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Abstract With the improvement of economic development and consumption level, the portfolio problem has 
become a concern of more and more people. Under the financial market risk management framework, this topic is 
based on the classical portfolio MV model, and the generalized MV model with multi-conditional constraints is 
established by introducing a variety of trading constraints existing in the real trading, which is solved by using the 
Lagrange multiplier method. Collecting trading data from the Chinese securities market for empirical study of the 
model, it is found that the portfolio returns of securities in industries with small correlation are higher than those of 
securities in industries with large correlation, and the risk-to-investment ratios of securities in different industries 
and the same industry are 0.834-1.057 and 0.823-1.038 in the multi-group test, and diversification of investment in 
different industries can reduce investment risk. The model in this paper performs better in all indicators of portfolio 
performance, its cumulative return is higher than the comparison method by 0.118~0.213, and the yield curve is 
stable at -0.024~0.025.The results show that the proposed multi-constraint portfolio model is not only reasonable 
and effective, but also can better guide investors to choose the optimal and robust investment program. 
 
Index Terms Lagrange multiplier method, MV model, multiconditional constraints, portfolio, financial market 

I. Introduction 
With the continuous advancement of economic globalization, the development of financial markets is extremely 
rapid, although the financial market provides convenience for the flow of capital breaks, but there are also many 
risks [1], [2]. In order to effectively control the risk, financial market risk, management has become an increasingly 
popular topic [3]. At the same time, multi-constrained portfolio optimization is also an essential part of the financial 
market [4], [5]. 

Financial market risk management refers to a series of activities to monitor, identify, assess, control and transfer 
potential, actual and unknown risks in financial markets [6], [7]. Financial market risk is mainly categorized into 
market risk, credit risk, operational risk, liquidity risk, legal risk and so on [8]. However, simply understanding 
financial market risk is not enough. In order to effectively manage risks, it is necessary to improve risk identification 
and analysis capabilities, and actively explore the use of various tools and methods for risk management [9]-[11]. 
At the same time, enterprises must establish implementation rules for risk management based on factors such as 
enterprise type, operation strategy and financial objectives, and carry out moderate and efficient risk management 
[12], [13]. 

Multi-constrained portfolios, on the other hand, combine different classes of assets to achieve the purpose of 
reducing the risk of a single investment and increasing the overall return [14], [15]. On the one hand, it is for 
optimized risk and return, and on the other hand, it is for precise control of risk and optimal return, and it reduces 
the risk of a single investment through diversification [16]-[18]. The volatility of the portfolio can be minimized by 
selecting assets of different types, different sectors, and different prices for the portfolio [19], [20]. Also, placing 
stocks of different companies in the same industry in the same portfolio can reduce unsystematic risk [21], [22]. Its 
another purpose is to help investors to get the highest return, and investors can maximize the maximum benefit by 
investing rationally in each asset [23]-[25]. 

Aiming at the shortcomings of the classical mean-variance model in which the assumptions are too harsh and at 
the same time not applicable to real life, the study considers various types of investment constraints existing in real 
economic activities, constructs a generalized MV model with multiple conditional constraints, and adopts the 
Lagrange multiplier method to solve the optimization problem. Publicly traded data of several Chinese securities 
markets from 2020 to 2024 are collected as research samples, and 50 securities in different industries and the 
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same industry are selected for simulation analysis, comparing the risk-to-investment ratios and the optimal solution 
results of five different portfolio models to test the application effectiveness and rationality of the proposed 
generalized MV model. Then, using yield evaluation, risk evaluation and annualized risk return as the evaluation 
indexes of portfolio performance, we compare this paper's model with the other three methods and analyze the 
yield curves and cumulative yield curves of the four methods to investigate the return-return and risk-prevention 
performance of the proposed multi-constrained portfolio model. 

II. Portfolio modeling under multiple constraints 
With social progress and economic development, increased disposable income, and increased awareness of 
financial management, the modern financial market provides a variety of products for investors to choose from in 
order to meet people's investment needs, including stocks, bonds, futures, and so on. There are two 
decision-making model frameworks in portfolio optimization theory, including utility maximization theory and 
return-risk trade-off theory. In the return-risk trade-off theory, risk can be specified as a number. In this paper, the 
classical mean-variance model (MV model) portfolio is optimized with multiconditional constraints under the 
financial market risk management framework and solved by using the Lagrange multiplier method to propose a 
portfolio model under multiconditional constraints. 
 
