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Abstract This paper constructs the risk identification framework of multi-subject virtual power plant, builds the 
operation risk assessment index system, and screens out the risk factors of virtual power plant. The entropy weight 
method and gray correlation theory are connected and jointly applied in the risk identification of multi-subject virtual 
power plant operation, and the risk assessment model of multi-subject virtual power plant based on entropy weight 
and gray correlation is established. A case study of multi-body virtual power plant is taken as an example. In the 
risk assessment index system, the weighting results of the first-level indexes are, in descending order: persistent 
risk, construction phase, preparation phase, operation phase, and handover phase. During the operation period, in 
addition to paying comprehensive attention to the risk factors that exist throughout the project cycle, it is also 
necessary to focus on controlling the risks faced during the construction phase to reduce the chances of risk 
occurrence. The operational risk level (Ⅰ ~ V) of the multi-body virtual power plant A is evaluated as -6.339, 2.206, 
-2.155, -11.387, -14.095 respectively, and the operational risk level of the multi-body virtual power plant A is 
evaluated as Class II (lower risk). 
 
Index Terms entropy weight method, gray correlation, virtual power plant, multi-object coupling, risk assessment 

I. Introduction 
With the steady progress of the “double carbon” goal, the proportion of renewable energy in China's power system 
will continue to increase, and the traditional centralized power system is facing more and more challenges [1], [2]. 
On the one hand, the inherent stochastic, fluctuating and intermittent characteristics of wind and solar power 
generation pose serious challenges to the balance between supply and demand and stability of the power system 
[3]. On the other hand, the flexibility of the power system must be continuously improved to adapt to the uncertainty 
of renewable energy sources and changes in load demand [4]. The virtual power plant (VPP), as an advanced 
energy management system, can integrate resources such as distributed power sources, energy storage, and loads 
to achieve unified management and scheduling, thus improving energy utilization and enhancing the flexibility and 
reliability of the power grid [5]. In addition, multi-subject coupling can also convert electrical energy with other energy 
forms such as heat and cold energy, and synergistically optimize them through advanced control technology and 
information and communication technology to achieve higher comprehensive energy utilization [6]. 

Along with the challenges and opportunities there are naturally risks that cannot be ignored. VPP itself is also a 
double-edged sword, on the one hand it provides a tool for solving the realities of development, on the other hand 
the realities of the development of the problem will also bring the risk of loss to the VPP itself [7], [8]. On the issue 
of power market reform, since the release of the reform document, the effect of power market-oriented reform is 
obvious and rapid progress, but the market environment is bound to change accompanied by risk, how to effectively 
control the risks in the market reform has long been the center of attention of the various market players [9], [10]. 
Compared with traditional power plants, virtual power plants (VPPs) are characterized by diverse and 
environmentally friendly resources, collaborative operations, and a wider range of competition, etc., and their 
operational risks also show more complex characteristics such as the inevitability of risks brought by virtual 
characteristics, the contingency of risks in specific spatial and temporal forms, the potentiality and reality of risk 
objects, and the controllability and uncontrollability of operational risks [11]-[14]. Therefore, VPP needs to be more 
careful to recognize the risks brought about by changes in the market environment, and the operational risks it faces 
are more complex and urgent than those of conventional power plants. 

Various operational risk identification activities in the VPP system are mainly the process of systematically 
classifying and analyzing various potential and obscure uncertainties in the operation process to reveal potential 
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risks to the best of its ability [15], [16]. If risks are not accurately identified, it is impossible to know what risks are 
present in the operation of the virtual power plant and what risks may arise [17]. Effective and timely control of the 
“chances” of the emergence of risks can be a good way to reduce the number of situations that originate from the 
risks of the operation of the virtual power plant. Risk assessment is the process of analyzing and determining the 
risk of VPP operation, applying scientific methods to correctly and objectively assess the risk of VPP operation, and 
providing theoretical basis and methods for operation managers [18]. 

In this paper, after the basic research on multi-subject coupled virtual power plant, we construct the HHM 
framework and the risk dynamic identification framework of multi-subject virtual power plant risk identification, 
identify and screen the risk factors, form the risk identification list of multi-subject virtual power plant, and construct 
the risk assessment index system of multi-subject virtual power plant. The risk assessment model of multi-subject 
virtual power plant is established by the combination of entropy weight method and gray correlation theory. Through 
the risk assessment model, the case analysis is carried out with multi-body virtual power plant A as the research 
object. The weights, classical domains and section domains of risk assessment indicators are determined by 
entropy weight-gray correlation. Finally, the risk level in the operation of multi-body virtual power plant A is assessed. 

