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Abstract Grid planning plays an important role in the long-term development of electric power enterprises, is an 
important part of the national economy and social development, and plays a fundamental role in supporting the 
development of the whole country. In this paper, the day-ahead-intraday scheduling model is constructed with the 
objective of integrated energy system operation cost and the coordinated optimization of integrated flexible loads, 
cogeneration units and wind power from the perspective of multi-timescale scheduling. The genetic algorithm is 
improved based on the concept of adaptive, and the improved adaptive genetic algorithm is used to solve the system. 
The optimization model is verified to be effective for both load adjustment and small load fluctuation through 
examples, while the improved adaptive genetic algorithm can be effectively applied to the integrated energy system 
optimization and operation problem, and the proposed multi-timescale optimization and operation scheme has the 
advantages of reducing the operation cost and improving the consumption of renewable energy. 
 
Index Terms integrated energy system, multi-timescale, adaptive genetic algorithm, load fluctuation 

I. Introduction 
Smart grid, as a new type of energy system, aims to realize efficient, stable and sustainable supply of electricity by 
combining intelligent technology with power system, in which power balance calculation, as an important part of 
smart grid, has received wide attention [1], [2]. 

Power balance refers to the balance between power supply and demand, which is an important root and link in 
power system planning and system design, and it is also necessary to progress the power balance calculation in 
the feasibility study, access system and preliminary design stages of power supply engineering and transmission 
and transformation engineering [3]-[6]. In fact, the establishment of any planning model or the formation of any 
planning scheme involves power balance analysis [7]. The calculation of power balance is likewise an important 
part of the work when preparing the near-term plan of the power system [8]. Power balance is actually the study of 
the relationship between supply and demand of the power system, that is, to make the power system in the planning 
period, the system needs to send and generate the maximum load and the system has the production capacity of 
generating equipment balanced [9]-[11]. The purpose of this balance is to make the power system in the planning 
period, in a more reasonable structure and way to carry out the production and transmission of electricity, and to 
meet the growing demand for electricity load [12], [13]. How to fulfill this balance and meet the needs of the system 
is the task of power balancing and power planning [14]. Generally speaking, the power balance requirements are 
carried out year by year, not only because the annual power load is fluctuating and changing, but also the actual 
output of each power plant of the system is different every year, so the year-by-year balance analysis is conducive 
to carry out the correction and review of the power supply construction, and at the same time, it also provides a 
basis for the direction of the next stage of the whole system planning [15]-[18]. 

Considering the multi-timescale characteristics of grid load response and response cost, the study establishes a 
multi-timescale optimal scheduling model considering the integrated flexible load response, and coordinates and 
optimizes flexible loads, cogeneration units and wind power from the perspective of multi-timescale scheduling. 
Adaptive improvements are made to address the problems of prematurity, slow convergence, low accuracy and 
difficulty in solving the nonlinear equation constraints in the model that occur in the solution process of traditional 
GA algorithms. Finally, the proposed optimized operation model is solved by setting different operation scenarios 
through specific examples, and the results are compared and analyzed. 
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II. Flexible Resource Power Balance Dispatch Model in the Smart Grid Framework 
II. A. Smart Grid Flexible Resource Power Balancing 
Smart grid load and storage integration balance is based on load forecasting, comprehensively considering the 
source network load and storage and other aspects of the flexible resources involved in power balance, to get the 
calculated load, on the basis of which the grid planning. 
 
II. A. 1) Integrated energy system architecture 
Comprehensive energy systems generally use natural gas as the primary energy source, heat and electricity as the 
main energy sources, and the system contains various types of energy production, conversion and storage 
equipment to meet the demand for multiple loads on the user side. The specific system architecture of the gas 
steam combined cycle unit is shown in Figure 1. 
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Figure 1: Integrated energy system architecture 

II. A. 2) Optimized scheduling architecture for integrated energy systems 
Day-ahead scheduling accuracy is low, and it is difficult to use the day-ahead scheduling strategy alone to give 
good play to the multi-timescale characteristics of the flexible load response; at the same time, as the energy system 
shifts from day-ahead scheduling to intraday scheduling and the accuracy of the prediction curves of renewable 
energy power generation improves, the accuracy of the day-ahead scheduling is too low to apply to the change of 
the accuracy of the day-ahead shifting to the intraday. Therefore, it is necessary to establish a multi-timescale 
optimal scheduling model to reasonably coordinate various types of flexible loads. 

