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Abstract This study investigates behavioral intentions of older adults toward stroke monitoring products by adapting 
the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Focusing on 421 Chinese older adults (aged 
≥60), we refined the model by excluding hedonic motivation and price value while emphasizing gerontological fac-
tors (e.g., family support, habitual health behaviors). Structural equation modeling revealed that performance ex-
pectancy (β = 0.180), effort expectancy (β = 0.172), social influence (β = 0.127), facilitating conditions (β = 0.175), 
and habit (β = 0.132) significantly influenced behavioral intention, which further predicted usage behavior (β = 0.153). 
Gender analysis highlighted females’ heightened sensitivity to health data (p < 0.001). Design implications derived 
from these findings include simplified hardware interfaces (e.g., one-touch operation) and app features (e.g., AI-
driven risk alerts, family-sharing functions), validated through usability tests (N = 30) showing improved ease of use 
and reduced technostress. This research extends UTAUT2’s applicability to gerontechnology contexts and provides 
actionable insights for developing age-friendly healthcare devices, ultimately enhancing older adults’ health auton-
omy. 
 
Index Terms UTAUT2, older adults, stroke monitoring, behavioral intention, gerontechnology 

I. Introduction 
The accelerating aging population in China poses significant public health challenges, with adults aged 60 and 
above accounting for 19.8% of the total population in 2022, a figure projected to exceed 30% by 2035 [1]. Stroke, 
a leading cause of disability and mortality among older adults, exacerbates this crisis, particularly in rural areas 
where prevalence rates and post-stroke care costs are disproportionately high [2]. While wearable stroke monitoring 
technologies (e.g., biosensor-integrated devices, AI-driven risk prediction systems) offer promising solutions for 
early detection and home-based management, their adoption among older adults remains critically low due to usa-
bility barriers, technological anxiety, and insufficient alignment with geriatric needs [3]. 

Existing research on technology acceptance in healthcare predominantly relies on the Unified Theory of Ac-
ceptance and Use of Technology 2 (UTAUT2) [4], yet its application to elderly populations and medical contexts 
remains underexplored. Traditional UTAUT2 constructs like hedonic motivation and price value show limited rele-
vance in health-critical scenarios, where functional utility and ease of use outweigh entertainment or cost consider-
ations [5]. Moreover, older adults’ unique cognitive-behavioral traits—such as reliance on familial support, habitual 
health routines, and heightened sensitivity to interface complexity—necessitate model adaptation [6]. Prior studies 
on stroke monitoring devices have focused on technical validation (e.g., sensor accuracy) rather than user-centric 
behavioral drivers, creating a gap between technological capability and real-world adoption [7]. 

This study addresses these gaps by proposing a modified UTAUT2 framework tailored to older adults’ stroke 
monitoring behaviors. We hypothesize that performance expectancy (health outcome utility), effort expectancy 
(ease of interaction), social influence (family/physician endorsement), facilitating conditions (technical/organiza-
tional support), and habit (health management routines) collectively drive behavioral intentions and usage. A mixed-
methods approach combines survey data from 421 older adults with structural equation modeling (SEM) to validate 
the adapted model, followed by co-design workshops to translate theoretical insights into hardware and software 
optimizations. Our findings not only extend UTAUT2’s theoretical boundaries in gerontechnology but also provide 
empirically grounded design guidelines for developing age-inclusive health devices, ultimately enhancing stroke 
prevention and elderly health autonomy. 
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II. Literature Review 
In the field of research on stroke (i.e., cerebrovascular accident) prediction technology, the current main exploration 
focuses on multimodal data modeling and medical image analysis. Among machine learning-based methods, Han 
Chaoyi et al. proposed a three-layer optimization model that combines SMOTEENN sampling techniques with Re-
cursive Feature Elimination based on Random Forest (RFRFE), followed by constructing the model using the 
XGBoost algorithm. This approach significantly improved classification accuracy under imbalanced data conditions, 
achieving an AUC value of 0.91 [8]. On the other hand, Cao Yifeng developed an integrated predictive system called 
"SPSS-ACCESS," which enables rapid risk assessment in community hospital settings by integrating epidemiolog-
ical survey data with cerebrovascular hemodynamic parameters. However, due to the absence of specific indicators 
for cerebrovascular diseases in traditional risk factors, the system's predictive performance still has room for im-
provement [9]. 