II. Risk identification of multi-agent virtual power plants 
II. A. Virtual power plant 
Virtual Power Plant (VPP), as a kind of intelligent management technology for DER (distributed energy resources) 
[19], [20], aggregates independent DERs into a virtual whole, internally respects the pursuit of individual interests 
of DERs, and realizes the complementarity and coordination of each DER; externally, it formulates bidding strategies 
and participates in the trading of the electricity market as a whole. 

The resources aggregated by VPP are diversified, including clean energy such as wind power and photovoltaic 
and controllable distributed power sources to participate in the trading of the electricity market, and flexible 
resources such as energy storage and flexible loads to provide energy balancing, rotating standby, frequency 
regulation, and other auxiliary services for the power grid. Therefore, the VPP that aggregates multiple DERs can 
participate in the trading of multiple power markets such as electric energy, peaking, frequency regulation, etc., 
which improves the market competitiveness of the VPP as a whole and of each DER, and obtains more economic 
benefits. 

VPP achieves coordinated management and efficient integration of multiple DERs through internal coordination 
and optimization. Under the traditional centralized management mode, the central control unit completes the internal 
coordination and optimization of the VPP and formulates the power plans of internal members, and its core objective 
is to smooth out the power volatility of uncontrollable distributed power sources through the coordinated control of 
the VPP on the internal controllable distributed power sources and members of the energy storage, and explore the 
optimal power plan of the members, so as to improve the overall economic efficiency of the VPP. 

The structure of the virtual power plant (VPP) is shown in Figure 1, where the VPP operator acts as a manager 
and aggregates wind power, photovoltaic (PV), controllable distributed power generation (CDG), energy storage, 
and flexible loads into a virtual whole, and each member of the VPP has a different function, and coordinates and 
cooperates with each other in order to enable the whole to effectively participate in the market transactions and 
obtain more economic benefits. 
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Figure 1: The Structure of virtual power plant 
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Functions of the VPP operator: as a manager, it has the characteristics of bilateral interaction of externally 
participating in the trading of the electricity market and internally coordinating and cooperating with each 
member.When the VPP operator participates in the electricity market externally, it accomplishes the acquisition of 
market information, the formulation of bidding plans, etc., and obtains the maximum market revenue.The VPP 
operator internally coordinates and cooperates with the members, realizing the coordination and interaction of the 
DERs to ensure the economic benefit of each members' economic benefits. 

Functions of CDG: Common CDGs include gas units, cogeneration units, etc., which can respond quickly to 
scheduling commands, and can make power adjustments within a certain range, which can ensure the power 
balance of the VPP and provide backup. 

Function of uncontrollable distributed power supply: common uncontrollable distributed power supplies are wind 
power generator sets and photovoltaic generator sets, which are greatly affected by natural weather and other 
factors, difficult to control, and have strong uncertainty of power output. In order to deal with the power uncertainty 
of uncontrollable distributed power sources, VPP needs to call internal CDG and flexibility resources to reserve 
backup to enhance the overall reliability and economy. 

Functions of flexibility resource energy storage and flexible load: energy storage works in charging mode, which 
is equivalent to a load; it works in discharging mode, which is equivalent to a power source, and is able to formulate 
appropriate charging and discharging behaviors according to the needs. Flexible loads are able to perform load 
curtailment and load increase, thus adjusting the behavior of electricity consumption. Flexible resources can play a 
role in VPP by effectively transferring loads to realize peak shaving and valley filling, and participate in auxiliary 
services. 

 
II. B. Virtual power plant risk identification 
II. B. 1) Constructing a HHM framework for risk identification 
The Multi-Agency Virtual Power Plant (VPP) project adopts the model of 25% government investment + operation 
subsidy. Under this model, the main stakeholders are government departments, social investors, the general public 
and other stakeholders, and the main operational phases of the project include planning, survey, design, financing, 
construction, operation and transfer. Stakeholders and project operation phases are the main core key points to 
control the project, which can be used as two perspectives for risk identification of this project. In addition, in risk 
identification, risk can be subdivided into social risk loss, economic risk loss and environmental risk loss according 
to the type of risk loss, which can basically cover the comprehensive risk loss. 