II. A. Mean-variance model 
In the mean-variance (M-V) theoretical model, the expected value of the rate of return, i.e., the average return on 
assets, is taken as the investment return, while the fluctuation of the rate of return, i.e., the variance of the return on 
assets, is taken as the investment risk. The basic idea of this model is: in the rational behavior of investors, 
“avoidance of investment risk”, “non-satisfaction of return” and other conditions are met, to solve the optimal asset 
allocation ratio coefficients, and ultimately to achieve a certain level of return under the constraints of risk Minimize 
the risk under the constraint of a certain level of return, or maximize the return under the constraint of a certain 
level of risk. It can be seen that the theory is mainly based on the assumption of rational market, and its basic 
assumption is that the investor decides the portfolio strategy for a fixed period of time based on the probability 
distribution of the return of the financial assets, i.e., the proportion of the total assets allocated to each investment 
species. The classical mean-variance model does not take into account the impact of real-world factors such as 
trading costs, volume limits, trading spreads and personal income tax charges on asset allocation strategies, i.e., it 
assumes that there are no frictions in the market and that the set of market information known to all investors in the 
market is the same. 

The model also demonstrates that if all of its assumptions are satisfied, the set of points of all possible 
mean-variance combinations that could serve as an investor's optimal portfolio strategy is in fact a parabola on a 
two-dimensional plane. The investor's goal is to pursue the optimal mean-variance portfolio, then he or she is 
looking for the mean-variance portfolio that best matches his or her own risk preferences on this curve. In other 
words, the basis for an investor's choice of different portfolios on the mean-variance model's efficient frontier 
(efficient curve) lies in his or her own different preferences or aversions to risk. Therefore, it can be learned that: if a 
certain two investors have the same risk preference or risk aversion, then they carry out financial investment 
transactions (on the mean-variance of the effective portfolio selection) of the non-differentiated curve is parallel to 
each other, and investors seek the optimal portfolio is their own investment transactions when the 
non-differentiated curve and the mean-variance of the effective frontier (effective curve) of the point of tangency. 

Assume that iR  denotes the rate of return (random variable) on the i th trading asset invested in, with mean 

( )i tr E R , and covariance matrix of ( )ij n nG   , 1,2,...,i j n . ( , ) [( ( ))( ( ))]ij i j i i j jCOV R R E R E R R E R     , ix  

denotes the proportion of the capitalization invested in the first i  secured asset , 1,2,...,i j n ,. And remember 

that 1 2( , , ... )TnR r r r , 1 2( , , ... )TnX x x x , e  denotes a unit vector. Since X  denotes the asset allocation vector of 

the portfolio, it must satisfy the following conditions: 

 
1

1
n

i
i

x


  (1) 

Or: 

 1Te X   (2) 

The expected return and variance of the portfolio are shown in the following equations, respectively: 

 T
pr X R  (3) 
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and: 

 2 T
p X GX   (4) 

The classical mean-variance portfolio model can be expressed as: 
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Or: 
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 (6) 

II. B. MV equations under multiconditional constraints 
Based on the above research, this paper considers more systematically the various constraints existing in real 
trading, and establishes a generalized MV model with multiple investment constraints by multi-faceted 
generalization of the traditional MV model. 
 
II. B. 1) Constraints 
(1) Investment budget constraint 

Let 1 2( , , , )Tnp p p p   denote the vector of prices for n  securities, and 1 2( , , , )Tnx x x x   denote the 

investment in the n  security's trading volume vector, and b  denotes the maximum amount of money that the 
investor can use to invest, this constraint can be expressed as Tp x b . 

(2) Trading volume constraint 
Use il  to denote the limit on the number of trades in a security set by the investor or imposed by the securities 

market. This constraint can be expressed as i i il x u  , if 0il   means that the investor buys the security i , 

then the purchase volume should be located in the interval [0, ]iu , and if the sale then the sale volume should be in 

the range [ , 0]il . 