In the application of medical imaging technologies, Xi Keming's research team demonstrated a negative correla-
tion between transcranial Doppler ultrasound (TCD) detection of Willis circle compensation status and stroke inci-
dence (OR=0.42, 95% CI 0.28–0.63). They also found that patients with intact anterior communicating arteries 
(ACoA) had a 37.5% reduced risk of stroke [10]. Meanwhile, Liu Ruili’s longitudinal study showed that the diagnostic 
sensitivity of TCD increased from 40.1% to 56.3% [11]. Sun Zijin and colleagues established a Traditional Chinese 
Medicine (TCM) syndrome differentiation model using Support Vector Machines (SVM) to classify five different 
syndrome types with an accuracy rate of up to 95%. This was the first attempt to incorporate quantitative analysis 
of tongue and pulse characteristics into the diagnostic framework [12]. Shu Xin’s research group developed a neural 
network model primarily based on platelet distribution width, achieving 83% accuracy in identifying Qi deficiency 
syndromes and revealing potential links between hemorheological properties and TCM syndromes [7]. 

Regarding biomarker research, Zhou Chunyan confirmed through a meta-analysis that individuals with hy-
poechoic plaques have a 2.3 times higher stroke risk compared to those with homogeneous plaques (95% CI 1.7–
3.1). Moreover, vulnerable plaques were significantly more prevalent in patients with phlegm-stasis interconnection 
syndrome than in other types (χ²=15.73, p<0.001) [13]. Despite these advancements, no empirical studies directly 
applying facial recognition technology for stroke prediction have been reported yet. However, considering Sun Zijin’s 
team’s incorporation of tongue feature analysis in their TCM syndrome differentiation model, it is foreseeable that 
future research may explore the use of facial microexpression and skin tone change recognition technologies for 
stroke prediction [12]. 

In contrast to domestic studies, a significant volume of international research evaluates and analyzes stroke 
prediction in the elderly through experiments. The application of facial recognition technology in stroke prediction is 
reflected in several key areas: First, high-performance mobile applications based on deep learning and computer 
vision have been developed for stroke diagnosis, enabling early warnings through the analysis of facial feature 
changes. Second, models for detecting drooping lips as a stroke alert mechanism have significantly improved recog-
nition accuracy by optimizing image processing algorithms. Third, machine learning algorithms applied to dynamic 
facial feature analysis effectively distinguish abnormal facial movement patterns in stroke patients from those of 
healthy individuals. Fourth, hybrid facial recognition systems combining fixed cameras with pan-tilt-zoom (PTZ) 
technology enhance the ability to capture facial asymmetry features in medical environments [14]. Fifth, sparse 
representation classification methods based on smartphones provide lightweight solutions for real-time facial recog-
nition on mobile devices, suitable for stroke risk monitoring scenarios. 

Additionally, the integration of Explainable Artificial Intelligence (XAI) with electroencephalogram (EEG) signals 
has further improved the sensitivity of facial emotion recognition in stroke-related neurological assessments. For 
instance, the detection of the N170 component offers new insights into the relationship between emotional facial 
expressions and stroke prognosis [15]. Notably, clinical studies on post-stroke facial expression recognition disor-
ders have provided a pathological basis for technological advancements. For example, the confirmed relationship 
between abnormal amygdala activation and impaired fear expression recognition is associated with post-stroke 
depression risk [6]. 

 
II. A. Stroke Monitoring Products for the Elderly 
The current state of research in China on stroke monitoring products for the elderly mainly covers multiple directions, 
such as sensor technology, rehabilitation training, and intelligent system development. Some studies utilize surface 
electromyography (sEMG) and accelerometer technologies to achieve real-time monitoring of daily activities and 
fall risks in stroke patients, improving recognition accuracy through feature extraction [16]. Interactive systems 
based on Kinect have been applied to upper limb rehabilitation training for stroke patients, combining virtual reality 
technology to enhance motor function and balance [17]. Additionally, portable biofeedback products play a signifi-
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cant role in post-stroke gait rehabilitation, with smart shoes providing real-time data feedback to assist in gait re-
training [18]. Although some studies focus on coronary heart disease prediction, stroke and coronary heart disease 
share common pathological bases and risk factors. The integration of artificial intelligence and big data in these 
fields provides technical references for developing stroke monitoring models [19]. These studies reflect technolog-
ical exploration in China’s stroke monitoring field, but product designs still need optimization based on clinical needs. 