Aiming at the above problems, this paper proposes a joint day-ahead-intraday optimal scheduling architecture. 
The multi-scale optimal scheduling study of integrated energy system considering flexible load response is divided 
into two main parts according to time scales: pre-day long time scale optimal scheduling and intra-day short time 
optimal scheduling. Within the day-ahead long time-scale optimal scheduling, thermal and electric flexible loads are 
divided into day-ahead curtailable thermal and electric loads, transferable thermal and electric loads, and leveling 
thermal and electric loads; within the intraday short time-scale optimal scheduling, taking into account the day-
ahead scheduling plan, the amount of intraday load changes, renewable energy output, and not affecting the user's 
production, etc., the intraday secondary adjustment of the loads is only considered for the participation of the day-
ahead curtailable thermal and electric loads. Dispatch. 

 
II. B. Multi-time scale flexible resource power balance optimization operation model 
II. B. 1) Multi-scale optimized scheduling process 
Multi-timescale integrated energy optimization scheduling is divided into two major parts: day-ahead and intra-day. 
Day-ahead optimal scheduling first determines whether the day-ahead scheduling cycle is reached, and if so, inputs 
the day-ahead forecast load data and solves the day-ahead scheduling model, and determines the day-ahead 
scheduling plan containing the day-ahead curtailment amount, transferable amount, and leveling amount; day-
ahead optimal scheduling first determines whether the day-ahead scheduling cycle is reached, and if so, inputs the 
day-ahead scheduling based on the 2-h advance of the integrated energy system in the wind power, PV If it is 
reached, the forecast value of wind power and photovoltaic in the integrated energy system and the system 
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adjustment amount are inputted 2h in advance on the basis of the day-ahead scheduling and the intra-day 
scheduling model is solved to form the intra-day scheduling plan which includes the load reduction amount in the 
day-ahead. 
 
II. B. 2) Day-ahead scheduling model 
(1) Objective function 

The objective is to minimize the sum of system unit generation, startup and shutdown costs, steam production 
costs and flexible load dispatch costs: 
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where, E  is the expected overall system cost; t  is one of the time periods in the dispatch cycle; Z  is the set of 

units; ,t iC  is the unit's i  combustion cost; 
,
oF
t iC  is the unit's i  operating cost; ,t iE  is the cost incurred by the 

system from trading with the larger grid; 
,
en
t iO  is the revenue of the unit producing steam; 

,
tr
t iC  is the transmission 

cost of steam; 
nC  is the flexible load dispatch cost; 

xueC  is the curtailable load cost; pingC  is the levelized load 

cost; and 
zhuanC  is the transferable load cost; 

xueM  is the compensation for the unit capacity of the curtailable load; 

xuep  is the power of the curtailable unit; pingM  is the compensation for the unit capacity of the leveled load; pingS  

is the capacity of the leveled load; and 
1onF  is the system judgment leveling command, which has only two 0 and 

1 state. 
2onF  is the system judgment transfer instruction, only 0 and 1 two states. 

(2) System power balance constraints 
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where, 
, ,
gen
i t se  is the amount of electricity produced by the production unit; 

, ,
con
i t se  is the amount of electricity consumed 

by the system itself; and 
,
b
t se  is the change in electricity generated by the large grid transaction; 

,
buy
t se  is the amount 

of electricity bought from the large grid; 
,
sell
t se  is the amount of electricity sold to the large grid; and e

tD  is the amount 

of system electrical load at time t . 
(3) System heat balance constraints 
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where, 
, ,
gen
i t sh  is the unit steam production; ,t sG  is the overall steam storage in the system at time t ; h

iD  is the 

heat load of the system at time t ; ,t sL  is the loss of steam during transmission; ,t sA  is the steam storage in 

pipeline at time t  in the steam storage; ,t sP  is the steam storage in the pipeline at time t ; and 
,
c
t sG  is the steam 

consumption in the system. 
(4) Unit start-stop constraints 
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where, , ,i t sz  is the variation of unit start/stop; , ,i t sz  is the unit start/stop state, which is divided into the binary state 

of 0, 1; ,i sN  is the maximum amount of unit turn-on allowed in the system. 
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II. B. 3) Intraday scheduling model 
(1) Objective function 

The day-ahead scheduling strategy has some limitations. Firstly, the time scale is long, which cannot be better 
adjusted according to the actual load changes; secondly, there will be some deviation between the system operation 
and load demand changes under the day-ahead scheduling strategy. Therefore, it is necessary to add the intraday 
scheduling strategy to the day-ahead scheduling to shorten the time scale to reduce the deviation. The optimization 
objectives of the intraday scheduling strategy and the day-ahead scheduling strategy are the same, both of which 
are to minimize the system operation cost. The objective function can be expressed as: 
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where, E  is the expected overall system cost; Z  is the set of units; 
,
be
t iC  is the combustion cost of unit i ; 

,
OF
t iC  

is the operating cost of the unit; ,t iE  is the cost incurred by trading the system and the larger grid; 
,
en
t iO  is the return 

on the steam production of unit i ; ,xue lhC  is the intraday cost of available load curtailment. 