(3) Minimum trading unit constraint 
The minimum buy transaction volume in the securities market is 100 shares and the minimum sell transaction 

volume is 1 share. This trading constraint can be expressed as ,
100

s
bx

Z x Z   , where , sbx x  denotes the 

quantity of i th security purchased and sold respectively. 
(4) Industry (sector investment ratio) constraints 
Assuming that there are a total of m  categories of industries, and the investor wishes to invest in the j th 

category of industries with the upper and lower investment ratios of , 1, ,j j ja X a j m    , the constraint can be 

expressed as follows: , 1, ,
m

j i j j
i

a x D a j m    . where jD  is a dummy variable that takes the value of 1 when 

stock i  belongs to the j th class of industry (sector), and 0 otherwise. 

(5) Constraint on the size of the total portfolio change 

The constraint can be described as 0

1

( )
n

i i
i

x x C


  , where C  is the total amount of purchases set by the 

investor, and 0 ,i ix x  denotes the amount of holdings of i  securities before and after the portfolio, respectively. 

(6) Transaction cost constraints 
Transaction costs mainly include transaction fees, transfer fees and stamp duty, etc. These costs are charged as 

a percentage of the turnover, assuming that the proportional cost coefficients of buying and selling are ,b iQ Q , 
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these costs can be expressed as: 0 0( ) , ( )b i i i b i i iQ p x x Q p x x   , which is 0 0( ) max( )i i i ix x x x   , 
0 0( ) min ( )b i i i b i i iQ p x x Q p x x    . 

(7) Minimum rate of return constraint 
When taxes and transaction costs are considered, the expected net return function ( , )R x y  is: 

1 2( , ) T TR x y y x t t q x    . 

Then there is at a minimum rate of return of µ: 

 1 2
1 1

( , ) (1 ) ( )
n n

T T
i i i i i i

i i

R x y y x t t q x k q x k q u v
 

         
 
   (7) 

Substituting 1 2,t t , we have: 
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 (8) 

where 0 , 0, 0i i i i i ix x u v u v     . 

The above constraints can be expressed in terms of 0-1 variables, let {0,1}, 1i iy y   denote investing in 

security i , and the corresponding 0iy   denote not investing in security i , and each of the three types of 

constraints mentioned above can be expressed as follows: 
Dependent investment constraint: 1 2, ,i jy y i N j N   . 

Associative investment constraint: 3 4, ,i jy y i N j N   . 

Repulsive investment constraint: 5 61 , ,i jy y i N j N    . 

 
II. B. 2) Generalized MV modeling 
In order to obtain a concise and uniform mathematical expression of the multiconditional constraint, four variables 

, , ,b s b s
i i i ix x z z  are introduced. In the minimum trading unit constraint, b

ix  denotes the buying quantity of security i  

and satisfies 0b
ix  , s

ix  denotes the selling quantity of security i  and satisfies 1s
ix  , and ,b s

i iz z  is a 0-1 

variable, when 1b
iz   indicates a real purchase of the security i , 1s

iz   indicates a real sale of the security i , 

and 0b s
i iz z   indicates neither purchase nor sale. Since the holder cannot perform both buying and selling 

operations, 1b s
i iz z   should be satisfied. The investor's final holding of security i  is 0 b s

i i i ix x x x   . 

If we remember that 1 1( , , ) , ( , , )b b b T s s s T
n nX x x X x x   , the above constraints can be simplified anew as: 

Budget constraint: ( )T b sp X X b  . 

Transaction costs: ,b s
b i i s i iQ p x Q p x . 

The total portfolio change size constraint: 
1

( )
n

b s
i i

i

x x c


  . 

The logical constraint can be formulated as: 
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 (9) 

Volume limit constraint: 0 0,b b b s s s
i i i i i i i i i iz u x z u z l x z l    , where 0,i iu u  denote the upper and lower bounds for 

purchasing the i th security, respectively, while 0,i il l  denote the upper and lower bounds for selling the i th 

security. 



A Study on Multi-Constraint Portfolio Optimization Based on Lagrange Multiplier Method in Financial Market Risk Management Framework 

1192 

Integrating the MV equation under the multi-reality condition constraint and the CVaR model risk assessment 
method constraint, this equation is modeled as follows: 
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 (10) 

where A is a matrix of investment constraint coefficients consisting of a linear combination of budget constraint 
coefficients and other available investment quantities. 
 
II. C. Lagrangian optimization method 
Portfolio investment decision problems can often be abstracted as continuous dynamic optimization problems. In 
solving continuous dynamic optimization problems, Pontryagin's maximum principle (which in essence applies the 
Lagrange multiplier method) or the dynamic programming method can be used if it is a deterministic model, and 
the Lagrange multiplier method is generally not applicable if it is a stochastic model. In this paper, the Lagrange 
multiplier method is utilized to solve the multiconstrained portfolio model. 

