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Abstract In this paper, a hybrid approximation 2
( ) 1 2 3( ) ( )fhF a a fh a fh      and prediction 
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  model based on the generalized extension method is constructed for 

the optimization problem of nonlinear systems, and a Lyapunov stability analysis is carried out. The model is applied 
to the nonlinear gear micro-parameter optimization system and the trajectory tracking optimization system for 
optimal parameter solving and physical trajectory prediction reduction. During the gear microscopic parameter 
optimization process, most of the optimal parameter solving errors of the generalized extension method are between 
0.00 and 0.02, which have high accuracy. The convex eigenfunction initial value construction and the spectral 
method discretization are utilized to solve the problem of efficiently solving the nonlinear algebraic equation system 
in the case of multiple eigenvalues, and the flight physical trajectory is effectively restored. The Liapunov stability 
analysis shows that the generalized prolongation method satisfies the spectral stability condition under subharmonic 
perturbation. 
 
Index Terms generalized extension method, convex function, Liapunov stability, spectral method, nonlinear 
optimization 

I. Introduction 
In daily life, the problem of maximizing the benefit based on available resources or minimizing the cost to achieve 
an objective is called an optimization problem [1]. With the development of science and technology and economy, 
optimization problems have been widely used in the fields of military, transportation, engineering, economy, national 
defense, artificial intelligence and social sciences, etc., which have attracted extensive attention of scholars and 
become a more widely used discipline [2]-[5]. The numerical solution of nonlinear optimization problems, on the 
other hand, is an important branch in the study of optimization problems [6]. However, many problems in engineering 
applications such as signal processing, system identification, robot motion control, etc., usually contain time-varying 
parameters and thus must be solved in real time in order to optimize the performance of dynamic systems [7], [8]. 
Such real-time application problems place stringent demands on computational time, making the numerical methods 
described above less effective [9]. 

As the form of the problem becomes more and more complex and the computer technology progressively 
deepens, the requirements on the performance of the algorithms become higher and higher [10]. Therefore, while 
proposing new methods, exploring algorithms with fast convergence, high stability and wide practical applicability 
has become a major challenge in the recent past [11], [12]. In the future development, the application areas of 
algorithms will be wider, and the better and faster development of algorithms will bring more positive changes to 
people's daily life [13], [14]. Therefore, exploring the solution method based on the generalized extended solution 
provides an effective method for dealing with nonlinear optimization problems, which complements and improves 
the existing theories and methods. 

In this paper, the generalized extension method is taken as the core, and the theory of convex function analysis 
and Liapunov stability judgment are integrated to realize the optimization of nonlinear problems. By constructing the 

convex function ( (1 ) ) ( ) (1 ) ( )h r s h r h s         with orthogonal projection operator 
2
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P u u z


 D
D

, 

combined with a local fit ( ) ( )1
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  with extrapolation strategy 
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 , realizing high-precision segmental approximation and dynamic 

sequence prediction by generalized extension. Solve the optimal value of nonlinear gear micro-parameters to 
improve the gear running accuracy. Predict and solve the flight trajectory to restore the physical traces. Utilizing 
Liapunov stability analysis to verify the solution stability. 

II. Theoretical elaboration of the generalized extension approach 
In this chapter, the optimization theory of the generalized extension method and the definitions and theorems related 
to matrix analysis are explained. Construct the generalized extension model for use in the optimization solution of 
nonlinear problems. Analyze the application value of Lyapunov stability in the optimization of nonlinear systems. 
 
II. A. Optimization theory and matrix ana C lysis 
Definition 1: Denote : ( , ]h   C  as a true function, where the convex set m C  is the domain of definition 

(also known as the domain of validity) of the function ( )h  . For ,r s C  and [0,1]  , the following inequality 

relation is true if 

 . ( (1 ) ) ( ) (1 ) ( )h r s h r h s        . (1) 

always holds, then ( )h   is said to be a convex function on . Moreover, if ( )h   is a convex function on C , then 
( )h   is said to be a concave function on . C .. 
Definition 2: Let :g  B  denote a real-valued truly convex function on the convex set m B . Let mp   

be any point in the set B  . For any qB  , if the m  -dimensional real column vector r   satisfies the following 
inequality relation 

 ( ) ( ) ,g p g q r p q      (2) 

Then mr    is called a subgradient of the convex function ( )g   at the point pB . 
Remark 1: If the convex function ( )g   is derivable at a point, the gradient of ( )g   at that point is the unique 

subgradient of ( )g   at that point. 
Definition 3: If ( )g    consists of the real-valued truly convex function involved in Definition 2, then the set 

consisting of all subgradients of the convex function ( )g   at the point pB  is called the subdifferential of ( )g   
at the point pB  (abbreviated as ( )g p ), i.e. 