(2) System power balance constraints 
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where, 
, ,
gen
i t se  is the amount of electricity produced by the production units; 

, ,
con
i t se  is the amount of electricity 

consumed by the system itself; 
,
b
t se  is the change in the amount of electricity generated by the large grid 

transactions; 
,
c
t se  is the change in the amount of electricity generated by the electricity storage devices within the 

system; and e
tD  is the amount of electricity loaded into the system at time t  the amount of electrical load of the 

system. 
(3) System heat balance constraints 
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where, 
, ,
gen
i t sh  is the unit steam production; ,t sG  is the overall steam storage in the system at time t ; h

iD  is the 

system heat load at time t ; and 
,
c
t sG  is the steam consumption in the system. 

(4) Unit start-stop constraints 
Since the time scale of the unit start-stop state change is long, the unit start-stop state cannot be optimized twice 

in the intraday short time scale scheduling plan, and the unit start-stop state of the previous day's scheduling plan 
is followed in the intraday scheduling plan. 

(5) Flexible load constraints 
 min max

, , ,xue lh xue lh xue lhp p p   (14) 

where, max
,xue lhp  is the maximum power that can be cut during the day; min

,xue lhp  is the minimum power that can be cut 

during the day. 
 

II. C. Model Solution Methods 
II. C. 1) Genetic algorithms 
Genetic Algorithm (GA) is an evolutionary algorithm that mimics the Darwinian evolutionary law of “natural selection” 
[19]. The GA algorithm first encodes the decision variables in the optimization problem as chromosomes 
(individuals), calculates the fitness of different individuals in the population, and then employs an iterative approach 
to perform selection, crossover, and mutation operator operations on the population to enable the population to 
evolve to generate a new subgeneration of the population, and ultimately generates the chromosomes that meet 
the optimization objective. 
 
II. C. 2) Improving adaptive genetic algorithms 
Traditional genetic algorithms use fixed crossover probabilities: and mutation probabilities without considering the 
differences in fitness between different individuals, resulting in the fact that individuals with larger fitness cannot be 
effectively retained, and those with smaller fitness cannot be given more chances to evolve, which largely restricts 
the convergence efficiency and convergence effect of genetic algorithms [20]. For this reason, an adaptive genetic 
algorithm that enables the values of 

tP  and 
mP  to be adaptively adjusted according to the size of individual fitness 

is proposed. The crossover and genetic probability formulas in its algorithm are as follows: 
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where f  is the larger fitness value of the two parent individuals performing the crossover operation: f   is the 

fitness value of the parent individual performing the variation operation; 
max min,f f  and vgf  are the fitness maxima 

and minima of the individuals in the population and the mean values. 
1 2 1 2, , ,c c m mP P P P  are the crossover and variation 

parameters set during the solution process, 
1 2 1 2, , , (0,1)c c m mP P P P  . 

However, the algorithm still has defects, for the individual with the largest or near-maximum fitness in the 
population, the values of 

cP  and 
mP  are close to 0, which will lead to the fact that the better individual cannot 

evolve in the: population at the early stage of the evolution, and thus the model is trapped in a locally optimal solution. 
The algorithm is further improved based on this algorithm by Ren Ziwu et al: 

 
1 2

1
max

1

( )( )c c avg
c avg

avgc

c avg

P P f f
P f f

f fP

P f f

 
   

 

 (17) 

 
1 2 '

1
max

'
1

( )( )m m avg
m avg

avgm

m avg

P P f f
P f f

f fP

P f f

 
   

 

 (18) 

The improved GA algorithm can keep the good individuals evolved throughout the iteration process by raising the 
lower bounds of crossover and mutation probabilities of the individuals with the largest or nearly largest fitness in 
the population to 

2cP  and 
2mP , respectively, which prevents the algorithm from falling into a local optimal solution 

and enhances the ability of global optimality search. 
Improving the initial population generation method will make the model solution time too long and the 

computational efficiency is low; while the traditional method of constructing the penalty function usually adopts 
infinity or a very large fixed value as the penalty value, which will cause almost all the individuals in the population 
to obtain the same penalty value, so that their fitness value tends to be the same, resulting in the algorithm losing 
the direction of evolution. In addition, an unreasonable penalty function will also lead to problems such as reduced 
computational accuracy, inability to converge, or the penalty function is too sensitive to the parameters. Therefore, 
how to set an effective penalty function becomes the key to deal with constrained models with nonlinear equations. 
In this study, a new penalty function is constructed based on the distance relationship between the solution and the 
feasible domain. 