Based on this, the article divides the perspective of risk identification of multi-body virtual power plants into three 
aspects: stakeholders, project operation stage and risk loss type. For the stakeholder perspective, the risk 
identification level under this perspective is categorized into four levels because it includes government departments, 
social investors, the public and other stakeholders. For the project operation phase perspective, the risk 
identification level under this perspective is categorized into six levels because it includes six aspects: planning, 
investigation, design, financing, construction, operation and handover. For the risk-loss perspective, the risk 
identification level under this perspective is divided into three levels because it includes three aspects: social risk 
loss, economic risk loss and environmental risk loss. Based on the identified risk identification perspectives and risk 
identification levels, the HHM framework for risk identification of multi-subject virtual power plants is determined as 
shown in Figure 2. 
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Figure 2: Risk identification HHM framework of multi-body VPP 
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Figure 3: Risk identification dynamic framework of multi-body VPP 

II. B. 2) Developing a dynamic risk identification framework 
In the HHM framework for risk identification, the stakeholder perspective, the project operation stage perspective, 
and the risk loss perspective are in parallel. Based on the specific scenarios and characteristics of risk identification 
in multi-agency virtual power plants, the dynamic framework of project risk identification is constructed with the 
stakeholder perspective, the project operation stage perspective, and the risk loss perspective. Firstly, government 
departments, social capitalists, the public and other stakeholders are selected as the first level of the stakeholder 
perspective, planning, survey, design, financing, construction, operation and transfer are selected as the second 
level of the project operation stage perspective, and social risk loss, economic risk loss and environmental risk loss 
are selected as the third level of the risk loss type perspective. 

When the risk identification of the scenario is finished, the risk identification levels are rearranged. Planning, 
investigation, design, financing, construction, operation and transfer from the perspective of project operation stage 
are selected as the first level, governmental departments, social capitalists, the public and other stakeholders from 
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the perspective of stakeholders are selected as the second level, and social risk loss, economic risk loss and 
environmental risk loss from the perspective of risk loss type are selected as the third level. 

When the risk identification of the scenario is finished, the risk identification levels are ranked again. The social 
risk loss, economic risk loss and environmental risk loss from the perspective of risk loss type are selected as the 
first level, the planning, survey, design, financing, construction, operation and handover from the perspective of 
project operation stage are selected as the second level, and the governmental departments, social capitalists, the 
public and other stakeholders from the perspective of stakeholders are selected as the third level. And so on by 
analogy until all the risks are identified. The dynamic framework for risk identification of multi-stakeholder virtual 
power plants is shown in Figure 3. 
II. B. 3) Formation of a risk identification checklist 
Based on the constructed dynamic framework for risk identification of multi-agency virtual power plants, the article 
identifies a total of 65 risk factors under each risk identification scenario. However, considering the time, technology, 
economic and other constraints in the project risk management work, it is impossible to track, manage and control 
all the risk factors. Therefore, it is necessary to filter the 65 risk factors identified, so as to filter and eliminate the 
risk of a lower probability of occurrence of risk, after the occurrence of a smaller degree of impact of the risk. 

By filtering the risk factors of the multi-agency virtual power plant, the risk factors are identified and categorized 
to form a risk evaluation index system as shown in Table 1. 

Table 1: Multi-body VPP risk evaluation index system 

 Primary index Secondary index 

Multi-

body 

VPP risk 

Preparation stage (A) 

Project approval delay risk (A1) 

Financing risk (A2) 

Design risk (A3) 

Public opposition risk (A4) 

Risk of demolition of land expropriation (A5) 

Risk of bidding process (A6) 

Risk of major social events (A7) 

Construction stage (B) 

Project change risk (B1) 

Project quality risk (B2) 

Project accomplishment risk (B3) 

Cost overrun risk (B4) 

New technical risk (B5) 

Management decision risk (B6) 

Technical risk (B7) 

Risk of materials, resources, equipment and other supplies (B8) 

Operation stage (C) 

Risk of change in market demand (C1) 

Competition risk of homogeneous project (C2) 

Charging standard risk (C3) 

Operating cost overrun risk (C4) 

Risk of operating management system (C5) 

Transition stage (D) Risk of not reaching transition condition (D1) 

Persistent risk (E) 

Contract file risk (E1) 

Policy risk (E2) 

Risk of laws and rules (E3) 

Inflation risk (E4) 

Government credit risk (E5) 

Government corruption risk (E6) 

Third party delay/default risk (E7) 

Risk of responsibility misallocation (E8) 
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III. Risk assessment modeling of multi-agent virtual power plants 
III. A. Entropy weight method 
Information entropy inherits the basic properties of thermodynamic entropy [21], but by distinguishing it from the 
entropy defined in thermodynamics, which is now applied in many social fields such as computers, economic 
management and engineering risk evaluation. 