  ( ) : : ( ) ( ) , ,mg p r g p g q r p q q          B . (3) 

Definition 4: Let m D   be a nonempty closed convex set. To this end, the orthogonal projection operator 

( ) : mP  D D  on the set D  is given by the following equation 

 
2

( ) : arg min
z

P u u z


 D
D

 (4) 

Defined, where mu  . 
Remark 2: The orthogonal projections have succinct explicit formulas for the following special classes of convex 

sets. 
(1) Denote m

  as an m -dimensional nonnegative real column vector space, i.e., for 0
mz    , each component 

of the vector z  is nonnegative real. For an arbitrary real number r , [ ]r   denotes its non-negative component, 

i.e. 

 
0

:
0 0

r r
r

r


 

  


 (5) 

For 1 2( , , , ) m
mr r r r   •  , notate  1 2: , , , mr r r r

   
            

•
 . Then, the orthogonal projection on the 

nonnegative real column vector space 0
m
  is 

 
0
( ) : ,m

mP r r r
    


  (6) 
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(2) Let  1 2, , , m
mr r r r  

•
 . Remember that m D   is a box set, i.e., 

 , : ,m
k k k k kD b b r b r b k m            , here k kb b . Then, the orthogonal projection on the box set D  is 

  1 2, , , : ( ), m
ms s s s P r r    

•

D  (7) 

Among them: 

 

,

, ,

,

k k k

k k k k k

k k

b r b

s r b r b k m

b r b

 


       
 

 (8) 

(3) Remember that m D  is the set of 2 -paradigm spheres of radius s    centered at the origin, i.e., 

 : :mr r s  D . Then, the orthogonal projection on the 2 -paradigm spherical set D  is 

 ( ) : m

r r s

P r rsr
r s

r

 
   


D  (9) 

(4) Remember that m D  is a hyperplane, i.e.,  : : , , ,m mr a r h a h        D , where 0a  . Then, the 

orthogonal projection on the hyperplane D  is 

 
 

2

,
( ) : , mh a r a

P r r r
a

  
    D  (10) 

(5) Remember that m D  is a half-space, i.e.,  : : , , ,m mr a r h a h        D , where 0a  . Then, the 

orthogonal projection on the half-space D  is 

 
2

( , )
,

( ) :

,

m

h a r a
r a r h

P r a r

r a r h

        
   

D  (11) 

(6) Remember that m D   is the affine set, i.e.,  : : 0, ,m p m pr Hr h H h       D  , where 

 rank H p . Then, the orthogonal projection on the affine set D  is 

    
1

( ) : , mP r r H HH Hr h r


     • •
D  (12) 

If HH E•  or p m , then the orthogonal projection ( )P D  is quite inexpensive to compute. 

 
II. B. Modeling 
II. B. 1) Generalized Extended Approximation Model Construction 
Using the method of generalized extended approximation to fh  , for example, in order to ensure that the 

approximation function on the domain of any cell is continuous and smooth with the function on the domain of the 
surrounding cells, the region ( )fh  composed of the revision quantity fh  and the discrete points of the noise 

vibration data is partitioned into m  mutually non-overlapping subdomains ( )fh e  and its domain of definition of 

interest can be extended to neighboring cells ( )fh e   with ( ) 1 ( )
m

fh e fh eU    , and ( ) ( )fh e fh e    . Here assume 

that there are q  nodes inside ( )fh e  , and there are s  nodes belonging to the category of  ( )fh e s q  , and 

utilize the localized fitting approximation algorithm to construct the prolonged approximation function 

( ) ( )1

t

FH j j fhj
U a 

 , s t q  , where 1( )fh , 2( )fh ,  , and ( )t fh  are ( )fh e   on the basis functions. Let 

the extended approximation function on ( )fh e   be quadratic, then 1 , fh , 2fh  are a set of basis functions, 

and the relationship between vibrational noise data and the amount of revision can be expressed as 
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 2
( ) 1 2 3( ) ( )fhF a a fh a fh      (13) 

1a , 2a , 3a  are the coefficients to be determined. 