For the nonlinear planning problem, the general model structure is as follows: 
Objective function: 
 

1 2min ( ) ( , , , )nf x f x x x   (19) 
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It is now defined that ( , )d x Q  is the distance between the individual x  in the population that exceeds the 
constraint the most and the feasible domain Q , which is given by the following formula: 

 
max max( , ) max{0, ( ), ( )}d x Q g x h x  (21) 

Among them: 

 max 1
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It can be seen that ( , ) 0d x Q   when the point x  is inside the definition domain Q ; ( , ) 0d x Q   when x  is 
outside the definition and Q , and the larger ( , )d x Q  is, it means that more than the point x  is farther away from 
the feasible domain Q . 

Meanwhile, define ( )FD x  as the non-feasible point feasibility, which is given by the following formula: 
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Among them: 

 

max

( ) 0

| ( ) |( )
1

1

( ) 0
( )

j

ji
j

h x

h xx
h x

h x




   


 (25) 

The ( )FD x  also reflects the relationship between x  and the feasible domain Q , ( ) [0,1]FD x  . When the point 
x  is within the domain of definition Q , ( ) 1FD x  ; when the point x  is farthest from the feasible domain Q , 

( ) 0FD x  . It can be seen that the smaller ( )FD x  is, the greater the degree of the individual breaking out of the 
constraint. 

From the above two definitions, for the minimization objective, the new penalty function is constructed as follows: 
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where p  and   are parameters satisfying 1p   and 0  . In this way, when x  is in the feasible domain Q , 
the value of ( )eval x  is equal to the value of the objective function; when x  is not in the feasible domain Q , 
different degrees of punishment by the distance of the point x  from the definition of the domain Q  (the degree of 
breaking through the constraints) is changed, so as to make all the individuals in the population to the definition of 
the domain of the direction of evolution. 

III. Analysis of examples 
III. A. Base data for the algorithm 
The energy input in this section includes the purchase of electricity from the higher power grid, the purchase of 
natural gas and wind power from the higher gas grid; the energy conversion and storage equipment includes 
cogeneration, electric boiler, electric-to-gas equipment, gas boiler, and electric, heat and gas storage equipment; 
and the load side includes the electric load, heat load and gas load. 

Due to the northern winter wind abandonment, abandonment of light phenomenon is obvious, cogeneration units 
to provide thermal energy at the same time to increase the power output, resulting in more difficult to consume wind 
turbine power generation and photovoltaic power generation, so this example of the calculations in the winter of 
China's northern part of a typical integrated energy system as an example. The number of scheduling hours is T=24, 
and the price of natural gas is 3.5 yuan/m3, which is converted into a unit calorific value price of 0.37 yuan/(kW.h). 
The parameters of the energy supply equipment unit are shown in Table 1, and the parameters of the energy storage 
equipment unit are shown in Table 2, in which the system includes two CHP units with output power upper and 
lower limits of 2000kW and 100kW respectively. The forecast curves of typical Nippon, heat and gas loads are 
shown in Figure 2, and the forecast output curves of wind turbine and photovoltaic are shown in Figure 3. The 
purchased and sold electricity prices for each time period are shown in Table 3. Set R=300, M=100, L=60 in the 
fireworks algorithm. 

Table 1: The system installed capacity and operation and maintenance coefficient 

Type Lower power /kW Power limit /kW Ci/(yuan/kW h) Type Lower power /kW Power limit /kW Ci/(yuan/kW h) 

CHP 210 4200 0.0857 P2G 0 155 0.0715 

WT 0 1200 0.0199 GB 0 650 0.0315 

PV 0 400 0.0238 And electricity -1200 4500 - 

EB 0 900 0.0164 Gas purchase - 5500 0.37 

Table 2: Unit parameters of energy storage equipment 
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Type Maximum capacity 
max
,c jp  max

,f jp  Ci/(yuan/kW h) 

ES 550Kw.h 100kW 100kW 0.015 

HS 1200kW.h 420 kW 220kW 0.029 

GS 420m3 220m3 70m3 0.035 

Table 3: The price of electricity purchased and sold in each period 

Section Time period Purchase electricity /(yuan/ (kW.h)) Power selling /(yuan/ (kW.h)) 

