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Abstract This paper proposes an automatic layout method for high-rise residential buildings based on deep 
deterministic policy gradient descent, combining deep reinforcement learning techniques. Building regulations such 
as land use boundaries, sunlight requirements, and building spacing—which are key considerations in residential 
area layout—are extracted and formulated into computer-understandable rules. Multiple constraints and 
optimization objectives are unified within a single framework. Subsequently, based on the actual scenario, the state 
space, action space, and reward function are designed to perform automatic optimization of building layout. To 
efficiently generate optimal layout schemes for residential areas, a generation process based on conditional 
generative adversarial networks (CGAN) is designed to generate building functional zoning schemes and conduct 
validation and evaluation. The results indicate that the automatically generated urban spatial building layout design 
diagrams under this algorithm comply with regulations. Furthermore, this study found that as the amount of data 
increases, the number of times the model achieves optimal training results decreases significantly. For example, 
when the data volume is 800, the number of training iterations required for the model to achieve optimal results is 
reduced by over 50% compared to when the data volume is 200, and the accuracy of the discriminator is also higher 
and more stable under these conditions. This indicates that the building layout schemes designed in this study meet 
planning requirements and provide an efficient and intelligent solution for urban spatial planning. 
 
Index Terms deep reinforcement learning, CGAN, building layout, intelligent computational model 

I. Introduction 
Urban spatial planning refers to the systematic layout and design of urban space to achieve the goals of sustainable 
urban development and improved quality of life for residents [1], [2]. Among these, building layout and functional 
zoning are key components of urban planning [3]. 

Building layout refers to the arrangement and distribution of buildings across different areas of a city. Its purpose 
is to optimize the efficiency of space utilization while maintaining the overall structure and macro-level layout of the 
city, thereby enhancing the quality of life for its inhabitants [4]-[7]. Building layout is primarily divided into central 
business districts, residential areas, industrial zones, and educational districts [8]. Functional zoning, on the other 
hand, involves dividing and managing the city based on different functional requirements [9]. Through reasonable 
functional zoning, the city's organizational structure and efficiency can be improved, and resources can be allocated 
more effectively [10]. Functional zoning is primarily divided into administrative districts and commercial zones, 
among others [11]. Traditional urban spatial planning is proposed by humans and suffers from issues such as low 
efficiency and strong subjectivity, which are detrimental to the sustainable development of urban planning [12], [13]. 

In recent years, artificial intelligence technology has seen rapid development, and numerous intelligent computing 
methods have been proposed, including genetic algorithms, evolutionary algorithms, heuristic algorithms, particle 
swarm algorithms, hybrid intelligent algorithms, immune algorithms, neural networks, and machine learning [14]-
[17]. The development of these intelligent algorithms has played a crucial role in advancing the optimization of 
building layout and functional zoning in urban spatial planning, and intelligent computing-based urban planning 
optimization models have gradually become a hot topic in the field of urban planning [18]-[21]. Intelligent computing 
models can assess the impact of different building layout and functional zoning schemes on economic development, 
including industrial layout and commercial facilities, and can be used to evaluate the optimization potential of 
existing layouts and propose optimization recommendations [22]-[25]. 

Literature [26] proposes a design optimization tool supporting performance-based architectural design, the Multi-
Objective Architectural Design Explorer (MADE), along with a design exploration strategy, demonstrating its 
effectiveness in aspects such as architectural spatial layout and energy performance. Literature [27] emphasizes 
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the important role of urban spatial form analysis and points out the shortcomings of traditional research. By 
simplifying urban building forms, extracting building form templates, and establishing an association between 
building forms and fractal dimensions, the study provides references for urban spatial form optimization. Literature 
[28] outlines computational methods for architectural spatial design and analyzes progress in areas such as user 
preferences and environmental data integration, emphasizing the shift from rule-based methods to data-driven 
approaches. Literature [29] proposes layout parameterization methods based on interdisciplinary architectural 
layout research and introduces various layout types, revealing that architectural layout has a significant influence 
on the average wind speed in the surrounding space. The above studies reveal that methods such as multi-objective 
architectural design explorers and layout parameterization can provide references for the rational layout of urban 
architecture by proposing their application in urban architectural layout. 
Literature [30] points out the shortcomings of current urban functional zoning research and constructs an 
optimization framework for urban main functional zoning based on the “element-space-function” analytical logic, 
revealing that main functional zoning optimization methods provide differentiated strategies and guidance for future 
regional development. Literature [31] emphasizes the importance of constructing an analytical framework for 
optimizing urban spatial structure and function. It applies the minimum cumulative resistance model to delineate 
ecological suitability zones in Beijing, verifying that the proposed framework facilitates the optimization of urban 
spatial structure and function, and provides insights and technical support for the rational layout of urban spatial 
structure. Literature [32] points out the limitations of traditional urban zoning and spatial analysis methods, 
proposing a framework that combines spatial data analysis with advanced optimization algorithms to achieve 
efficient urban zoning. It verifies that this framework can provide accurate predictions and optimization solutions for 
urban spatial allocation. Literature [33] analyzes the similarities and differences between urban master planning 
and main functional zones based on the consistency of reality and objectives. The results indicate that the two share 
a degree of unity. From the perspectives of spatial boundary theory, functional positioning, and other aspects, the 
study validates the nature and content of main functional zones and urban master planning control zones, with the 
aim of promoting the scientific development of urban planning. Literature [34] examines the optimization of 
ecological service functions and planning control in land-use planning based on ecological protection and restoration. 
Considering the direct economic benefits of ecosystems, it constructs an ecological space evaluation scheme from 
an ecosystem service perspective, providing a reference for land-use planning. Literature [35] emphasizes the 
importance of reasonable division of urban functional zones for urban development. Using OpenStreetMap and 
point-of-interest data, combined with urban construction land classification standards, it identifies urban functional 
zones to reveal the impact of different urban areas on the urban thermal environment, with public service facility 
land having the greatest impact. The above studies demonstrate the importance of reasonable urban functional 
zoning for sustainable urban development. By proposing methods such as an optimized framework for urban main 
functional zoning and an analytical framework for urban spatial structure and functional optimization, these studies 
validate that such methods are conducive to achieving efficient urban functional zoning. 