Let ( )x t  and ( )u t  be the 1p  vectors of the state variables and the 1q  vectors of the control variables at 
the moment of t , respectively. If clearly understood, the independent variable t  is suppressed. 

Assume that the stochastic model is: 

 ( , ) ( , )dx f x u dt S x u dz   (11) 

where ( ) ( ) ( )dx t x t dt x t   , ( )z t  is an 1n  vector Wiener process with covariance matrix cov( )dz dt  , and 

S  is a p n  matrix. The dt  will denote the covariance matrix ( )cov Sdz S S   . Let ( , )r x u  be the rate of 

return or utilization of the cash flow with the objective of maximizing the expected value: 

 
0

( , )tE e r x u dt   (12) 

In order to solve the problem using the Lagrangian method, the components ( )x  of the p  vector of the 
Lagrangian multipliers are utilized to form the Lagrangian expression shown below, based on the constraints of the 
objective function (12) and the stochastic differential equation (11): 

 
( ')

0
{ ( , ) ( )

[ ( ) ( ) ( , ) ( , ) ]}

t t dt
tL E e r x u dt e t dt

x t dt x t f x u dt S x u dz

  
     

    
  (13) 

Among other things, the conditional expectation nE  can be proved to be reasonable by the following statement 

of the problem: that is, when determining the ( )u t  of the control variable, given that the t  moments contain 

information about ( )x t , which has changed the order of the integration, taking the stochastic integral gdz  has 

been proved to be a reasonable expectation, as defined by the Ito of the stochastic function g. Setting it to 0, the 
derivatives of L  with respect to ( )u t  and ( )x t  will produce a set of first-order conditions for optimization if the 

Ito differentiation rule is applied to evaluate the vector d . The i th component of d  is: 
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  (14) 

where /i x    is the 1 p  vector and 2 /i x x     is the p p  matrix. In Eq. (14), the function i  is assumed 

to be in a steady state, then it is not bounded by t . Finding the derivative of Eq. (13) with respect to ( )ui t  yields: 
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where the order of any product of ,dt d  and dz  (the order is dt ) is less than dt , 0tE dz  , and substituting 

Eq. (14) for , /d x     is the p p -matrix. '( )[ ( ) ]i i it dt x t dt S dz      denotes the i th component of the 

inner product ( )[ ( ) ]t dt x t dt     , where iS
  denotes the i th row of S , obtained: 
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 (16) 

Eqs. (15) and (16) are two first-order conditions for the optimal control u  and the Lagrange multiplier 1. To 
ensure that the solutions to Eqs. (15) and (16) are maximal, the second-order conditions for the Lagrange 
multiplier method must be tested. If it is a non-stochastic model, both S  and 'S S    are 0. All trace terms in 
the last line of Eqs. (15) and (16) vanish. The solution will degenerate to a solution in continuous time 
corresponding to a non-stochastic optimal control problem with a dynamical system given by the following 
equation: 

 ( , )dx f x u dt  (17) 

In the above solution, it is assumed that   is only a function of x  and not of t . If the assumption is relaxed, 
the term /i t    will appear inside the square brackets of Eq. (14) for id . And the same term will appear inside 

the square brackets after the last equal sign of Eq. (16) to multiply with dt  and produce the partial differential 
equation of   as follows: 
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Eq. (17) and Eq. (15) with trace terms omitted, or: 
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Provide a pair of equations to u  and  . These equations can be derived from the well-known Pontryagin's 
maximum principle for solving nonstochastic optimal control problems in continuous time. In order to apply 
Pontryagin's maximum principle to solve non-stochastic control problems, Hamiltonian functions are constructed: 

 '( , ) ( , )dtH r x u e f x u    (20) 

And the setup: 

 0
H

u





 (21) 

 
( )dte H

t x

  
 

 
 (22) 

 
( )dt

x H

t e  

 


 
 (23) 

When Eq. (22) gives the differential equations for the state-variable dynamical system, Eqs. (20) and (21) are 
the same as the first-order conditions (18) and (17), respectively. 