According to the principle of information theory, the entropy of a system is defined as when the system is in a 
number of different states, assuming that the probability of occurrence of each state  1, 2,iP i m  : 

 
1

ln
m

i i
i

e p p


    (1) 

Clearly, when 1
( 1, 2, )ip m

m
   , the entropy takes its maximum value when the probability of various states 

occurring is the same: 
 

max lne m  (2) 

From the formula, it can be seen that if the entropy value of an indicator e  is smaller, it means that the degree 
of variation of the indicator value is larger, and it plays a larger role in the comprehensive evaluation, and its weight 
is also larger. If the entropy value of an indicator e  is larger, it means that the degree of variation of the indicator 
value is smaller, the role in the comprehensive evaluation is smaller, and its weight is also smaller. 

 
III. B. Gray correlation 
III. B. 1) Concepts 
Gray correlation is a part of gray theory [22], which is based on the sample data of each factor and describes the 
connection between factors through gray correlation. The quantitative model of gray correlation analysis is defined 
on the basis of four axioms of gray correlation the four axioms of gray correlation are normality, wholeness, even 
pair symmetry, and proximity. 

(1) Normality: 
    0 0 00 , 1, , 1i i iX X X X X X       (3) 

(2) Holistic: 
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(3) Even pair symmetry: 
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(4) Proximity: 
  0 0( ) ( ) , rg(Smaller Lar, e) ( )i ix k x k x k x k  (6) 

where the real  0 , iX X   is the gray correlation of 
0X   with 

iX   and  0 ( ), ( )ix k x k   is the gray correlation 

coefficient of 
iX  with 

0X  at k  the gray correlation coefficient. 

 
III. B. 2) Common analyses 
In this paper, three gray correlation methods commonly used today will be described and compared. 

(1) Dunn's correlation method 
Dunn's correlation is a measure of gray correlation based on the perspective of similarity. 
Let the reference sequence be  0 0 ( ), 1, 2, ,X x k k n    , and the compared sequence be 

 ( ), 1, 2, ,i iX x k k n    , and  1, 2, ,i m   . Then the gray correlation  0 , iX X   between 
0X   and 

iX   is 

defined as: 
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   is the discrimination coefficient, and [0,1]   , generally take 0.5. All m   sequences gray correlation 

 0 , iX X  from the largest to the smallest order to get the correlation sequential set, and use this to judge the 

sequence 
iX   and 

0X   the magnitude of the degree of correlation. The correlation method is to use the 

displacement difference  0 0 ( ) ( )i ix x k x k    reflecting the similarity of the development process or the magnitude 

between the two sequences. 
(2) Absolute correlation degree 
The steps of absolute correlation calculation are as follows: 
Step1: The original sequences  0 0 ( ), 1, 2, ,X x k k n    and  ( ), 1, 2, ,i iX x k k n    are initialized: 
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Step2: Calculate the absolute correlation between 
0x  and 

ix  as: 
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Among them: 
  (1)

0 0 0( 1) ( 1) ( ) 1,2, , ; 1, 2, ,y k y k y k k n i m          (12) 

  (1) ( 1) ( 1) ( ) 1, 2, , ; 1,2, ,i i iy k y k y k k n i m          (13) 

If the calculated   is closer to 0 then the weaker the correlation between the factors, and vice versa, the stronger 
the correlation. 

Absolute correlation has symmetry, comparability and uniqueness, which in essence utilizes the first order 
skewness 

0( ) ( ) ( ) ( ) ( 1)i i i ix k x k x k x k x k       , 
0 0 0( ) ( ) ( 1)x k x k x k     reflecting the similarity of the trend of 

the two sequential trends or the shape of the curves is more suitable for the application of the research on the 
analysis of correlation between multiple factors. Absolute correlation method does not have proximity and normality, 
and cannot scientifically define its critical value. 