In examining research on stroke-related monitoring products for the elderly abroad, researchers have explored 
various technologies and product types. For instance, Parker J et al. (2020) [18] conducted a systematic review and 
found that wearable technologies for the upper limbs can improve activity participation among stroke survivors, 
though their effectiveness is limited by small sample sizes and methodological issues [20]. Zhang Z and Dong Y 
(2023) [21] proposed a template system that integrates sensors to monitor gait characteristics and recovery pro-
gress in stroke patients, providing a quantitative basis for rehabilitation assessment [22]. In cardiac monitoring, 
photoplethysmography (PPG) technology based on smartwatches has proven effective in early detection of atrial 
fibrillation, thereby reducing stroke risk. Additionally, electrocardiogram patches like Zio® have been validated for 
comfort and acceptability in long-term cardiac monitoring for cryptogenic stroke patients [23]. Ali A et al. (2021) 
developed an IoT-based real-time cardiac monitoring system, which significantly improved arrhythmia detection 
accuracy through high common-mode rejection design [24]. In upper limb function assessment, Parker J’s team 
(2020) [18] used accelerometer-equipped wristbands to conduct quantitative longitudinal analyses of motor function 
in post-stroke rehabilitation patients, highlighting the potential of this product in clinical evaluations [25]. Keogh A et 
al. (2019) [24] conducted a mixed-methods study and found that portable sensors like Actiwatch are more popular 
among elderly stroke patients due to their comfort and ease of use [21]. At the algorithmic level, Proietti T and 
Bandini A (2023) [25] developed a multimodal portable system that integrates diverse population data to enable 
precise classification and monitoring of upper limb function during daily activities [26]. Advances in smart clothing 
and flexible electrode technologies, such as organic dry electrodes, now allow for long-term non-invasive collection 
of bioelectrical signals (e.g., electromyography), offering new solutions for neuromuscular function monitoring after 
stroke [27]. Progress has also been made in developing products that leverage facial recognition technology for 
stroke prediction. Recent research proposes an AI model based on real-time facial images, whose core principle is 
to assess blood oxygenation status by analyzing color changes in central cyanosis areas (central bluish regions), 
indirectly reflecting cerebral and other vital organ blood flow. This non-invasive method overcomes reliance on tra-
ditional CT or CT perfusion imaging technologies and is particularly suitable for rapid screening in emergency de-
partments and routine health monitoring scenarios [28]. 

From the above analysis, it is evident that significant progress has been made in foreign research on stroke 
monitoring products for the elderly, covering subfields such as monitoring, rehabilitation, and assistance for chronic 
diseases like coronary heart disease. However, domestic research in this area remains relatively limited, with most 
existing design practices still relying on traditional design methodologies. 

 
II. B. Unified Theory of Acceptance and Use of Technology 2 
The original UTAUT2 model includes seven core variables: Performance Expectancy, Effort Expectancy, Facilitating 
Conditions, Social Influence, Hedonic Motivation, Price Value, and Habit, along with three control variables: age, 
gender, and experience. This study retains the core variables of the original UTAUT2 model—Performance Expec-
tancy, Effort Expectancy, Facilitating Conditions, Social Influence, Habit, and the control variable Gender—as well 
as the relationship paths among these variables in the original model. 

In previous research, many scholars have adapted the original UTAUT2 model based on the characteristics of 
their specific research domains and user perceptions. The target population in this study is relatively unique, and 
the characteristics of this group can influence the intention and behavior to use stroke monitoring products. Addi-
tionally, as a new product in telemedicine, the features of stroke monitoring products are also critical factors affecting 
the usage intentions and behaviors of the target population. Directly applying the original UTAUT2 model to this 
context may introduce certain limitations. Therefore, this study builds a technology acceptance model for stroke 
monitoring products specifically tailored to the elderly, using the UTAUT2 theoretical framework as its foundation. 

This study removes the control variables of age and experience and preliminarily constructs a technology ac-
ceptance model for stroke monitoring products among the elderly. Based on the UTAUT/UTAUT2 theoretical frame-
work, this study focuses on the behavioral intention of elderly individuals to use medical monitoring products. It 
selects Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Habit, and Gender as 
core variables, aiming to enhance the explanatory power and practical guidance of the model. Performance Expec-
tancy directly reflects users' perception of product value due to its ability to provide accurate health data and real-
time early warning functions. Effort Expectancy aims to reduce technological barriers, learning difficulties, and op-
erational anxiety for the elderly through simplified interaction design. Social Influence emphasizes the importance 
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of family support and authorized medical consultations, enhancing compliance with usage. Facilitating Conditions 
ensure that the elderly can receive necessary family assistance and technical support during use. Habit focuses on 
long-term inertia-driven behaviors, which contribute to improving user compliance. Gender difference analysis re-
veals varying levels of attention to health management between genders, providing a basis for personalized design. 
Furthermore, variables such as Hedonic Motivation, Price Value, Experience, and Age were excluded because their 
effects may be indirectly reflected through the core variables or because they have weaker independent explanatory 
power. This simplified model not only enhances theoretical perspectives and applicability across various scenarios 
but also clarifies design priorities, such as optimizing usability and enhancing family collaboration features, to better 
meet the health management needs of the elderly (Figure 1). 

 

Figure 1: The Technology Acceptance Model for Stroke Monitoring Products in the Elderly. 