III. Empirical analysis 
III. A. Data selection 
This paper is based on January 1, 2020 to June 1, 2024, China's commodity futures market daily data as the object 
of study, excluding the futures types with fewer trading days or smaller turnover during the sample period, and 
obtaining a total of 23 futures varieties. The data are obtained from the public data of Dalian Commodity Exchange, 
Zhengzhou Commodity Exchange and Shanghai Futures Exchange. A specific multi-constraint portfolio model is 
constructed to conduct a simulation study on the selection of the optimal portfolio. The simulation study in this 
paper is carried out in two parts: one is to select 50 securities from different industries for the simulation study, and 
the other is to select 50 securities from the same industry for the study. In addition, the dataset is divided into a 
training set and a test set, in which the ratio of training data to test data division is 0.8:0.2, which is used as an 
analytical sample for portfolio performance evaluation. 
 
III. B. Simulation analysis 
III. B. 1) Situation in different industries 
Five portfolio models were built by picking 50 companies from different industries that have been listed for a long 
time and are large in size in the following manner: 

(1) Test 1: Solve the classic MV model, but here use ix  to denote the specific number of shares invested in the 
i th stock, and specify that the total trading volume is 1500, with an expected return greater than 250. 

(2) Test 2: Solve the classical MV model, but require the solution to be integer, and the remaining parameter 
values are the same as Test 1. 

(3) Test 3: Solve the generalized MV model, but do not consider the logistic constraints, the specific parameter 
values are: the initial holding of each security is 0, the risk preference factor is 1, and the proportional transaction 
cost coefficient is 0.7%. The specified trading volume is 1500, the maximum limit of funds that can be invested is 
20000, the expected return is greater than 250, the minimum trading volume to buy each security is 0, the 
maximum trading volume is 10000, and the selling restriction is 0. The solution takes integer values. 

(4) Test 4: differs from the previous test by the addition of logical investment constraints, as follows: the 5th and 
6th securities are dependent investments, the 25th and 26th securities are repulsive investments, and the 45th and 
46th securities are associative investments. 

(5) Test 5: differs from Test 4 in containing more complex logical constraints, specifically: the 5th security and the 
6th security, the 20th security and the 21st security are dependent investments, the 25th security and the 26th 
security, the 30th security and the 31st security are repulsive investments, and the 10th security and the 11th 
security, and the 45th security and the 46th security are associative investments. 

Using the Lagrange multiplier algorithm to solve the above five models, in order to compare the different models 
in practice to find the investment program is good or bad, the definition of “risk to investment ratio = return / risk”, 
that is, to bear the unit of risk obtained by the return, the results of portfolio selection of different industries are 
shown in Table 1, the optimal results of portfolio selection The optimal solution is shown in Figure 1. The optimal 
portfolio found in test 1 selects 13 securities, at which time the risk-to-investment ratio is 1.057. In test 2, due to the 
addition of the integer value constraints, the risk increases, the return decreases, and the risk-to-investment ratio is 
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0.978, which is closer to test 1. Comparing the optimal solutions for Test 2 and Test 3 reveals that although the 
selected securities remain unchanged, there is a large change in the amount of individual securities purchased. 
The risk-to-investment ratio in Test 3 is 0.834, which is smaller than the risk-to-investment ratio in Test 2. This is 
due to the increase in risk and decrease in return caused by the increase in constraints. 

Test 4 introduces logical constraints in the test, so after selecting the 25th security, the 26th security cannot be 
selected, and compared to the previous tests, Test 4 only selects 12 securities out of the previous 13 securities, 
and the risk of the investment increases further. Test 5 doubled the number of logical constraints, securities 26 and 
30 were excluded from the optimal portfolio, and the new portfolio contained only 11 securities. 

Tests 1 through 5 progressively increase the number of constraints, with a monotonically increasing trend in risk 
and a decreasing and then increasing expected return. In the last three tests, returns increased more than risk. So 
as the number of constraints increases, the risk-to-investment ratio also increases, which suggests that with the 
proper definition of the constraints in question, it is possible to invest in a smaller number of securities and still 
achieve a better investment result, thus avoiding the annoyance associated with full diversification. The 
risk-to-investment ratio in the classical MV model is higher than that in the generalized MV model because the 
classical MV model is constructed with too many assumptions and discards many realistic trading constraints. 
Therefore, although the risk-to-investment ratio in the classical MV model is high, it does not provide a real 
reference for actual investment operations. 