Peak time 08:00-11:00;17:00-22:00 0.95 0.75 

Normal segment 07:00-08:00;11:00-17:00;22:00-23:00 0.55 0.43 

Valley time 23:00-07:00 0.21 0.15 

 

Figure 2: Electric load, heat load and gas load forecasting curve 

 

Figure 3: Predicted output curve of wind turbine and photovoltaic 

III. B. Day-ahead and intraday scheduling analysis based on event mechanism 
The day-ahead and intraday scheduling results of the integrated energy system obtained from this paper's 
simulation under a typical day in winter are shown in Fig. 4. The hourly average power of the original load curve of 
the day's load is used as the load forecast data for the day-ahead scheduling. The hotel welcomes unplanned 
occupancy at 14:00 on the day of operation, and the system receives the information and introduces a load 
adjustment event, which adjusts the heat load forecast on request, and a new operation plan is obtained from the 
intraday scheduling. Additional heat is deposited into the heat storage tank. By about 12:00 the gas turbine starts 
to run at full load. At this time, due to the increase in cooling and electrical loads, the system has to purchase power 
from the grid to satisfy the plant power and electrical loads. Around 14:00 a load adjustment event is generated, 
and the load side demand for heat loads is increased, so the heat pump machine output is increased in the 
subsequent intraday dispatch, and there is energy storage to match the output. 
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In the day-ahead scheduling plan, the system gives priority to the gas turbine for power generation, and the waste 
heat generated in the process is transferred to the lithium bromide unit for heat production, and the remaining heat 
load is provided by the heat pump unit. The centrifugal unit meets the cooling load demand by consuming electrical 
energy, and if the gas turbine power is not enough to meet the electrical load with the gas turbine consumption, the 
power is purchased from the grid. Figures 4(a) and (b) show the operation status of the gas turbine, heat pump unit 
and lithium bromide unit in the day-ahead scheduling plan and intra-day scheduling plan, respectively. The cooling 
load in the pre-day period is not high, the gas turbine does not need to be fully loaded, and there is extra heat 
energy stored in the heat storage tank. The gas turbine starts to run at full load at about 12:00. At this time, due to 
the increase in cooling and electrical loads, the system has to purchase power from the grid to satisfy the plant 
power and electrical loads. Around 14:00, a load adjustment event occurs, and the load side's demand for heat 
loads increases, so the heat pump output is increased in the subsequent intraday scheduling, and the energy 
storage is used to match the output. 

Figure 4(c) shows the output schedule of the heat storage tanks on the operating day, and it is easy to know that 
due to the increase in heat load, the intraday scheduling increases the output power of the energy storage in the 
subsequent hours, and increases the heat output in the evening hours to heat up the energy storage. Figure 4(d) 
shows the purchased gas and purchased power of the system on the day. Comparing with the day-ahead scheduling, 
the intraday scheduling reprograms the heat output of the heat pump unit and the thermal storage when the event 
is generated. If the load is adjusted to continue to operate according to the previous day's schedule, the system has 
the choice of either backfiring the lithium bromide unit or releasing heat from the storage to fill the gap when the 
power shortage occurs. The energy efficiency of the lithium bromide unit is extremely low, which increases the 
energy cost of the system, and there is a limitation on the power of heat release by energy storage, so it is not 
possible to make up for the shortfall completely. 

 

  

(a) Pre-schedule (b) Day dispatch 

  

(c) Energy storage (d) Purchase electricity /Gas results 

Figure 4: Day-ahead and intra-day scheduling results 
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The analysis shows that the role of day-ahead scheduling is to correct the difference between day-ahead scheduling 
and the actual operating conditions caused by uncertainty through additional information input. For load forecast 
error type of events, it is necessary to reschedule by updating the forecast value, and for unit maintenance type of 
events, the unit commissioning status and power output limit within the model are adjusted. Intraday scheduling is 
effective in coping with stochastic events with long time scale impacts (hourly level or more) and improves flexibility 
compared to the day-ahead scheduling model. 