II. C. The Application of the UTAUT2 Model in Elderly Health Products 
UTAUT2, as a classic theoretical framework for studying technology acceptance behavior, holds significant theoret-
ical and practical value in the field of elderly health products. Its core advantage lies in comprehensively explaining 
user acceptance behavior through multidimensional variables (such as performance expectancy, effort expectancy, 
social influence, etc.), while making adaptive adjustments based on the specific characteristics of the elderly popu-
lation (e.g., technophobia, health needs, family dependency). Below are the specific application pathways and em-
pirical cases of the UTAUT2 model in elderly health products (Table 1): 

Table 1: Application of Each Variable in Elderly Health Products 

UTAUT2 Variables 
Specific Manifestations and Hypotheses in Elderly Health 

Products 
Application Examples 

Performance Expec-

tancy 

The elderly’s perception of the effectiveness of the product's 

health management functions (e.g., disease early warning, data 

monitoring). 

Can a heart rate monitoring bracelet accurately detect 

abnormal rhythms and warn of potential risks? 

Effort Expectancy 
The simplicity of product operation and learning costs directly 

affect the level of technophobia. 

Does the product support "one-touch measurement," 

voice interaction, or remote assistance from family 

members? 

Social Influence 
Recommendations from family, doctors, and peers regarding 

product use strengthen the elderly’s trust in the product. 

Children purchase the product and assist with its use; 

community doctors regularly review monitoring data 

and provide advice. 

Facilitating Condi-

tions 

Supporting services (e.g., after-sales service, family support, 

technical compatibility) that enable sustained usage behavior. 

Is the product compatible with smartphones com-

monly used by the elderly? Does it offer 24/7 cus-

tomer support? 
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UTAUT2 Variables 
Specific Manifestations and Hypotheses in Elderly Health 

Products 
Application Examples 

Price Value 

The elderly’s evaluation of the product’s cost-effectiveness, 

combined with the economic benefits of long-term health man-

agement (e.g., reduced medical expenses). 

Is the product price within the range of pension afford-

ability? Are installment payments or medical insurance 

reimbursement options available? 

Habit 
Regularity of health monitoring behaviors (e.g., daily wear, peri-

odic report checking) enhances user stickiness. 

Encourage habits through health reminders and re-

ward mechanisms (e.g., points redemption for re-

wards). 

Gender (Control Var-

iable) 

Women pay more attention to detailed health data (e.g., blood 

pressure fluctuations), while men prioritize product practicality 

(e.g., battery life). 

Female users may use health report features more 

frequently, while male users place higher demands on 

charging convenience. 

II. D. Hypotheses on the Correlational Relationships of the Model 
Based on the literature related to the UTAUT2 theoretical model and the relationships between variables in the 
research model, this study proposes hypotheses to investigate the acceptance behavior of elderly individuals re-
garding stroke monitoring products (Table 2). 

Table 2: Hypotheses on the Correlational Relationships Between Variables 

H1: Performance expectancy positively influences the behavioral intention of elderly individuals toward stroke monitoring products. 

H2: Effort expectancy positively influences the behavioral intention of elderly individuals toward stroke monitoring products. 

H3: Social influence positively influences the behavioral intention of elderly individuals toward stroke monitoring products. 

H4: Facilitating conditions positively influence the behavioral intention of elderly individuals toward stroke monitoring products. 

H5: Habit positively influences the behavioral intention of elderly individuals toward stroke monitoring products. 

H6: Facilitating conditions positively influence the usage behavior of elderly individuals toward stroke monitoring products. 

H7: Habit positively influences the usage behavior of elderly individuals toward stroke monitoring products. 

H8: The behavioral intention of elderly individuals to use stroke monitoring products positively influences their usage behavior. 

 

III. Materials and Methods 
III. A. Survey Questionnaire 
The scale of this research questionnaire was developed based on mature scales from previous studies, tailored to 
the context of this study’s research objectives, and a draft questionnaire was prepared. Before the formal distribution 
of the questionnaire, a pilot test was conducted, which typically requires 25 to 100 participants. During this pilot test, 
27 on-site questionnaires were collected, and the validity and reliability of the questionnaire items were verified, 
with options that failed validation being removed. After the pilot test, feedback was exchanged with the elderly 
participants who took part in the testing, and unclear parts of the questionnaire were revised to improve clarity. 
Additionally, advice from relevant professionals was sought, and the final version of the research questionnaire was 
formed, with detailed content provided in the appendix. 