The best squared approximation of ( )fhF    using node  ( ) 1, 2,3, ,ifh i n     within ( )fh e   , while enabling 

( )fhF   to satisfy the difference condition on ( )fh e , which in turn makes the constructor have the minimum squared 

approximation error, i.e: 
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 (14) 

Using the Lagrange multiplier method to solve the above equation with Lagrange multiplier 1 2, , , j    , the 

constructor is as follows: 
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

   
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   



 (15) 

From the practical point of view, considering the cost of testing and computational efficiency, n  in Eq. (15) is 

taken to be 5 and j  is taken to be  1 1 2 2( , ), ( , ), , ( , )n nfh F fh F fh F   . The test discrete point 3 in the selected 

sub-domain can satisfy the demand, which is obtained from  / 0 1, 2,3iL a i    ,  / 0 1, 2jL j    : 
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 
 
 
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 
  
 

 (16) 

Based on Eq. (16), the segmental approximation function ( )fhF   in Eq. (13) can be obtained by bringing in the 

measured discrete-point data, and the interpolation is computed by taking the nodes equally spaced on the interval 
function, and then constructing the approximation function ( )i fhF   on each interval sequentially, and then all the 

performance curves are fitted after all the interpolated points have been found out, and similarly, the performance 
curves can be obtained by finding out the value of ( )fhF  . 

 
II. B. 2) Generalized Extended Prediction Model Construction 

For the growing sequence  1 1,y x , L ,  ,n ny x , L , follow the design concept of generalized delayed interpolation 

extrapolation, so that nx  be the latest moment, and model the generalized delayed extrapolation as: 

 
  22

1 2 3 1 2 3
1

2
1 2 3

min , ,

. . , 1,2, , 1

n

i i i
i

n n n

I a a a a a x a x y

s t a a x a x y i L n


       
     


 (17) 

Generalized extended prediction models can be solved using the Lagrange multiplier method. When fitting with 
a priori data points, the fitted points can be multiplied by a weighting factor, and the weighting factor can be applied 
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in such a way that the newer the data point, the larger the weighting factor. The newest data points can also be 
processed in a variety of ways when utilized, such as a number of the newest data points can be averaged and 
coalesced into a single interpolated point for processing. 

 
II. C. Lyapunov stabilization 
Stability is a basic structural characteristic of a control system, which indicates the ability of a system to maintain its 
preset working state after being perturbed. Stability is also a prerequisite for a system to be able to operate properly, 
and only a stable system can be expanded to practical applications. Liapunov stability theory plays a very important 
role in the study of automatic control systems, and because of its universal and intuitive characteristics, it is popular 
in the stability analysis of nonlinear system control, and even in the stability analysis of other control systems has 
been widely used. In this paper, the control method of strict feedback nonlinear system is investigated based on the 
Liapunov stability theorem, and the following are the relevant definitions of Liapunov stability. 

Definition 1 (Stability in the sense of Liapunov): 
(1) For a nonlinear system 0 0 0( , ), ( ) , [ , )x f t x x t x t t      in an isolated equilibrium state ex  , if for any real 

number 0  , there is 0( , ) 0t    such that the inequality  0 0,ex x t    of the perturbed motion departing 

from any initial state 0x   satisfies 0 0 0( ; , ) ,et x t x t t      , then ex   is stable in the Liapunovian sense at the 

moment 0t . 

(2) If the system is Liapunov stable (i.e., the system is stable in the sense of satisfying 1)), for 0( , )t   and any 

real number 0  , there exists correspondingly a real number 0( , , ) 0T t    such that satisfies 0 0( , )ex x t    

of the perturbed motion 0 0( ; , )t x t   departing from any initial state 0x   can also satisfy the inequality: 

0 0 0 0( ; , ) , ( , , )et x t x t t T t         then ex  is asymptotically stable at the moment 0t . 

Theorem 1 (Lyapunov's stability principle): for a nonlinear system 0( , ), [ , )x f t x t t    , if the origin is an 

equilibrium point of the system, and let one of the neighborhoods of the origin be B , if there exists for all nonzero 
states x B  a positive definite function ( , )V x t  satisfying ( , ) 0V x t  , then the system origin is said to be uniformly 

stable in the neighborhood B  in the sense of Liapunov. 

III. Generalized Extension Method Solution and Stability Analysis 
This chapter analytically demonstrates the optimization process of nonlinear problems based on the generalized 
prolonged solution through the generalized prolonged solution of 2 nonlinear optimization systems. It also verifies 
the stability of the generalized extension solution process and results of the 2 nonlinear optimization systems 
through Liapunov stability analysis. 
 
III. A. Generalized Extended Solution for Nonlinear Gear Microparameter Optimization Systems 
In the nonlinear gear micro-parameter optimization system, the accurate operation of gears requires the 
simultaneous adjustment of multiple parameters. Constructing a one-dimensional function for each parameter and 
solving it using the generalized prolonged approximation method, the optimal solution is found to adjust and optimize 
the parameters, so as to reduce the cost of gear operation and improve the operation accuracy. At the same time, 
in order to judge the approximation effect of the generalized extension approximation method and to understand 
the error between the solution of the method and the actual optimal solution, the cubic spline interpolation method 
and linear interpolation method are chosen as the comparison methods to analyze the approximation error of the 
three methods under the parameter one-dimensional function solving. 