III. C. Validation of the effectiveness of the improved adaptive genetic algorithm 
III. C. 1) Test Function Validation 
After analyzing the integrated energy system algorithm, it is necessary to verify the effectiveness of the IFWA-SFLA 
algorithm, and three typical functions in Benchmark function: Ackley function, Rastrigin function and Griewank 
function are selected as the test functions to simulate and test the proposed algorithm, and the specific information 
of the above three functions is as follows: 

(1) Ackley function 
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The image of this function is shown in Figure 5. The Ackley function is an almost flat region with a hole or peak 
formed by a cosine wave modulation, resulting in an undulating surface with a large hole in the center. The function 
has multiple local optima in the definition domain { [ 10,10], 1,2, , }ix i n    , but there is only one minimum value 

1,min 0f   when the function is located at (0,0,...,0), which leads to the algorithm being very prone to optimization 

process fall into the local optimum, and the search for optimal larger regions in order to cross the valley of 
interference, and gradually reach a better optimal value. 

 

Figure 5: Ackley function image 

(2) Rastrigin function 
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The Rastrigin function is a nonlinear multi-peak function and the image of this function is shown in Fig. 6. The 
function has uneven heights and peak shapes with jumps, and there are 10s  local minima in the domain of 

definition { [ 5,5], 1, 2, , }jx j n    , and the distribution of the local minima is scattered in the range of 

1 2( , ,..., ) (0,0,...,0)ix x x   at the unique minimum value 2,min 0f  . 

(3) Griewank function 
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Griewank function is a nonlinear multimodal function the function image is shown in Figure 7. There are multiple 
local minima in the domain of definition, and the number of local minima is related to the function dimension. As the 
function dimension increases, the Griewank function appears to be difficult to optimize during the optimization 
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process, and the optimization difficulty is difficult before it is easy, and only in the case of 
1 2( , ,..., ) (0,0,...,0)ix x x   

at which there exists a unique minimum value 
3.min 0f  . 

 

 

Figure 6: Rastrigin function image 

 

Figure 7: Griewank function image 

The parameter settings of the improved GA algorithm in this paper are shown in Table 4, and the GA algorithm 
and SFLA algorithm solve the Ackley function, the Rastrigin function and the Griewank function respectively, and 
the global optimal solution and the average value of the optimal solution are shown in Table 5. Table 5 shows that 
for the three high-dimensional nonlinear functions, the global optimal solution and the average value of the optimal 
solution of the improved adaptive genetic algorithm proposed in this paper are better than the other two algorithms, 
and it has better convergence accuracy. 

Table 4: Parameter setting of three algorithms 

GA and improved GA algorithm parameter Settings SFLA parameter setting 

Set name Parameter Set name Parameter 

Quantity of initial equipment 9 Population quantity 9 

Initial generation 66 Quantity per population 66 

Optimization problem dimension 18 Iteration times per population 27 

Maximum iteration number 53 Maximum iteration number 53 

Table 5: Comparison of optimization results of three algorithms 
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Test function Optimization algorithm Global optimal solution Optimal average The optimal solution of the function theory 

Ackley 

GA 0.9443 1.0266 

0 SFLA 0.2003 0.2616 

Improvement GA 0.0808 0.1373 

Rastrigin 

GA 1.1567 1.8959 

0 SFLA 0.5383 1.0127 

Improvement GA 0.0985 0.1892 

Griewank 

GA 0.7643 0.9923 

0 SFLA 0.7463 0.7823 

Improvement GA 0.0643 0.4123 

 
The iteration curves obtained from the solution are shown in Fig. 8, Fig. 9 and Fig. 10. From Figures 8, 9 and 10, 

it can be seen that the three algorithms are able to solve the three Benchmark function global optimal solutions after 
several iterations, but there are differences in the iteration accuracy and convergence speed: GA reaches the global 
optimal solution after about 34, 28 and 41 iterations, but it is obviously trapped in the local optimal solution, which 
leads to an over-sized result; SFLA reaches the global optimal solution after about 49, 69 and 59 iterations, and the 
solution accuracy is obviously higher than GA; the proposed algorithm in this paper first uses GA to solve for the 
global optimal solution, which is significantly better than GA. After 49, 69 and 59 iterations, SFLA is near the global 
optimum, and the solution accuracy is significantly higher than that of GA. The algorithm proposed in this paper 
firstly adopts GA for global optimization, and then switches to SFLA for the 32nd, 35th and 44th iterations for the 
three test functions, respectively, to continue optimization, and then iterates for the Ackley function for 12 times to 
find the final optimal solution, and then iterates for the Rastrigin function for 10 times to find the final optimal solution, 
and then iterates for the Rastrigin function for 10 times to find the final optimal solution. The total number of iterations 
is less than that of SFLA, because the Gaussian variant of GA is changed to levy variant, which enhances the 
diversity of the optimization objects and avoids falling into the local optimum, and makes the algorithm's optimal 
solution in the global range more accurate. 