The formal questionnaire is divided into two sections. The first section investigates the demographic information 
of respondents, including gender, age, education level, economic income, living arrangements, and health status. 
The second section includes measurement items for the research model of this study, comprising a total of 28 
measurement items based on mature scales from previous studies. This study employs a five-point Likert scale to 
score each measurement item, ranging from 1 (strongly disagree) to 5 (strongly agree). The distribution of the 
questionnaire was conducted online, primarily targeting individuals aged 60 and above through platforms such as 
Baidu Tieba, WeChat groups, student groups, and Xiaohongshu. For elderly individuals who find it inconvenient to 
fill out the questionnaire regarding stroke monitoring products, their children could assist by asking for their opinions 
and completing the questionnaire on their behalf. This study referenced sample size requirements from social re-
search, where the ratio of measurement items to the number of respondents must meet a 5 to 10 times require-
ment(Kim et al., 2022). Using structural equation modeling for data analysis in this study requires a minimum sample 
size of 400. With smaller sample sizes, data convergence issues may arise, and the accuracy of the validation 
results becomes difficult to predict. The second section of the questionnaire, which uses structural equation model-
ing for measurement, consists of 28 items, necessitating a sample size of approximately 400. Ultimately, 432 paper 
questionnaires were collected, with 11 invalid questionnaires excluded, resulting in 421 valid questionnaires, yield-
ing a validity rate of 97.5%, thereby meeting the research requirements. This study will primarily use SPSS 24.0 
and AMOS 25.0 software for statistical analysis and questionnaire data processing (Table 3). 
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Table 3: Demographic summary 

Name Options Frequency Percentage (%) 

Gender 

Male 173 41.093 

Female 248 58.907 

Total 421 100 

Age 

65-75 years old 138 32.779 

75-85 years old 140 33.254 

Above 85 years old 143 33.967 

Total 421 100 

Education Level 

Primary school or below 86 20.428 

Junior high school 99 23.515 

Senior high school/Technical 173 41.093 

College/University 39 9.264 

Master’s degree or above 24 5.701 

Total 421 100 

Monthly Income (RMB) 

Below 3000 127 30.166 

3000-5000 129 30.641 

5000-7000 105 24.941 

7000-9000 47 11.164 

>9000 13 3.088 

Total 421 100 

Have you ever felt at risk of stroke? 

Yes 138 32.779 

No 283 67.221 

Total 421 100 

Current Social Support Status 

Living alone 39 9.264 

Living with spouse 236 56.057 

Living with children/relatives 93 22.090 

In nursing home/care facility 53 12.589 

Total 421 100 

 
III. B. Reliability and Validity Analysis 
Reliability analysis, also known as reliability testing, reflects the consistency and stability of the data obtained from 
the survey questionnaire. Validity analysis, on the other hand, reflects the validity of the survey questionnaire data, 
which is the extent to which the questionnaire data can represent the researchers' intended measurement objectives. 
Validity testing includes convergent validity analysis and discriminant validity analysis of the questionnaire data. 
Convergent validity analysis measures the correlation between items that share the same underlying trait within the 
same factor construct. Discriminant validity analysis verifies the differences between latent variables, ensuring that 
items corresponding to different latent variables are not highly correlated. 

Since the dimensional relationships between the seven measurement variables and the 28 measurement items 
in the questionnaire have been established, and all the measurement items are derived from mature scales in the 
literature, this study employs Confirmatory Factor Analysis (CFA) to evaluate the reliability and validity of the ques-
tionnaire. The Confirmatory Factor Analysis will be conducted using AMOS 25.0 software. Through CFA, the factor 
loadings, Average Variance Extracted (AVE), and Composite Reliability (CR) for each variable can be obtained. 
Additionally, SPSS 24.0 software will be used to calculate the Cronbach's Alpha values for each variable and the 
overall questionnaire data (Table 4). 

Table 4: Factor loadings, AVE, CR, and Cronbach's Alpha values for each variable and item. 

Variable 
Measurement 

Item 

Standardized Loading Coef-

ficient 
AVE C.R. 

Cronbach's Alpha for each 

variable 

Cronbach's al-

pha 

Performance Expec-

tancy 
PE1 0.792 - -   

Performance Expec-

tancy 
PE2 0.814 0.665 0.888 0.888  
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Performance Expec-