Taking the unitary function related to the helix angle parameter that affects the direction of gear operation as an 
example, it is known that the function ( )f x  has values  ( ) 0,1, ,i iU f x i n    at 1n  nodes in [ , ]a b  that are 

mutually exclusive, and it is desirable to find an approximation function ( )U x   that satisfies 

 ( ) 0,1, 2, ,i iU x U i n   . 

Follow the generalized extended approximation method for the algorithm. Let [ , ]a b    and the node ix  

satisfies 0 1 na x x x b      , and so a partition of    can be obtained: 1 2 n        where 

1[ , ]e e ex x   , 1, 2, ,e n   , obtained by extending e   (note: the extended nodes at both ends have to be 

processed). 

  2 1[ , ] , 1,2, ,e e ex x x x e n       (18) 



Algorithms for solving nonlinear optimization problems based on generalized extended solutions and their stability analysis 

1125 

Construct the segmented interpolation function on e . For the sake of uniformity, the nodes within e  and e
  

are denoted  0,1,2,3e
ix i  , and the corresponding function values are  0,1, 2,3e

iU i  . 

Let the generalized interpolation function ( )U x  within e  be 

 2
1 2 3 1 2( ) , ,e eU x a a x a x x x x       (19) 

where 1 2 3, ,a a a  are coefficients to be determined by the following problem 

 

   

 
 

3 22

1 2 3 1 2 3
0

2

1 2 1 3 1 1

2

1 2 2 3
2

2 2

min , , min

. .

e e
i i

i

e

e e e

e e

iI a a a a a x a x U

a a x a x U
s t

a a x a x U



        
         


 (20) 

Solving equation (20) yields a set of algebraic equations for 1 2 3, ,a a a  

 

2
1 1 1 1

2
2 2 2 2

3 3 3 3
2 3

0 0 0 0

1 ( )

1 ( )

( )

e e e

e e e

e e e
i i i i i i i

i i i i

x x a U

x x a U

a
C C x C x C U

   

   
                     
      
   

 (21) 

where 2
1 2 1 2( ) ( )e e e e e e

i i iC x x x x x x    . 

If this segmented interval lies at the leftmost end of the entire domain of definition, 0x  is bounded, i.e., let 0 1x x ; 

if this segmented interval lies at the rightmost end of the entire domain of definition, 3x  is bounded as 3 2x x . It 

can be introduced that the generalized extended approximation function on these two small intervals is the same 
as the approximation function on this interval using the segmented quadratic interpolation approximation method. 

The 1 2 3, ,e e ea a a  are derived from Eq. (21) as approximate solutions to Eq. (21). The quadratic interpolation function 

on e  is then determined. Constructing the generalized interpolating function on each interval in turn gives the 

generalized interpolating function for the segmental approximation on the full domain. 
Given the function 2( ) 1 / (1 50 )f x x   , [ 1,1]x   , take the equidistant node 1 / 5x i    , 0,1, 2, ,10i    , the 

following approximation of ( )f x   is made by the cubic spline interpolation method, linear interpolation, and 
generalized prolonged approximation method, respectively, and the error plots of the three approximation methods 
are drawn. 

Figure 1 shows the approximation errors of the three methods. The fitted curve of the generalized extended 
approximation method approximates the original function curve the best. And as can be seen from Fig. 1, the 
cubic spline interpolation error is between [-0.13,0.06], the linear interpolation error is between [-0.06,0.10], and 
the generalized prolonged approximation method error is between [-0.12,0.05]. A closer look at Fig. 1 shows that 
with the change of x-value, most of the errors of the generalized delayed approximation method are between 
0.00-0.02, while most of the error values of the other 2 methods fluctuate greatly. It shows that the error of the 
generalized delayed approximation method is the smallest and the error is stable. Therefore, the generalized 
extension approximation method is better than the cubic spline interpolation method and linear interpolation 
method. In addition, this method has a simple format specification, does not need to increase the type and scale 
of degrees of freedom, and can improve the approximation accuracy by using the original nodes and degrees of 
freedom, so it can be widely used in gear micro-parameter optimization system for optimal solving of various 
types of parameters. 
III. B. Generalized extension solution for nonlinear trajectory tracking optimization systems 
The application of generalized extended solver methods to vehicle attitude control, trajectory tracking, and 
propulsion system control in aerospace can achieve accurate solutions and improve the performance and flight 
safety of the vehicle. In this section, one of the trajectory tracking systems is selected for flight trajectory tracking 
solution to maximize the accuracy of physical trajectory prediction for the flight process. 