(3) T  type correlation 
For discrete time series, the so-called proximity of the relative change potentials of the two curves refers to the 

magnitude of the normalized increment of the original variables between the two time series at each corresponding 
time period  1 2,3, ,k k kt t t k n     , and if in the case of 

kt , the larger the difference between the increments, 

the smaller the correlation coefficient between the two time series in the 
kt ; the smaller the difference between 

the increments, the larger the correlation coefficient. 
The correlation of two time series is defined as the weighted average of the correlation coefficients between 

kt  

in each time period, with weights of 
kt . It is calculated as follows: 
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Among these three methods, Dunn's correlation method is relatively mature, effective and small in calculation, so 
Dunn's correlation will be chosen in this paper to analyze each risk factor of multi-subject virtual power plant. 
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III. C. Entropy-weighted gray correlation-based risk assessment model 
III. C. 1) Entropy weighting method to determine the weight of each risk indicator 
The risk indicator evaluation analysis in this paper is a multi-object virtual power plant risk evaluation model 
constructed on the theoretical basis of entropy weight method and gray correlation degree. 

(1) Determination of evaluation index series 
The data obtained by taking the risk indicators as a reference sequence and assigning values to each indicator 

through expert scoring is the original data, i.e., the comparison sequence: 
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where 
ijr  denotes the result of the j  expert's score on the i  risk indicator. 

(2) Standardized processing of data 
There are two types of standardized processing, cost type and benefit type. 
The cost type (the smaller the better) formula is expressed as: 
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The efficiency-based (bigger is better) formula is expressed as: 
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(3) Determine the entropy value 
ie : 
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(4) Calculate the weight 
jw  of each indicator by information entropy: 
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III. C. 2) Comprehensive gray correlation evaluation method 
(1) Determine the ideal indicator series 

Let 
0 1 2( , ... )jY y y y  is the ideal indicator series, i.e. the reference sequence. Since the larger the score, the larger 

the risk coefficient when judging the risk indicators, the reference sequence film and television the smallest value 
among the indicators. 

(2) Indicator normalization 
Generally speaking, the evaluation indicators have different scales and orders of magnitude, so it is not possible 

to directly compare the indicators. In order to ensure the reliability of the results, the original indicators need to be 
dimensionless. The raw data can be transformed into dimensionless values according to formula (20). 

(3) Find the difference sequence, the maximum difference and the minimum difference according to 

0 0( ) ( ) ( )i ik y k x k     , 1,2, ,i m    Calculate the absolute value of the reference sequence and each of the 

remaining comparison sequences to form the following absolute value Matrix:  01 02 0, , , n   . Also find the largest 

number (maximum difference) and the smallest number (minimum difference) in the difference matrix and denote 
them as 

max  and 
min  respectively. 

(4) Calculate the correlation coefficient 
The correlation coefficient indicates the degree of geometric difference between the curves, and the magnitude 

of the difference between the curves is used to measure the degree of correlation between the factors: 

 min max
0

0 max

( )
( )i

i

k
k





  


  

 (24) 
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where   is the discrimination coefficient,   takes values within [0,1] , generally 0.5, yielding a correlation matrix 

of:  0 01 02 0, , ,i i     . 

(5) Calculate the correlation degree 
Based on the weight of each risk factor determined by the entropy weighting method  T

1 2i nw w w w   

and the correlation matrix derived in step 4, the degree of correlation is found 
0i : 

 
0 0

1

n

i i i
i

w 


  (25) 

0i  is the relative ideal evaluation benchmark correlation of each evaluation index. 

(6) Sorting by correlation 
Compare the size of the correlation degree of each factor and sort it from the largest to the smallest. 
The gray correlation of the multi-indicator evaluation object is calculated through the above steps, and then the 

correlation of each comparative sequence with the reference sequence is sorted from the largest to the smallest, 
and the smaller the correlation, the smaller the average distance between the comparative sequence and the 
reference sequence, and the smaller the risk coefficient thereof. 