Table 1: Portfolio selection results for different industries 

Test number Risk Expected return Income/risk 

1 0.316 0.334 1.057 

2 0.323 0.316 0.978 

3 0.326 0.272 0.834 

4 0.329 0.279 0.848 

5 0.331 0.282 0.852 

 

Figure 1: The optimal solution to the portfolio selection results 

III. B. 2) Situation in the same industry 
Selecting 50 securities from the same industry, the method of five modeling and the selection of each parameter 
value in different tests are also the same as in the previous group, the results of portfolio selection in the same 
industry are shown in Table 2, and the results of the optimal solutions of the five tests are shown in Figure 2. 
Comparison with the corresponding results in the first group reveals that after investing in the same industry, the 
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portfolio risks are all greater than those in the first group, while the returns are all reduced, and thus the 
corresponding risk-to-investment ratios are all smaller than those in the first group, which are 1.038, 0.960, 0.823, 
0.831, and 0.833, respectively.This suggests that when investing in the same industry, due to the high correlation 
between these securities, the risks cannot be effectively diversified and reduced. Risks cannot be effectively 
diversified and minimized, and higher risks must be taken in order to obtain the same returns. In these five tests, 
the trends of risk, expected return, and risk-to-investment ratio are exactly the same as the results in the previous 
group, in which 18 securities were selected and the amount of investment tends to average out over most of the 
selected securities. 

Table 2: Portfolio selection results for the same industries 

Test number Risk Expected return Income/risk 

1 0.320 0.332 1.038 

2 0.326 0.313 0.960 

3 0.328 0.270 0.823 

4 0.332 0.276 0.831 

5 0.335 0.279 0.833 

 

Figure 2: The optimal solution results of five tests 

III. B. 3) Yield curve 
Further analysis reveals that the securities with relatively large investments are companies with relatively stable 
earnings performance over the sample interval. Figure 3 shows the monthly yield volatility curve for the 27th 
security in the first group from January 2000 to December 2007. Figure 4 shows the monthly yield volatility curve 
for the 29th security in the second group from January 2000 to December 2007. The 27th security is more 
profitable in the sample interval and the volatility of the return is not very large, so choosing this type of security to 
invest in can get a better return and take less risk. And as can be seen from Figure 4, the performance of this 
security is quite stable in the later period, the yield mostly hovers above and below the value of 0. Investing in this 
kind of security is less risky, and choosing a certain amount of this kind of security in large-scale investment has a 
quite important role in controlling the risk effectively. 
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Figure 3: The monthly yield fluctuation curve of the 27th securities in the first group 

 

Figure 4: The monthly yield fluctuation curve of the 29th securities in the second group 

III. C. Portfolio performance evaluation 
III. C. 1) Evaluation indicators 
In order to compare the performance of four investment strategies, namely MV model, LSTM+1/N model, 
LSTM+MV model and generalized MV model in this paper, three sets of performance evaluation indexes are 
introduced in this paper, which are return evaluation index, risk evaluation index and annualized risk return index. 
Specifically, the return evaluation indexes include Mean return, Standard deviation, Maximum, Minimum, 
Accumulated return, Risk evaluation indexes include VaR, Maximum-drawdown, Downside ratio, and Annualized 
risk-return indexes include Sharperatio, Sortino ratio, Omega ratio, Calmar ratio indicators. 
 
III. C. 2) Rate of return evaluation 
The returns of the four portfolios are first evaluated, and Figure 5 shows the evaluation of the portfolio performance 
returns. As can be seen from the standard deviation of the returns, the LSTM+1/N model has the largest fluctuation, 
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with a Standard deviation of 0.0275, and the traditional MV model has the smallest fluctuation, with 0.0122. The 
maximum return of the LSTM+1/N model is much higher than that of the other two models, with a Maximum of 
0.1025, which suggests that the model sets the investment proportion of the assets more aggressive. In terms of 
cumulative return, the generalized MV model in this paper is in the leading position, with Accumulated return 
reaching 0.2257, which is higher than the other three models by 0.0572, 0.0686 and 0.0288, respectively. In terms 
of return indicators, the portfolio of the traditional MV model is more conservative, and the portfolio of the 
generalized MV model under the multiconditional constraints in this paper not only produces higher returns, but 
also reduces the return volatility. 