The initial values of the flight trajectory features have a large impact on the solution accuracy, so the initial values 
of the feature pairs are first constructed using convex functions. In the following, we first consider the two-
dimensional resonator potential well case on the full space 2 , which is realized as follows: 
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(a) Cubic spline interpolation error (b) Linear interpolation error 

 

(c) Error of this method 

Figure 1: Three methods approximate the error 

Step1: Calculate the eigenpairs of the operator   V x  

Consider the linear eigenvalue problem on full space 

 
 

2

2 2 2

2

( )

,  

1
L

x y in



      
















 (22) 

Separate variables are used so that ( , ) ( ) ( )x y x y   . Since the convex function satisfies 

 2ˆ ˆ ˆ ˆ( ) (2 1 ) ( ) 0, ( ) ( )n n n m nmH x n x H x H x H x dx 


 
      (23) 

The (22) characteristic pair can be found: 

 ˆ ˆ2( 1), ( , ) ( ) ( ), ,ij ij i ji j x y H x H y i j      (24) 

It is clear that  ( , ), ( , ))ij lk il jkx y x y     , i.e., the eigenfunctions are orthogonal. 

The three-term recursive formula for the convex function is: 

 

2 21 1

4 2 4 2
0 1

1 1

ˆ ˆ( ) , ( ) 2

2ˆ ˆ ˆ( ) ( ) ( ), 1
1 1

x x

n n n

H x e H x xe

n
H x x H x H x n

n n

 
   

 


 


   
  

 (25) 

If    is an m  -heavy eigenvalue of (22), then there exist m   pairs of integers ( , )p pi j      with 

0,1, , 1p m   such that 
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 0 0 1 1 1 12( 1) 2( 1) 2( 1)m mi j i j i j             (26) 

Denote the orthogonal eigenfunctions corresponding to   as 

 ˆ ˆ( , ) ( ) ( ), 0,1, , 1
p pp i jx y H x H y p m     (27) 

Below we consider generating the subspace S   from the eigenfunctions  p
   corresponding to the same 

eigenvalue  . 
Step2: Search for initial values in a suitable subspace S  

Define  0 1 1, , , mS span   
     , and consider the rough approximate solution   ,u S      to make the 

 
2

3

2

( , ) ( ( ) , ) ( , ) ( , ),

1
L

u V x u u u S

u

     



             



 (28) 

Taking  0,1, , 1q q m      and substituting 
1

0

m

p p
p

u a 






   Substituting into equation (28) yields that 

 

 

2

3
1 1

0 0

1

0

2
1

0

( ( )) , ,

,

1

m m

p p q p p q
p p

m

p p q
p

m

p p
p L

a V x a

a

a

   

 








 

 









             



  


  
  
 











 



 





 (29) 

Using  q
  as eigenfunctions and orthogonal to each other, there are 

 

    

2

2

1 1

0 0

2
1

0

1 22

0

( ) , ,

, 0,1, , 1

1

m m

p p q p p q
p p

m

q p p
p L

m

p p L
p

a V x a

a q m a

a

   









 

 









  

  







 





 





  (30) 

In turn, equation (29) transforms into a system of nonlinear algebraic equations about   1
0 1, , , m

ma a 


    

 

3
1

0

1
2

0

, , 0,1, , 1

1

m

q p p q q
p

m

p
p

a a a q m

a

 
  









             




 










 (31) 

For the integral term in equation (31), numerical integration and other methods can be used. Solving (31) for the 
case where   is a single, dual, and triple eigenvalue yields the following results: 

(1) When 00   (the unique unary eigenvalue) is a single eigenroot, i.e., 1m  , the 

  2
3 4

00 00 00 0 00

2
00

ˆ ( )

1

a a H x dx a

a

  





 


 

  (32) 

The solution to the equation is found to be 1a    and 2 0.1592   . 
(2) When  10 01      is a double root, i.e., when 2m  , the 
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01 01 01 01

10 10 10 10
2 2
01 10

0.1195

0.1195

1

a a a

a a a

a a

  
  

 
  
  

 (33) 

Solve for     1 1 1 1
1,0 , 0, 1 , , , , ,

2 2 2 2
a

   
        

   
, 4 0.1195   . 

(3) When  20 11 02        is a triple root, i.e., when 3m  , 14 solutions of equation (31) are obtained: 

  0, 1,0 , 6 0.0896a       (34) 

 
1 1

,0, , 6 0.0797
2 2

a   
   
 

 (35) 

 
1 1

,0, , 6 0.0797
2 2

a   
     
 

 (36) 

 
1 1

,0, , 6 0.0896
2 2

a   
    
 

 (37) 

 
1 1

,0, , 6 0.0896
2 2

a   
    
 

 (38) 

 
1 1 1

, , , 6 0.0929
3 3 3

a   
      
 

 (39) 

Step3: Further approximation of the solution in a suitably large subspace nS  

To obtain a better initial value than Step2, take a suitably large subspace nS  such that nS S  . 