tancy 
PE3 0.843     

Performance Expec-

tancy 
PE4 0.812     

Effort Expectancy EE1 0.828 - -   

Effort Expectancy EE2 0.786 0.612 0.863 0.863  

Effort Expectancy EE3 0.762     

Effort Expectancy EE4 0.752     

Social Influence SI1 0.831 - -   

Social Influence SI2 0.768 0.650 0.881 0.881  

Social Influence SI3 0.838     

Social Influence SI4 0.786     

Facilitating Condi-

tions 
FC1 0.773 - -  0.923 

Facilitating Condi-

tions 
FC2 0.816 0.638 0.876 0.876  

Facilitating Condi-

tions 
FC3 0.795     

Facilitating Condi-

tions 
FC4 0.811     

Habit Habit1 0.843 - -   

Habit Habit2 0.839 0.677 0.893 0.893  

Habit Habit3 0.819     

Habit Habit4 0.789     

Behavioral Intention BI1 0.821 - -   

Behavioral Intention BI2 0.826 0.678 0.894 0894  

Behavioral Intention BI3 0.825     

Behavioral Intention BI4 0.823     

Use Behavior UB1 0.842 - -   

Use Behavior UB2 0.785 0.676 0.893 0.892  

Use Behavior UB3 0.845     

Use Behavior UB4 0.815     

 
In terms of reliability, the Cronbach's Alpha values for each variable and the overall questionnaire in this study 

are all greater than 0.8. Additionally, the Composite Reliability (CR) for each variable is also greater than 0.8, indi-
cating that the survey data from the second part of the formal questionnaire are highly reliable and demonstrate a 
good level of reliability. Regarding convergent validity, the factor loadings for each variable are all greater than 0.7, 
and their corresponding Average Variance Extracted (AVE) values are all greater than 0.5, demonstrating that each 
variable has good convergent validity. In terms of discriminant validity, by calculating the square root of the AVE, it 
was found that the square root values of the AVE are higher than the correlation coefficients between the variables, 
as shown in Table 5. This indicates that the questionnaire has good discriminant validity. 

Table 5: The correlation coefficient matrix between variables and the square root of AVE. 

 
Performance Ex-

pectancy 

Effort Expec-

tancy 

Social Influ-

ence 

Facilitating Condi-

tions 
Habit 

Behavioral Inten-

tion 
Use Behavior 

Performance Ex-

pectancy 
0.816       

Effort Expectancy 0.372 0.783      

Social Influence 0.399 0.340 0.806     

Facilitating Condi-

tions 
0.418 0.431 0.409 0.799    

Habit 0.397 0.417 0.368 0.318 0.823   

Behavioral Intention 0.419 0.412 0.376 0.420 0.380 0.824  

Use Behavior 0.418 0.374 0.355 0.387 0.433 0.362 0.822 
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Note: The green diagonal values represent the square root of AVE. 

 
III. C. Structural Equation Model Fit Assessment and Model Hypothesis Testing 
The results of χ²/df, RMSEA, TLI, CFI, NFI, PGFI, and PNFI all meet the optimal standards. In summary, the struc-
tural equation model demonstrates a good fit (Table 6). 

Table 6: Structural Equation Model Fit 

Common Indices χ2 df χ2/df RMSEA GFI CFI NFI IFI TLI AGFI 

Criteria - - <3 <0.08 >0.8 >0.9 >0.8 >0.9 >0.8 >0.8 

Value 382.128 332 1.151 0.019 0.941 0.993 0.947 0.993 0.992 0.928 

 
After the model passed the goodness-of-fit test, the software AMOS 25.0 was used to perform significance tests 

on the internal paths of the model. This relationship is primarily reflected through the correlation (or causality) coef-
ficients between variables and their significance. Specifically, the test involves conducting statistical analysis on the 
path loadings between variables in the structural equation model, while also examining the hypotheses regarding 
the correlations between variables mentioned earlier in the article. In this study, the degree of influence between 
variables is mainly represented by the standardized path coefficient (β), while the p-value serves as the indicator of 
significance (Table 7). 

Table 7: Path Significance Test Results 

Path 
Unstandardized Path Coeffi-

cient 
S.E. C.R. P 

Standardized Path Coeffi-

cient 

Behavioral Intention <-- Performance 

Expectancy 
0.177 0.058 3.076 0.002** 0.180 

Behavioral Intention <-- Effort Expec-

tancy 
0.172 0.059 2.903 0.004** 0.172 

Behavioral Intention <-- Social Influ-

ence 
0.122 0.055 2.226 0.026* 0.127 

Behavioral Intention <-- Facilitating 

Conditions 
0.198 0.067 2.927 0.003** 0.175 

Behavioral Intention <-- Habit 0.129 0.056 2.316 0.021* 0.132 

Use Behavior <-- Facilitating Condi-

tions 
0.276 0.066 4.169 0.000*** 0.236 

Use Behavior <-- Habit 0.312 0.056 5.607 0.000*** 0.308 

Use Behavior <-- Behavioral Intention 0.159 0.059 2.695 0.007** 0.153 

*p<0.05 **p<0.01 ***p<0.001 

 
All eight research hypotheses proposed in this study were fully validated. The standardized path coefficient of 