Table 2: Feature weight, entropy redundancy and index weight calculation results 

Index Entropy Entropy redundancy Weight 

Project approval delay risk (A1) 0.9922 0.0097 0.0367 

Financing risk (A2) 0.9912 0.0083 0.0265 

Design risk (A3) 0.9915 0.0066 0.0275 

Public opposition risk (A4) 0.9912 0.0075 0.0275 

Risk of demolition of land expropriation (A5) 0.9929 0.0081 0.0259 

Risk of bidding process (A6) 0.9907 0.0061 0.0385 

Risk of major social events (A7) 0.9938 0.0069 0.0384 

Project change risk (B1) 0.9909 0.0106 0.0435 

Project quality risk (B2) 0.9919 0.0055 0.0285 

Project accomplishment risk (B3) 0.9916 0.0089 0.0315 

Cost overrun risk (B4) 0.9941 0.0086 0.0332 

New technical risk (B5) 0.9939 0.0065 0.0372 

Management decision risk (B6) 0.9905 0.0067 0.0418 

Technical risk (B7) 0.9895 0.0056 0.0366 

Risk of materials, resources, equipment and other supplies (B8) 0.9935 0.0069 0.0245 

Risk of change in market demand (C1) 0.9909 0.0103 0.0377 

Competition risk of homogeneous project (C2) 0.9898 0.0062 0.0354 

Charging standard risk (C3) 0.9909 0.0076 0.0226 

Operating cost overrun risk (C4) 0.9925 0.0105 0.0388 

Risk of operating management system (C5) 0.9928 0.0094 0.0415 

Risk of not reaching transition condition (D1) 0.9905 0.0104 0.0385 

Contract file risk (E1) 0.9915 0.0077 0.0468 

Policy risk (E2) 0.9899 0.0058 0.0285 

Risk of laws and rules (E3) 0.9926 0.0067 0.0436 

Inflation risk (E4) 0.9943 0.0055 0.0364 

Government credit risk (E5) 0.9899 0.0096 0.0299 

Government corruption risk (E6) 0.9924 0.0066 0.0324 

Third party delay/default risk (E7) 0.9939 0.0082 0.0417 

Risk of responsibility misallocation (E8) 0.9899 0.0104 0.0284 

 

IV. Case Studies 
In this paper, the multi-agent virtual power plant A project is selected as a case study for analysis. 
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IV. A. Determination of weights 
Adopting the risk assessment model of multi-subject virtual power plant established in this paper, according to the 
data obtained from this volume, we use EXCEL to calculate the characteristic weight, entropy redundancy and 
indicator weight of each indicator, and the calculation results are shown in Table 2. 

Based on the additivity of entropy and gray correlation, the weights and correlations of risk assessment indicators 
are calculated as shown in Table 3. The results of the weights in the first-level indicators are, in descending order, 
the persistent risk (0.2877), the construction phase (0.2768), the preparation phase (0.2210), the operation phase 
(0.1760), and the handover phase (0.0385). This indicates that the persistent risk factor has the greatest impact on 
project risk, the construction phase is greater, the preparation phase is next, the operation phase is average, and 
the handover phase is the smallest. 

Table 3: Risk assessment index weight and correlation summary 

Primary index Weight Correlation Secondary index 
Single 

weight 
Total weight Correlation Rank 

A 0.2210 0.823 

A1 0.1661 0.0367 0.3649 29 

A2 0.1199 0.0265 0.7547 3 

A3 0.1244 0.0275 0.8158 2 

A4 0.1244 0.0275 0.6951 6 

A5 0.1172 0.0259 0.6979 4 

A6 0.1742 0.0385 0.6975 5 

A7 0.1738 0.0384 0.5054 20 

B 0.2768 0.668 

B1 0.1572 0.0435 0.6397 10 

B2 0.1030 0.0285 0.6584 9 

B3 0.1138 0.0315 0.5232 18 

B4 0.1199 0.0332 0.6351 11 

B5 0.1345 0.0372 0.3858 27 

B6 0.1510 0.0418 0.5851 15 

B7 0.1322 0.0366 0.5242 17 

B8 0.0885 0.0245 0.4096 22 

C 0.1760 0.893 

C1 0.2142 0.0377 0.3978 24 

C2 0.2011 0.0354 0.6601 8 

C3 0.1284 0.0226 0.6108 14 

C4 0.2205 0.0388 0.3936 25 

C5 0.2358 0.0415 0.5188 19 

D 0.0385 0.635 D1 0.0385 0.0385 0.3844 28 

E 0.2877 0.732 

E1 0.1627 0.0468 0.6293 12 

E2 0.0991 0.0285 0.4287 21 

E3 0.1516 0.0436 0.6841 7 

E4 0.1265 0.0364 0.4039 23 

E5 0.1039 0.0299 0.5649 16 

E6 0.1126 0.0324 0.8204 1 

E7 0.1449 0.0417 0.3904 26 

E8 0.0987 0.0284 0.6274 13 

 
IV. B. Determination of classical and sectional domains 
According to the multi-subject virtual power plant operation risk evaluation index system, the classic domain of the 
index system is determined by financial statistics, government filed data and evaluation methods and parameters 
as a reference to get the section domains of each dimension of risk evaluation, and the classic domains and section 
domains of the multi-subject virtual power plant operation risk indexes are shown in Table 4. 
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Table 4: Classical domain and section of risk indicators for multi-body VPP 