Define  , , 0,1, , 1n pqS span p q n     to be the subspace into which the eigenfunctions are tensored to seek 

  ,n n nu S    to make the 

 
       

2

3

2

, ( ) , , , ,

1

n n n n n n

n L

u V x u u u S

u

             



 (40) 

Let 
1

, 0

n

n pq pq
p q

u a




   , and take  , 0,1, , 1lk l k n      , and utilize  pq   as an eigenfunction and with 

canonical orthogonality, i.e. 

      
1 1

, 0 , 0

, ,
n n

pq pq lk pq pq pq lk lk lk
p q p q

a V x a a 
 

 

       (41) 

 
2

2
1 1

2

, 0 , 0

1
n n

pq pq pq
p q p qL

a a
 

 

     (42) 

Thus equation (40) is transformed into a system of nonlinear algebraic equations about   2 1, n
na    

 

 
3

1

, 0

1
2

, 0

, 0, , 0,1, , 1

1

n

lk n lk pq pq lk
p q

n

pq
p q

a a l k n

a

  








              















 (43) 
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Using  0 0, na   as the initial value, the generalized extension method is used to solve (43), where 0a  and 0
n  

are obtained from step2. 

For the integral term 

3
1

, 0

,
n

pq pq lk
p q

a




  
    




  in equation (43), use Gauss-Hermite (GH) numerical integration. Let 

the two-dimensional GH points and GH weights be   
, 0

,
N

e f
e f

x y


 ,  
, 0

N

ef e f
w


 , respectively. Noting that 

1

, 0

n

pq pq
p q

u a




  , we have: 

 

3
1

3

, 0

3

0 0

,

( , ) ( , )

n

pq pq lk lk
p q

N N

e f lk e f ef
e f

a u dxdy

u x y x y w

  

 


 

  
    

 
 



 


  


 (44) 

In order to calculate the Jacobi of (44), it is also necessary to calculate the 

 
 2 2

2

0 0

,

( , ) ( , ) ( , )

pq lk pq lk

N N

e f pq e f lk e f ef
e f

u u dxdy

u x y x y x y w

 

 

 

   

 





 


 (45) 

Step4: Solve the discrete model problem by interpolating coefficients Legendre-Galerkin spectral methods 
Since 2 2( )V x x y    satisfies 

| |
lim ( )
x

V x


    the solution ( )x   has an exponential decay property, 2   can 

be truncated to the bounded region  2,L L    and the chi-squared Dirichlet boundary condition is imposed. The 

model problem is then discretized by the Legendre-Galerkin spectral method with interpolating coefficients to obtain 
a system of nonlinear algebraic equations 

 2

( )
( , ) 0

1T

Ku Mf u Mu
F u

L u Mu

 


  
   

 (46) 

and the corresponding Jacobi: 

 2

( )

2 0
f
T

K MD u M Mu
J

L u M

    
  
 

 (47) 

with  0 0 0 0 0 0 0 0
11 21 1,1 12 1,2 1, 1 1, 1, , , , , , , , , ,

T

N N N N Nu U U U U U U U          , 0
n    as initial values. The generalized 

extension method is used to solve this system of nonlinear algebraic equations. where  
1

0 0

, 0

,
n

jk pq pq j k
p q

U a L L 




  , 

 0 , na   are obtained from Step3. 

Numerical results are given below for the two-dimensional harmonic resonator potential well case using convex 
functions to construct eigenpairs of initial values. Let the initial parameters be 2( 2, 2)   , the spectral method 
discretized by taking 34N   , the termination condition of the generalized extension method 101.0 10 ò  , the 
iterative control accuracy 81.0 10 ò , and the number of dissectors problems of the generalized extension method 
is 4. 

(1) Single-feature case: The unique single-feature root 00 2  , with 0
00 00u a   and 0 2 0.1592    as initial 

value. Taking 1   , the extended step (Step3) uses 2 feature bases. Figure 2 shows the result of solving the 

single feature case. 
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(a) Characteristic function 0
00 ( )u a  , 1.8408     (b) Corresponding solutions  00u b , 1.8280   

Figure 2: Characteristic function and corresponding solutions 

(2) 2-fold eigencase: consider the 2-fold eigenvalue 10 01 4    , with the initial value taken as 
0

10 10 01 01u a a  , and 0 4 0.1195   . Taking 1  , 8 feature bases are used for the extension step. Figure 3 

shows the result of solving the 2-feature case. 
Combining Figures 2 and 3, it can be seen that the graphs of the eigenfunction and its initial value solution are 

very similar. When   is consistent, the number and shape of solutions are consistent. However, the solution peaks 
when = -1  become higher and finer than when = 1 , which is consistent with the physical facts of the flight 
trajectory. It shows that accurate trajectory tracking results can be obtained by using the generalized extension 
method for trajectory tracking solution. 

