ 2 4.7936 5.5975 6.6985 

BJ 3 4.8024 5.6008 6.7017 

NW 
NW 1 4.7962 5.6051 6.7064 

NW 2 4.7979 5.6004 6.6998 

LF 
LF 1 4.7963 5.6022 6.7009 

LF 2 4.8008 5.5999 6.7016 

CJ 

CJ 1 4.8036 5.6042 6.7015 

CJ 2 4.7976 5.5937 6.7036 

CJ 3 4.8004 5.6003 6.7004 

LS 

LS 1 4.7967 5.5929 6.6975 

LS 2 4.7969 5.6017 6.7021 

LS 3 4.8026 5.6016 6.6992 

TDZ 

TDZ 1 4.8029 5.6011 6.7035 

TDZ 2 4.7991 5.5983 6.7054 

TDZ 3 4.8031 5.5911 6.6983 
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The Shannon diversity index of soil phosphorus cycle microbial functional genes is shown in Table 2. The 
Shannon diversity index of soil phosphorus cycle microbial functional genes and gene abundance showed the same 
pattern, but there were no significant differences between the different plots. 

 
(2) Relationship between soil phosphorus cycle microbial functional genes and soil mineral ions 
① Relationship between soil phosphorus cycle microbial functional gene abundance and soil mineral ions 
The relationship between soil phosphorus cycle microbial functional gene abundance and soil mineral ions is 

shown in Figure 2. The results indicate that the abundance of soil phosphorus cycle microbial organic phosphorus 
conversion, inorganic phosphorus synthesis, and inorganic phosphorus degradation genes is significantly positively 
correlated with soil mineral ions (P < 0.05).  

 

Figure 2: The relationship between phosphorus circulation and soil mineral ion 

②Relationship between the Shannon diversity index of soil phosphorus cycle microbial functional genes and soil 
mineral ions 

The relationship between the Shannon diversity index of soil phosphorus cycle microbial functional genes and 
soil mineral ions is shown in Figure 3. The results indicate that the Shannon diversity index of soil phosphorus cycle 
microbial organic phosphorus conversion, inorganic phosphorus synthesis, and inorganic phosphorus degradation 
genes is significantly positively correlated with soil mineral ions (P < 0.05). 

 

Figure 3: The relationship between the diversity index and the soil mineral ion 
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III. D. 2) Spatial characteristics of microbial functional genes in soil sulfur cycling 
Soil sulfur cycle microbial functions include sulfur reduction and sulfur oxidation. 

(1) Soil sulfur cycle microbial functional gene abundance and Shannon diversity 
Soil sulfur cycle microbial functional gene abundance and Shannon diversity indices are shown in Table 3. As 

can be seen from the table, soil sulfur cycle microbial functional gene abundance and Shannon diversity indices 
both show that sulfur reduction genes are higher than sulfur oxidation genes. 

Table 3: Gene abundance and shannon diversity index 

Sampling area Sample number 
Gene abundance Genetic diversity 

Sulfur reduction Sulfur oxidation Sulfur reduction Sulfur oxidation 

BJ 

BJ 1 1506.14 638.69 7.2047 6.3958 

BJ 2 1327.42 612.05 7.1967 6.4008 

BJ 3 1324.66 564 7.2016 6.402 

NW 
NW 1 1566.26 648.98 7.1952 6.3966 

NW 2 1551.12 647.64 7.1826 6.3959 

LF 
LF 1 1411.58 615.27 7.2059 6.3993 

LF 2 1510.96 642.93 7.2014 6.4033 

CJ 

CJ 1 1430.64 621.46 7.1943 6.3927 

CJ 2 1418.8 590.23 7.1921 6.3987 

CJ 3 1355.46 587.21 7.1982 6.3974 

LS 

LS 1 1392.66 595.99 7.1774 6.3955 

LS 2 1216.09 556.58 7.2073 6.3964 

LS 3 1435.06 614.05 7.1908 6.3981 

TDZ 

TDZ 1 943.99 448.4 7.2011 6.3968 

TDZ 2 989.66 431.95 7.1975 6.4033 

TDZ 3 1035.44 479.61 7.2031 6.3933 

 
(2) Relationship between soil sulfur cycle microbial functional genes and soil mineral ions 
① Relationship between soil sulfur cycle microbial functional gene abundance and soil mineral ions 
The relationship between soil sulfur cycle microbial functional gene abundance and soil mineral ions is shown in 

Figure 4. The results indicate that the correlation coefficients between sulfur-reducing gene abundance and sulfur-
oxidizing gene abundance and soil mineral ions are 0.2954 and 0.3119, respectively, with P-values of 0.0217 and 
0.0154 < 0.05. Clearly, sulfur-reducing gene abundance and sulfur-oxidizing gene abundance are significantly 
positively correlated with soil mineral ions (P < 0.05). 

 

Figure 4: The relationship between the gene abundance and the soil mineral ion 
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②Relationship between the Shannon diversity index of soil sulfur cycle microbial functional genes and soil mineral 
ions 

The relationship between the Shannon diversity index of soil sulfur cycle microbial functional genes and soil 
mineral ions is shown in Figure 5. The results indicate that the correlation coefficients between the Shannon diversity 
indices of soil sulfur-reducing genes and sulfur-oxidizing genes and soil mineral ions are 0.2833 and 0.3024, 
respectively, with significance P-values of 0.0209 and 0.0211 < 0.05, indicating that the Shannon diversity indices 
of sulfur-reducing genes and sulfur-oxidizing genes are significantly positively correlated with soil mineral ions (P < 
0.05). 