Index Level 1 Level 2 Level 3 Level 4 Level 5 Section 

A1 <0,1.5> <1.5,2.5> <2.5,3.5> <3.5,4.5> <4.5,6> <0,6> 

A2 <1,1.5> <0.9,1> <0.8,0.9> <0.7,0.8> <0.4,0.7> <0.4,1.5> 

A3 <8,10> <7,8> <5,7> <3,5> <0,3> <0,10> 

A4 <0,1.5> <1.5,2.5> <2.5,3.5> <3.5,4.5> <4.5,6> <0,6> 

A5 <0,1.5> <1.5,2.5> <2.5,3.5> <3.5,4.5> <4.5,6> <0,6> 

A6 <5,6> <4,5> <3,4> <2,3> <0,2> <0,6> 

A7 <0,1.5> <1.5,2.5> <2.5,3.5> <3.5,4.5> <4.5,6> <0,6> 

B1 <0,5> <5,6> <6,7> <7,8> <8,10> <0,10> 

B2 <1.5,1.6> <1.4,1.5> <1.3,1.2> <1.1,1.2> <1,1.1> <0.9,1.1> 

B3 <1.5,1.6> <1.4,1.5> <1.3,1.2> <1.1,1.2> <1,1.1> <0.9,1.1> 

B4 <1,1.1> <1.1,1.2> <1.2,1.3> <1.3,1.4> <1.4,1.5> <.5,1.6> 

B5 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

B6 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

B7 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

B8 <5,6> <4,5> <3,4> <2,3> <0,2> <0,6> 

C1 <0.5,0.8> <0.8,1.0> <1.1,1.2> <1.2,1.3> <1.3,1.5> <0.5,1.5> 

C2 <0,1.5> <1.5,2.5> <2.5,3.5> <3.5,4.5> <4.5,6> <0,6> 

C3 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

C4 <1,1.1> <1.1,1.2> <1.2,1.3> <1.3,1.4> <1.4,1.5> <.5,1.6> 

C5 <1,1.2> <0.8,1> <0.6,0.8> <0.4,0.6> <0.2,0.4> <0.2,1.2> 

D1 <0,1.5> <1.5,2.5> <2.5,3.5> <3.5,4.5> <4.5,6> <0,6> 

E1 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

E2 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

E3 <8,10> <6,8> <4,6> <2,4> <0,2> <0,10> 

E4 <0,0.5> <0.5,0.8> <0.8,1> <1,1.2> <1.2,1.4> <0,1.4> 

E5 <8,10> <7,8> <5,7> <3,5> <0,3> <0,10> 

E6 <1.5,5> <5,6> <6,7> <7,8> <8,10> <1.5,10> 

E7 <1.5,5> <5,6> <6,7> <7,8> <8,10> <1.5,10> 

E8 <1.5,5> <5,6> <6,7> <7,8> <8,10> <1.5,10> 

 
IV. C. Risk level determination and assessment 
In order to calculate the results of the risk assessment, it is necessary to determine the risk level of the operation of 
the multi-body virtual power plant of Project A. According to the expert's suggestion, this paper divides the risk from 
low to high into five levels, and the risk level division is shown in Table 5. 

Table 5: Classification of operation risk levels for multi-body VPP 

Risk level Risk description Risk acceptability Range Risk control strategy 

Ⅰ Extremely low risk Controllable (0,2] The risk is in control 

Ⅱ Relatively low risk Acceptable (2,4] Take measures to reduce risk 

Ⅲ Normal risk Preventable acceptance (4,6] Take measures to prevent risk 

Ⅳ Relatively high risk Hard to accept (6,8] 
There are still higher risks to develop 

safeguards 

Ⅴ Extremely high risk Unacceptable (8,10] The project should be stopped immediately 

 
Following the multi-object virtual power plant risk assessment process, professionals in the field of electric power 

as well as relevant technical managers were convened to score the operational risk evaluation index system of 
Project A, and the average score was adopted as the metric value of the assessment object. Based on the weight 
data determined by the entropy weighting method described in Table 2, the following calculation results were 
obtained as shown in Table 6. 