  

(a) Characteristic function    0
10 01

1

2
u a  , 4.1195    (b) Corresponding solutions  10 01u b , 4.1207   

Figure 3: Characteristic function and corresponding solutions 

III. C. Stability verification of optimized solution for nonlinear systems 
Based on the generalized prolongation method, the gear micro-parameter system and the trajectory tracking system 
are optimally solved, and it is found that the generalized prolongation method is capable of achieving the optimal 
solution solving of the gear micro-parameters and the physical prediction of the flight trajectories. Further, the 
stability of the optimization solution based on the generalized extension method is judged by Ljapunov stability 
verification. 

Definition 1: The solution  ˆ ˆ( , ) ( ) ( )i tu y t e h y i y    is systematically stable in V  if, for any 0  , there exists 

a 0    such that, when the initial values  ˆ ˆ( , 0), ( , 0)
T

h y y  V   when there was 

   ˆ ˆ( ,0), ( ,0) ( ), ( )
T T

h y y h y y     , then 

    ˆ ˆ ˆinf ( , ), ( , ) ( ) ( ), ( )
T T

g
y t y t T g y y


    

G
ò  (48) 

For this definition, in order to argue for stability, we require that ˆ( , )h y t , ˆ ( , )y t  and their fifth-order derivatives 

are square-productible. We discuss the stability of subharmonic functions with period NT  in the space V . 

 5 5, ,
2 2 2 2per per

NT NT NT NT
H H

  
  

            
V  (49) 
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To prove nonlinear stability, we first construct a Lyapunov generalized function. For nonlinear systems, this is 

usually a constant for motion ( , )h E , where  ,    is an unconstrained minimizer of 

 
( , )

0, ( , ) 0, , ( , ) 0, , 0
d h

h h
dt

           
     

E
E E V  (50) 

Here  ,h  E  denotes the gradient of the generalized function of E . The existence of Liapunov generalized 

functions leads to formal stability. We need to find the generalized function that satisfies the condition. 
With respect to the solution  ,h   linearizing the members of the j th NLS cluster yields 

 
( , )

,
( , )jt j

p y t
J

l y t

 
   

 
P M P P  (51) 

Here jM  is the Hessian matrix of ˆ
jI  at  ,

T   . The squared eigenfunction relations as well as the separating 

variables are given 

 2 j jJ P M P  (52) 

Here j  is given by ( , ) ( )j jt

jy t e y  . 

Substituting (52) into (53) yields a relationship between j  and   similar to that obtained previously. By direct 

calculation we have 

 2 2 2( ) ( ) ( )j je      (53) 

where ( )je   is a polynomial of degree 3j   in  . Moreover, the choice of parameters ,j nc , 1n  , completely 

controls the roots of ( )ke  . For any j , by definition of jM  we have 

 12 2j j j jJ J     M P P M P P  (54) 

and 

 * * 1 *2 2 2

2 2 2

2
NT NT NT

j
NT NT NTj j jK dy J dy dy

  


   

  P M P P P P M P  (55) 

So we have 

 
3 3

j
j jK K e K


 


 (56) 

In order to prove the system solution stability, we check the Krein metric 3K  that 

  4 4*2 2
3 1 2

2 2

, 4
NT NT

NT NTK dy i dy 
 

       P M P P M P  (57) 

We know that 1 2exp( ) ( )t y B      and 2 2exp( ) ( )( )t y A     . Since    is purely imaginary on L  , the 

factor exp( )t  has no effect. Next we compute the value of ( )y . From eqrefd-11 we know that 

 

 

2 2 2
0

2

0 2

2 2

( )
( ) exp

( )
exp exp

yB i B A
y dy

B

A
dy ireal

B B

 
 

 

   
  

 
 

  
 




 (58) 

where 'real' denotes a real quantity. Thus, the obtained exponent as well as the constant 0  has no effect on the 

modulus of | ( ) |y , which we equate to 1. For the product function we have 
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  
     


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 
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      


       

   


         
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        

      

 2 2

2

1
ln ( 2 )( ) 2 ( )

2

( 2 4 )
2

y y

y

mag

h h h

V i imag

  

  

     

      




      

 (59) 

Here 'imag' denotes a purely imaginary quantity that has no effect on the final result of ( )y . Noting that 2A   

is imaginary, then the absolute value in (59) is real. Thus we get 

 
2

2 2
2

22

| | 1
( )

| || |

A
y

AB



 


 (60) 