 

Figure 8: Ackley function iteration curve 

 

Figure 9: Rastrigin function iteration curve 
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Figure 10: Griewank function iteration curve 

The above results for the three test functions show that the improved adaptive genetic algorithm proposed in this 
paper outperforms both GA and SFLA in terms of the efficiency of solving the optimal solution, and the mixing of the 
two algorithms takes into account the convergence speed and accuracy. 

 
III. C. 2) Validation of operational cost effectiveness 
In order to verify the effectiveness of the improved adaptive genetic algorithm in optimizing the operating cost of the 
integrated energy system, PSO, GA and SFLA are selected as comparison algorithms, and the optimal value of the 
cost is optimally calculated for 100 times. The results of the algorithm calculations are shown in Table 6 and Table 
7, and the algorithm iteration diagrams are shown in Figure 11 and Figure 12. 

From Table 6 and Fig. 11, it can be seen that in the day-ahead scheduling optimization calculation, the optimal 
cost of the improved GA algorithm and the traditional GA algorithm is lower than that of the PSO algorithm, which 
indicates that the convergence speed and global optimization search efficiency of the traditional GA algorithm are 
better than that of the PSO algorithm. The traditional GA algorithm converges fast in the pre iteration period and 
converges near the global optimum in 46 iterations, but the optimal value found in the later period is higher.SFLA 
converges to the optimal value in 61 iterations, and the cost has the most value than the traditional GA algorithm, 
but the number of iterations is too many and the computation time is longer. The improved GA algorithm first uses 
IFWA to find the neighborhood of the optimal value, switches to SFLA at 54 iterations, and continues the local 
optimization search to find the global optimal value of 53,295 yuan, which is better than the other three algorithms, 
and the number of iterations is smaller than PSO and SFLA. 

In Table 7 and Fig. 12 intraday scheduling optimization calculations, the superiority of the algorithm proposed in 
this paper is similar to that of the other day, which fully demonstrates the effectiveness of IFWA-SFLA in the 
optimized scheduling of integrated energy systems. 

Table 6: Day-ahead calculation results of algorithms 

Algorithm Global optimal value/yuan Buy electric bills/yuan Buy electric bills/yuan The number of times before 

PSO 56154 28354 29438 73 

GA 55971 27873 29323 49 

SFLA 53959 25978 28256 65 

Improved GA algorithm 53777 24592 26958 55 

 

Table 7: Intraday calculation results of algorithms 

Algorithm Global optimal value/yuan Buy electric bills/yuan Buy electric bills/yuan The number of times before 

PSO 55151 25358 30301 70 

GA 54977 24675 30463 49 

SFLA 52759 23730 28858 61 

Improved GA algorithm 52378 22136 28048 50 
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Figure 11: Iterative graph of algorithm day-ahead scheduling 

 

Figure 12: Iterative graph of algorithm intraday scheduling 

IV. Conclusion 
In this paper, we propose a multi-timescale integrated energy system scheduling model considering combined 
thermal and electrical flexible loads, and adaptively adjust the crossover probability and variance probability of the 
genetic algorithm based on the individual's fitness in the population. The following conclusions are drawn from the 
research results: 

(1) Intraday scheduling can effectively avoid the influence generated by load forecast deviation and load 
fluctuation time, reduce the system's energy supply cost and energy supply reliability, and improve the energy supply 
cost of control system operation. 

(2) By selecting three Benchmark functions such as Ackley function, Rastrigin function and Griewank function, 
and comparing and analyzing them with the traditional GA algorithm and SFLA to verify the effectiveness of the 
improved adaptive genetic algorithm, the results show that the algorithm proposed in this paper takes into account 
of both the optimization accuracy and optimization speed, and it can be well adapted to accurately solve the 
nonlinear model. 

Funding 
This work was supported by Science and Technology Project of Zhejiang Dayou Group Co., Ltd. (DY2024-11). 

References 
[1] Tuballa, M. L., & Abundo, M. L. (2016). A review of the development of Smart Grid technologies. Renewable and Sustainable Energy 

Reviews, 59, 710-725. 
[2] Dileep, G. J. R. E. (2020). A survey on smart grid technologies and applications. Renewable energy, 146, 2589-2625. 
[3] Yang, X., He, H., Zhang, Y., Chen, Y., & Weng, G. (2019). Interactive energy management for enhancing power balances in multi-microgrids. 