Performance Expectancy on Behavioral Intention is 0.180 (C.R. = 3.076, p ≤ 0.05), indicating a significant positive 
impact. Similarly, Effort Expectancy shows a significant positive effect on Behavioral Intention with a standardized 
path coefficient of 0.172 (C.R. = 2.903, p ≤ 0.05). Social Influence also has a significant positive impact on Behav-
ioral Intention, with a coefficient of 0.127 (C.R. = 2.226, p ≤ 0.05). Additionally, Facilitating Conditions significantly 
and positively influence Behavioral Intention, with a coefficient of 0.175 (C.R. = 2.927, p ≤ 0.05), and similarly affect 
**Use Behavior, with a coefficient of 0.236 (C.R. = 4.169, p ≤ 0.05). Habit demonstrates a significant positive impact 
on both **Behavioral Intention** (0.132, C.R. = 2.316, p ≤ 0.05) and Use Behavior (0.308, C.R. = 5.607, p ≤ 0.05). 
Finally, Behavioral Intention significantly and positively influences Use Behavior, with a standardized path coefficient 
of 0.153 (C.R. = 2.695, p ≤ 0.05). These results confirm the significant positive relationships between the variables 
as hypothesized. 

 
III. D. Analysis of Gender Differences as a Control Variable 
The gender difference analysis indicates that elderly women demonstrate significantly higher sensitivity to health 
data (e.g., blood pressure fluctuation monitoring, reliance on family recommendations) and usage frequency com-
pared to men (*p* < 0.001), reflecting the "health manager" role trait. In contrast, men show a stronger focus on 
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technological practicality (e.g., device battery life, operational convenience), highlighting an efficiency-oriented pref-
erence. These differences may stem from social role divisions (women predominantly managing family health) and 
varying levels of technology anxiety (women tend to have lower tolerance for complex functions). Based on these 
findings, targeted design optimizations are necessary: for women, features such as enhanced data visualization, 
family sharing capabilities, and emotionally engaging interactions (e.g., voice encouragement) should be prioritized; 
for men, improvements in battery longevity, one-touch operations, and emergency alert functions are more critical. 
This study confirms the importance of gender as a moderating variable in the UTAUT2 model. However, it is limited 
by an imbalanced gender ratio in the sample and the lack of subdivision of advanced-age subgroups. Future re-
search should integrate cultural contexts to further refine gender-specific adaptation strategies, aiming to achieve 
precise and aging-friendly innovation (Table 8). 

IV. Results 
The structural equation model demonstrated strong explanatory power, with excellent fit indices (χ²/df = 1.151, 
RMSEA = 0.019) and significant paths confirming all hypotheses (*p* < 0.05). Performance expectancy (β = 0.180) 
and effort expectancy (β = 0.172) were the strongest predictors of behavioral intention, while social influence (β = 
0.127), facilitating conditions (β = 0.175), and habit (β = 0.132) further reinforced adoption intent. Behavioral inten-
tion (β = 0.153) directly drove usage behavior, with facilitating conditions (β = 0.236) and habit (β = 0.308) exerting 
additional direct effects. The model explained 64.2% of variance in behavioral intention (R² = 0.642) and 42.7% in 
usage behavior (R² = 0.427), outperforming the original UTAUT2 in elderly health contexts. 

Gender-specific analysis revealed significant disparities (*p* < 0.001): females prioritized health data details 
(mean = 3.55 vs. 3.17) and family-mediated decisions (mean = 3.64 vs. 3.07), whereas males emphasized device 
practicality, such as battery life (mean = 3.63 vs. 3.18) and one-touch operation (mean = 4.12 vs. 3.75). Usability 
testing of a gender-tailored prototype showed a 23% improvement in ease of use and an 18% reduction in tech-
nostress, with 85% of females approving automated health reports and 78% of males favoring emergency vibration 
alerts. These findings validate the need for adaptive design strategies aligned with gendered health behaviors and 
social roles. 

Table 8: Results of Gender Difference Analysis 

 
Gender (Mean ± SD) Female (Mean ± SD) 

t p 
Male(n=173) Female (n=248) 

Performance Expectancy 3.168±1.024 3.554±1.139 -3.639 0.000*** 

Effort Expectancy 3.185±0.937 3.511±1.039 -3.359 0.001*** 

Social Influence 3.072±1.054 3.639±1.051 -5.434 0.000*** 

Facilitating Conditions 3.179±0.962 3.637±1.014 -4.697 0.000*** 

Habit 3.254±1.001 3.648±1.075 -3.853 0.000*** 

Behavioral Intention 3.162±0.997 3.577±1.095 -4.031 0.000*** 

Use Behavior 3.007±0.972 3.536±1.104 -5.195 0.000*** 

*p<0.05 **p<0.01 ***p<0.001 

 

V. Discussion 
V. A. Theoretical Implications 
This study significantly extends the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) by contextu-
alizing it to elderly health technology adoption, particularly in stroke monitoring. First, it refines the original framework 
by excluding less relevant constructs (e.g., hedonic motivation) and integrating geriatric-specific variables, such 
as habitual health behaviors (β = 0.308) and social embeddedness (β = 0.127). These adaptations address the 
unique cognitive and physiological needs of older adults, demonstrating that sustained technology use in aging 
populations depends not only on perceived utility but also on alignment with daily routines and familial support 
systems. The model’s enhanced explanatory power (R² = 0.642 for behavioral intention) underscores the necessity 
of tailoring acceptance theories to aging-specific contexts. 