Further we have 

 4 4 4 2 4 4 4 2
1 2 2 2 2 2| | | ( ) | | | | | , | | | ( ) | | | | |y B A y A A           (61) 

So: 

 

4 4 22 2
3 1 2 2

2 2

2
2 2 2

4 (| | | | ) 16

64 ( )( 2 ( )) ( )
( 2 )

( )

NT NT

NT NTK i dy i A dy

N K k E k
m k

m K k

 

     

 
     

    
      

  

 
 (62) 

where ( )E k  is the second class of complete integrals: 

 
/ 2 2 2

0
( ) 1 sinE k k xdx


   (63) 

Therefore, there exist two cases 0   or 2 2 2( )
( ) ( 2 ) 0

( )

E k
P m k

K k
  

 
     

 
 such that 3 0K  , and thus we 

have the following lemma. 
Lemma 1: The sign of 3K  changes at    , where 

 
2 2 ( )

( )

2

E k
m k

K k


 

 
   

 
 (64) 

and    does not fall in L . 

Proof: since ( ) ( )K k E k   and 2( ) ( ) (1 )E k K k k   , we have 
( )

1 1
( )

E k
k k

K k
     . It is easy to know that 

a b     and c d    , and from the previous analysis we know that the intervals ( , )a b   and ( , )c d   

are not in the Lax spectrum, and therefore    does not belong to L . 

Based on Lemma 1, we get 3 0K   only if   is in L  such that 2 0  . 3K  will have a fixed sign in different 

parts of L . Since Ĥ  is not a proper Lyapunov generalization, we need to use higher order conserved quantities 
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to generate a new Lyapunov generalization. We will verify the other jK  by considering 6 6 3K e K . In order to 

compute 6K , we utilize Lax for the 

 
6

5

6 6,
0

ˆ
t n n

n

U c U


     
 

  (65) 

The sixth linearized NLS equation can be expressed as 

 
6

5

6 6,
0

0n n
nt

h
J I c I



            





 (66) 

A direct calculation gives 

 
2
6

2

1
(2 ( 1))(2 ( 1))

4

(2 ( 1))(2 ( 1)) ( )

m k m k

m k m k F

   

    

        

     
 (67) 

Among them: 

 

4 4 2 2 2 2
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3 2
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4 2 ) 5 4( 2 )
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(16 8 4 2 ) 16

8 4 2

F m k k m k c

c c c

c c

c c c

c c c c

   

    

  

    

  

      

     

  

    

   

 (68) 

From (56), we know that 

 2 2 2
6 6e    (69) 

Thus (56) implies that the choice of the constants 6,2c , 6,3c , 6,4c  and 6,5c  will determine the sign of 6K . Indeed, 

6 6 3K e K , where 6e  is a polynomial of degree 3 with respect to  . Because we can control the roots of ( )F  , 

we pick the appropriate 6,2c , 6,3c , 6,4c  and 6,5c  such that when the term in 3K  that contains   changes sign, 

6 ( )e   changes sign as well. This can be done because the term containing   in 3K  is a quadratic polynomial in 

 , which gives 6K  a definite sign over the whole Lax spectrum. Thus we have the following lemma. 

Lemma 2: For any L  , the Krein indicator 6 0K   is satisfied if and only if 6,2c , 6,3c , 6,4c  and 6,5c  satisfy 

 1 1( ) 0, ( ) 0, ( ) 0F F F       (70) 

We now know that 6̂I  is a Liapunov generalized function with respect to the steady state solution. Thus as long 

as the solution is spectrally stable with respect to the subharmonic perturbation, then it is formally stable in V . 
Since symmetric infinitesimal generators correspond to those values of   that make 2 ( ) 0  , the kernel of the 

generalized function 6̂I    consists of the symmetric infinitesimal generators that solve for  ,h   . As mentioned 

earlier,    is not in L . Thus 6 0K   can only be obtained if 0   holds with respect to L  . Thus we prove 

the theorem: (System Stability) For subharmonic perturbations in V  , the solution of the generalized extended 
approximation is stable. 

IV. Conclusion 
In this paper, we propose a nonlinear system optimization framework that integrates the generalized extension 
method and Lyapunov stability. In the gear parameter optimization system, the generalized extension method 
solution error is only between [-0.12,0.05], and most of them are between 0.00-0.02, with more concentrated error 
distribution. In trajectory tracking optimization, the graphs of the eigenfunction and its initial value solution are very 
similar, and the physical consistency error is smaller. The Liapunov stability analysis verifies that the method in this 
paper is spectrally stable under subharmonic perturbations. The computational speed of the high-dimensional 
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spatial projection operator can be enhanced in the future to expand the possibility of applying the generalized 
extension method in real-time optimization systems. 
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