IEEE Transactions on Smart Grid, 10(6), 6055-6069. 
[4] Yang, J. Y., Song, Y. H., & Kook, K. S. (2024). Critical Inertia Calculation Method of Generators Using Energy Balance Condition in Power 

System. Energies, 17(5), 1097. 



Research on power balance calculation of flexible resources based on adaptive genetic algorithm in smart grid framework 

116 

[5] Ding, L., Wang, J., Ru, W., Xu, Z., Sa, P., & Jiang, W. (2022, November). Electric Power Balance Contribution Calculation Based on Power 
Traceability. In International Joint Conference on Energy, Electrical and Power Engineering (pp. 447-456). Singapore: Springer Nature 
Singapore. 

[6] Puzakov, A. (2021). Estimation of efficiency of electric power balance iautomobiles. Transport Problems, 16(2), 113-120. 
[7] Saukh, S. (2020, October). The Balance of Power Differentials and Its Application for the Analysis of Electric Power Systems. In 2020 

IEEE 2nd International Conference on System Analysis & Intelligent Computing (SAIC) (pp. 1-5). IEEE. 
[8] Goncharov, V. D., & Yashkardin, R. V. (2021). A Method for Calculating the Balance of Energy Released in Elements of High-Power Pulse 

Installations. Russian Electrical Engineering, 92(3), 159-162. 
[9] Petrushyn, V., Horoshko, V., Plotkin, J., Almuratova, N., & Toigozhinova, Z. (2021). Power balance and power factors of distorted electrical 

systems and variable speed asynchronous electric drives. Electronics, 10(14), 1676. 
[10] Ageev, V. A., Dushutin, K. A., Repyev, D. S., Kazakov, D. V., Volgushev, P. A., & Burnaev, A. I. (2021, March). Approach to composition of 

power balance of electric networks. In 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering 
(REEPE) (pp. 1-4). IEEE. 

[11] Cremer, J. L., Konstantelos, I., Tindemans, S. H., & Strbac, G. (2018). Data-driven power system operation: Exploring the balance between 
cost and risk. IEEE Transactions on Power Systems, 34(1), 791-801. 

[12] Silwal, B., Rasilo, P., Perkkiö, L., Hannukainen, A., Eirola, T., & Arkkio, A. (2015). Numerical analysis of the power balance of an electrical 
machine with rotor eccentricity. IEEE Transactions on Magnetics, 52(3), 1-4. 

[13] Hattori, S., Eto, H., Kurokawa, F., & Kajiwara, K. (2018). An evaluation of charging power balance of EV battery for household distributed 
power system. International Journal of Renewable Energy Research, 8(1), 1-6. 

[14] Kamnarn, U., Yodwong, J., Piyawongwisal, P., Wutthiwai, P., Namin, A., Thounthong, P., & Takorabet, N. (2022). Design and simulation of 
DC distributed power supply with power balance control technique. International Journal of Power Electronics and Drive Systems (IJPEDS), 
13(1), 460-469. 

[15] Chen, Y., Lu, Q., Zhang, Z., Xu, T., Yang, Y., & Liu, Y. (2023, March). A medium/long-term electrical power and electrical energy balance 
method for power system considering extreme weather. In 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES) (pp. 
749-752). IEEE. 

[16] Shafi, I. C. (2023). BALANCE OF ELECTRICAL ENERGY IN ELECTRICAL NETWORKS AND COMMERCIAL LOSS ANALYSIS. German 
International Journal of Modern Science/Deutsche Internationale Zeitschrift für Zeitgenössische Wissenschaft, (64). 

[17] Reymov, K. M., Rafikova, G. R., & Esemuratova, S. (2020). Existing condition and prospects of making power balance and managing load 
of electric consumers in uzbek power system. In E3S web of conferences (Vol. 209, p. 07015). EDP Sciences. 

[18] Sun, J., Mori, Y., & Nakade, K. (2018). A study of total optimisation model for supply balance in electric power market network. Asian 
Journal of Management Science and Applications, 3(4), 340-352. 

[19] P.M. Sutheesh,Nagendra Reddy Bandi & Rohinikumar Bandaru. (2025). Thermal performance of Lithium-Ion battery pack with optimised 
bionic channel using Multi-Objective genetic Algorithm: A numerical Investigation. Thermal Science and Engineering Progress,60,103414-
103414. 

[20] Kapil Choudhary,Girish Kumar Jha,Ronit Jaiswal & Rajeev Ranjan Kumar. (2025). A genetic algorithm optimized hybrid model for 
agricultural price forecasting based on VMD and LSTM network. Scientific Reports,15(1),9932-9932. 