In response to the calculation results in Table 6, the assessment conclusion can be considered that the evaluation 
value of each risk level of Project A's multi-subject virtual power plant operation is -6.339 (Ⅰ), 2.206 (Ⅱ), -2.155 
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(Ⅲ), -11.387 (Ⅳ), and -14.095 (Ⅴ), then it is determined that the risk level of Project A's multi-subject virtual power 
plant operation is evaluated as Level II, which is a lower risk. 

Table 6: Evaluation correlation data 

Index Correlation Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

A1 4.6 -0.192 -0.222 0.196 -0.266 -0.331 

A2 4.3 -0.377 -0.242 0.192 -0.258 -0.087 

A3 5.1 -0.095 -0.224 0.558 -0.126 -0.412 

A4 4.7 -0.182 -0.137 0.189 -0.564 -0.312 

A5 4.4 -0.104 -0.288 0.087 -0.298 -0.221 

A6 4.8 -0.198 -0.128 0.525 -0.568 -0.483 

A7 5.2 -0.358 -0.078 0.201 -0.469 -0.831 

A  -0.128 0.111 0.166 -0.385 -0.444 

B1 4.4 -0.090 0.069 -0.178 -0.058 -0.688 

B2 4.0 0.346 0.247 -0.476 -0.263 -0.229 

B3 3.7 -0.326 0.256 0.068 -0.134 -0.356 

B4 4.5 -0.121 0.091 0.496 -0.279 -0.815 

B5 4.2 -0.103 -0.193 -0.133 -0.114 -0.784 

B6 4.6 -0.067 0.185 0.371 -0.157 -0.339 

B7 3.8 -0.189 0.195 -0.173 -0.672 -0.781 

B8 3.6 -0.068 0.215 -0.656 -0.486 -0.114 

B  -0.239 0.094 0.486 -0.241 -0.614 

C1 2.5 0.268 -0.166 -0.108 -0.126 -0.623 

C2 1.8 -0.377 0.034 0.157 -0.573 -0.758 

C3 2.9 -0.063 0.127 -0.159 -0.127 -0.459 

C4 4.1 -0.355 0.018 -0.252 -0.288 -0.561 

C5 2.6 -0.386 0.246 0.468 -0.049 -0.417 

C  -0.369 0.220 -0.485 -0.262 -0.126 

D1 3.6 -0.366 0.285 -0.404 -0.377 -0.253 

D  -0.366 0.285 0.701 -0.129 -0.121 

E1 3.4 -0.191 0.123 -0.497 -0.499 -0.714 

E2 3.2 -0.183 0.151 -0.236 -0.392 -0.172 

E3 3.5 -0.269 0.050 -0.466 -0.189 -0.308 

E4 2.9 -0.201 0.188 -0.177 -0.428 -0.196 

E5 3.7 -0.216 0.117 -0.523 -0.617 -0.066 

E6 3.5 -0.245 0.012 -0.620 -0.495 -0.149 

E7 3.3 -0.152 0.198 -0.629 -0.352 -0.575 

E8 3.0 -0.113 0.185 -0.545 -0.453 -0.364 

E  -0.264 0.182 -0.299 -0.693 -0.392 

Integrated correlation  -6.339 2.206 -2.155 -11.387 -14.095 

 

V. Conclusion 
Through the study of multi-object virtual power plant, construct the dynamic identification framework of risk 
identification to identify the risks in the operation process of virtual power plant, and screen out the list of operational 
risks, and construct the multi-object virtual power plant operational risk assessment index system. The risk 
assessment model is established by entropy weight-gray correlation method. 

The weight results in the first-level indexes are, in descending order: persistent risk, construction phase, 
preparation phase, operation phase, and handover phase, and their weights are 0.2877, 0.2768, 0.2210, 0.1760, 
and 0.0385, respectively, which indicates that the persistent risk factors during the operation period have the 
greatest impact on the risk of multi-body virtual power plants, and the relevant departments should pay attention to 
them. The case study of multi-subject virtual power plant A, its operational risk Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ grade evaluation 
value were -6.339, 2.206, -2.155, -11.387, -14.095, multi-subject virtual power plant A's operational risk level is 
assessed as Ⅱ, is a lower risk. 
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