 

Figure 5: The relationship between the diversity index and the soil mineral ion 

The results of the study indicate that, in terms of soil microbial functional gene abundance and Shannon diversity 
index, sulfur cycle functional genes > phosphorus cycle functional genes, and the corresponding secondary 
functional genes also generally follow this pattern. This suggests that phosphorus and sulfur cycles play a significant 
role in material cycling and energy transfer within ecosystems. Regarding the spatial distribution of soil microbial 
functional gene abundance and Shannon diversity index, except for a few functional genes that showed no 
significant positive correlation with soil mineral ions, most functional genes exhibited a significant positive correlation 
with soil mineral ions. This highlights the unique distribution pattern of soil mineral ions and microbial functional 
genes in ecosystems, which directly or indirectly influences the processes of soil phosphorus and sulfur cycling. 

IV. Analysis of the results of spatio-temporal distribution predictions for soil phosphorus 
and sulfur cycles 

To conduct a more detailed analysis of the dynamic effects of soil mineral ion and microbial interactions on 
phosphorus and sulfur cycling, this section categorizes the different land use types mentioned earlier (this section 
only selects grassland and paddy fields for predictive assessment) into three types—“non-saline-alkali land, slightly 
saline-alkali land, and moderately saline-alkali land”—based on their soil mineral ion concentrations, and conducts 
a survey and field measurement analysis of the spatiotemporal distribution of soil phosphorus and sulfur from 2014 
to 2024. 

The annual changes in the density of phosphorus and sulfur ions in soil from 2014 to 2024 are shown in Figure 
6, where (a) and (b) represent grassland and paddy fields, respectively. The measured results indicate that for 
grassland, the distribution of phosphorus and sulfur ion density is relatively stable. The dynamic cycle of phosphorus 
and sulfur in grassland soil is significantly influenced by soil mineral ions. The phosphorus and sulfur ion density 
and microbial abundance in non-saline-alkali grassland soil are significantly higher than those in saline-alkali 
grassland soil. The phosphorus and sulfur ion densities in mildly saline-alkali grassland and moderately saline-alkali 
grassland are similar. 

For paddy fields, the phosphorus and sulfur ion densities show an increasing trend year by year. In years when 
land use remains unchanged, changes in soil mineral ions are minimal, and microbial activity decreases significantly. 
After microbial functional genes are significantly enhanced, interactions between soil mineral ions and 
microorganisms become more frequent, leading to a significant enhancement of the phosphorus and sulfur cycle. 
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However, as the years progress, the cycle of soil phosphorus and sulfur cycling becomes significantly longer. This 
result may be related to the excessive application of chemical fertilizers such as phosphorus fertilizers and urea. 
For example, the excessive use of urea and phosphorus fertilizers can lead to increased levels of phosphorus and 
sulfur elements in the soil, exacerbating soil salinization and compaction, thereby reducing the activity of soil 
functional microorganisms such as phosphorus and sulfur, and ultimately prolonging the cycle of phosphorus and 
sulfur cycling. 

  

(a) Grass (b) Water field 

Figure 6: The density of phosphorus sulfur ions in soil varies year by year 

This section compares data from non-saline-alkali grasslands (abbreviated as N-G) in 2024. The results of the 
dynamic effects of soil mineral ions and microorganisms on phosphorus and sulfur cycling are shown in Figure 7, 
where (a) and (b) represent actual values and predicted values, respectively. Red represents the activity range of 
microorganisms, green represents phosphorus and sulfur cycling, and blue represents the distribution of soil mineral 
ions. From the measured results of the phosphorus and sulfur cycles in N-G grasslands in 2024, it can be observed 
that both microbial activity and soil mineral ion distribution areas are generally associated with phosphorus and 
sulfur cycling processes. The predicted results from this model also show similar patterns, with the predicted values 
closely aligning with the actual values. Both indicate that the distribution of microorganisms and soil mineral ions 
influences phosphorus and sulfur cycling, and in areas where these two factors interact, the cycling of phosphorus 
and sulfur in the soil becomes more closely intertwined. 

 
 

(a) True value (b) Predictive value 

Figure 7: Effects of soil mineral ions and microorganisms on phosphoric sulfur cycle 
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V. Conclusion 
The article introduces knowledge related to spatio-temporal data mining and utilizes spatio-temporal data modeling 
techniques to construct a spatio-temporal analysis and prediction model. The statistical component model describes 
the statistical characteristics of the spatio-temporal sequence of the phosphorus-sulfur cycle, while the temporal 
component model captures the impact of temporal dependencies on phosphorus-sulfur cycle prediction tasks in a 
phased manner. Combined with the spatial component model, this enables the visualization of spatial lag 
relationships in phosphorus-sulfur cycle data. Based on the research findings regarding the dynamic effects of soil 
mineral ions and microorganisms on the phosphorus-sulfur cycle, a spatio-temporal distribution analysis of the soil 
phosphorus-sulfur cycle is conducted. 

The abundance of genes involved in organic phosphorus conversion, inorganic phosphorus synthesis, and 
inorganic phosphorus degradation in phosphorus-cycling microorganisms showed a significant positive correlation 
with soil mineral ion concentrations, with correlation coefficients ranging from 0.0017 to 0.0146. For sulfur cycle 
microorganisms, the abundance of sulfur reduction genes and sulfur oxidation genes increases with rising soil 
mineral ion concentrations, with correlation coefficients of 0.2833 and 0.3024, respectively, and both passed 
significance tests. Under different regional conditions, the annual distribution trends of phosphorus and sulfur ion 
densities vary, but all are influenced by mineral ions. The spatio-temporal analysis prediction model shows good 
predictive performance, with the predicted values for phosphorus and sulfur cycling in non-saline-alkali grasslands 
at different latitudes and longitudes in 2024 aligning well with the actual values. 
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