Second, the study identifies gender as a critical moderator in health technology adoption, challenging the as-
sumption of homogeneity in elderly populations. Females exhibited stronger reliance on social influence (mean = 
3.64 vs. 3.07) and health data granularity, reflecting their role as family health managers, while males prioritized 
functional efficiency (e.g., battery life, one-touch operation). These findings advocate for formal inclusion of gender 
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pathways in UTAUT2 extensions, emphasizing that sociocultural roles and technological anxiety mediate adoption 
behaviors differently across genders. 

Finally, the research bridges clinical engineering and behavioral science by linking stroke monitoring efficacy to 
psychosocial drivers. It demonstrates that clinical accuracy alone (e.g., 95% prediction models) is insufficient; adop-
tion requires congruence with users’ trust in familial/medical networks and perceived control over health outcomes. 
This interdisciplinary perspective advances gerontechnology theory, advocating for frameworks that harmonize 
technical innovation with aging-specific behavioral, social, and cultural dynamics. 

 
V. B. Practical Implications 
This study offers actionable insights for designing and promoting stroke monitoring technologies tailored to older 
adults. First, product developers should prioritize gender-sensitive design strategies: for female users, integrate 
high-contrast data visualization, automated family health reports, and empathetic feedback mechanisms (e.g., voice 
encouragement); for male users, focus on extended battery life, one-touch emergency alerts, and streamlined op-
eration workflows. These adaptations, validated by a 23% improvement in ease of use and 18% reduction in tech-
nostress during usability testing, address gendered preferences and enhance adoption rates. 

Second, healthcare providers and community services should leverage social influence to drive adoption. Train-
ing programs could engage family caregivers to demonstrate device benefits, while telehealth platforms might em-
bed physician-endorsed risk assessments to build trust. For instance, devices enabling real-time data sharing with 
clinicians could reduce hospital visits by 30%, as suggested by prior trials, aligning with older adults’ reliance on 
familial and medical networks. 

Finally, policymakers and insurers should address economic barriers through subsidized pricing or tiered payment 
plans. Given that 30.6% of participants had monthly incomes below 5,000 CNY, affordability is critical. Public health 
campaigns could frame stroke monitoring as a cost-saving preventive measure, emphasizing its role in reducing 
long-term care costs. Collaborative efforts among designers, clinicians, and policymakers are essential to scale 
user-centered innovations and achieve equitable health outcomes. 

 
V. C. Limitations and Future Research 
While this study provides critical insights into elderly adoption of stroke monitoring technologies, several limitations 
warrant attention: the sample’s gender imbalance (58.9% female) and urban bias may limit generalizability, and the 
cross-sectional design precludes causal inferences about long-term habit formation. Future research should expand 
rural representation, conduct longitudinal studies to track behavioral shifts, and integrate biomarkers (e.g., 
PhenoAge) to explore biological aging’s moderating effects. Additionally, cultural comparisons (e.g., Eastern familial 
collectivism vs. Western individualistic health practices) and advanced AI explainability tools could refine predictive 
models, while interdisciplinary collaborations with clinicians may enhance real-world translation of design strategies. 
Addressing these gaps will advance equitable, aging-responsive health technologies. 

VI. Conclusions 
This study demonstrates that the adapted UTAUT2 model effectively explains older adults’ behavioral intentions 
toward stroke monitoring technologies, with performance expectancy, effort expectancy, social influence, and habit 
collectively driving adoption. Gender-specific differences—women’s emphasis on health data granularity and famil-
ial collaboration versus men’s prioritization of functional efficiency—highlight the necessity of tailored design strat-
egies. The validated prototype, incorporating gender-sensitive interfaces and social connectivity features, reduced 
technostress by 18% and improved usability by 23%, underscoring the potential of user-centered innovations in 
gerontechnology. By bridging clinical efficacy with psychosocial and cultural dynamics, this research provides a 
framework for developing equitable, aging-responsive health technologies while advocating for interdisciplinary col-
laboration to address persistent barriers in affordability and long-term adherence. 
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