 

Figure 5: Evaluation of yield rate of portfolio 

III. C. 3) Risk evaluation 
Then the performance risk of the four portfolios is evaluated, and the portfolio performance risk evaluation is shown 
in Figure 6. It is proved that the generalized MV model under multiconditional constraints not only brings higher 
cumulative return, but also has outstanding performance in risk prevention, whether it is the maximum retracement 
index, downside risk index or 1-percentVaR and 5-percent VaR indexes show better risk prevention ability, and the 
risk evaluation of the generalized MV model under multiconditional constraints for each index is smaller than that of 
the LSTM +1/N and LSTM+MV models, which are -0.1052, 0.0318, 0.0275 and 0.0214, respectively. 

 

Figure 6: Performance risk evaluation of portfolio 
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III. C. 4) Risk-benefit evaluation 
Finally, the three models are evaluated for their risk-adjusted returns. Figure 7 shows the risk-return evaluation of 
portfolio performance. The generalized MV model with multiconditional constraints has the best risk-return among 
the three strategies, and its Sharpe ratio, Sortino ratio, Omega ratio, and Calmar ratio are 0.0251, 0.4244, 1.0688, 
and 0.3552, respectively, which are higher than that of the three other The LSTM+1/N model is the worst performer, 
with a negative Sharpe ratio (-0.0421), indicating that taking one unit of risk not only does not result in excess 
payoff, but may also result in a loss. 

 

Figure 7: Evaluation of performance risk income of portfolio 

III. C. 5) Overall benefit analysis 
In order to present the advantages and disadvantages of the three models more intuitively, this paper shows the 
yield curves and cumulative yield curves of the four models through visual graphs.The yield curves of the four 
models are shown in Fig. 8.The yield of the MV model does not fluctuate greatly and stays in the range of 
-0.02~0.02. The LSTM+1/N model, on the other hand, shows very large fluctuations, and the yield fluctuations of 
LSTM+MV are in between. The generalized MV model with multiconditional constraints fluctuates less than the 
LSTM+1/N model and the LSTM+MV model, ranging from -0.024 to 0.025, and it produces a smaller value of 
negative returns with losses and does not have as many periods as it produces positive returns, which explains the 
model's optimal performance in risk-return evaluation. 

 

Figure 8: The yield curve of the four models 
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Figure 9 illustrates the cumulative return curves of the four models. The final cumulative returns of the four 
models are 0.146, 0.186, 0.241, and 0.359, and the generalized MV model with multiconditional constraints has a 
larger cumulative return than the other three strategies. 

 

Figure 9: The cumulative yield curve of the four models 

IV. Conclusion 
The portfolio problem in the financial investment market has become very important for investment analysis. In 
order to overcome the deficiencies of the existing portfolio investment methods and risk measures in the Chinese 
stock market, the study introduces a variety of constraints on the basis of the mean-variance (MV) model and 
optimizes it using the Lagrange multiplier method. The generalized MV model with multiple constraints is explored 
through empirical analysis. 

(1) Under the condition of bearing the same risk, the return of the portfolio composed of securities in different 
industries is higher than that of the portfolio composed of securities in the same industry, and the risk-to-investment 
ratios of the two are 0.834~1.057 and 0.823~1.038, and the number of securities selected for the optimal portfolios 
of the two should generally be between 11 and 18. Therefore, when choosing the securities portfolio, different 
industries with low correlation should be fully considered. Meanwhile, the simulation analysis verifies the validity 
and rationality of the generalized MV model with multi-conditional constraints. 

(2) The proposed generalized MV model is outstanding in yield evaluation index, risk evaluation index and 
annualized risk-return index, and its Accumulated return reaches 0.2257, which is 0.0288~0.0572 higher than the 
comparison model.In addition, its yield curve is not highly volatile, keeping at -0.024~ 0.025, and the cumulative 
return finally reaches 0.359, which is 0.118~0.213 higher than the comparison model. The portfolio constructed by 
the generalized MV model has a better income return and risk prevention ability. 

To summarize the whole paper, this paper mainly unfolds from the MV model, uses a variety of constraints to 
improve it, and combines the data of the Chinese securities market to carry out empirical research, and its 
empirical effect shows that the model has a certain reference significance for practice. However, the analysis and 
research work of this paper still need to be optimized, such as the Lagrange multiplier method can be improved to 
obtain a higher solving efficiency and solving accuracy, to help investors continuously optimize their asset 
allocation strategy. 
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