This paper first defines reinforcement learning and the Markov decision process, then introduces the overall 
framework for building automatic layout design, and provides constraint design, state space, and reward function 
design to construct a building automatic layout model that meets multiple constraints. Then, deep learning 
technology is applied to the automatic generation of residential area layout design schemes, proposing a design 
method for generating residential area functional zoning schemes based on CGAN. Considering the differences in 
solar radiation across regions, dataset samples are selected to analyze the effectiveness of building layout 
automatic generation based on the DDPG algorithm. Finally, the optimization effects of residential group layout and 
functional zones in urban spatial planning are analyzed. 

II. Automatic layout model for urban buildings based on reinforcement learning 
II. A. Reinforcement Learning 
II. A. 1) Introduction to Reinforcement Learning 
Reinforcement learning is a computational method in which machines interact with their environment to achieve 
specific goals. In the reinforcement learning framework, an agent is in a specific state and selects an action based 
on its current strategy. The environment responds to this action, causing a change in state and providing the agent 
with a reward signal. This reward signal is feedback on the action taken by the agent, aimed at guiding the agent 
on how to adjust its future behavior. The agent needs to continuously learn and adjust its strategy to improve the 
effectiveness of its decisions. 

The core elements of reinforcement learning are as follows: 
(1) State s  is a representation variable generated based on the external environment. Depending on the actual 

situation, it may be a continuous or discrete variable, and the state space is S . 
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(2) Action a  is a representation variable of the intelligent agent's behavior. Depending on the actual situation, it 
may be a continuous or discrete variable, and the action space is A . 

(3) The primary role of the policy ( | )a s  is to analyze the current environmental conditions and make decisions 

regarding the subsequent action a ; 
(4) The state transition probability ( | , )p s s a  is the probability that the environment transitions to s  after action 

a  is executed; 
(5) The immediate reward ( , , )r s a s  is a scalar function that represents the process of rewarding the environment 

based on the outcome of action a  after it is executed. 
The optimization objectives of reinforcement learning and supervised learning are similar, both aiming to optimize 

the expected value of a score under a given data distribution. For general supervised learning tasks, our goal is to 
find an optimal model function that minimizes a given loss function on the training dataset. In contrast, the ultimate 
optimization objective of reinforcement learning tasks is to maximize the value of the agent's policy during interaction 
with the dynamic environment: 

 ( , )~arg min [ ( , )]S A R S A
  E  (1) 

where   is the strategy to be learned, S  is the current state of the environment, A  is the action taken by the 
intelligent agent, and ( , )R S A  is the reward obtained from action A  in state S . 

 
II. A. 2) Markov Decision Process 
The concept of Markov decision processes [36] originated from Markov chains. Markov chains are used to describe 
the state transition rules in stochastic processes. The conditional probability distribution of the current state 
transitioning to the future state is only related to the current state and is not affected by past states: 

 
1 1 1( | ) ( | , , )t t t tP S S P S S S    (2) 

In the 
tS -hour random process, the random phenomenon at a certain time t , 

1( , , )tS S  is known historical 

information, ( 1| )t tP S S  is the probability that the value at time t  is 
tS  and the state at the next time is 

1tS 
. 

The core of reinforcement learning lies in learning the optimal strategy through interaction with the environment, 
and the Markov decision process (MDP) provides the theoretical foundation for this learning process. The first step 
in solving a practical problem using reinforcement learning is to convert the practical problem into an MDP, which 
requires clarifying the following key components: , , , ,P r  S A , where: 

S  is the set of system environment states; 

A  is the set of actions that the intelligent agent can take in the environment; 

  is the discount factor; 

r  is the reward function ( , )r s a , representing the reward that the agent can obtain when executing action a  in 

state s ; P  is the state transition function ( | , )P s s a , representing the probability of the agent reaching state s  

after executing action a  in state s . 
In addition to the two main components—the environment and the agent—a Markov decision process requires 

three additional elements: the agent's policy, the state value function based on the policy, and the action value 
function obtained by executing the policy. 

The agent's policy   is the rule or model for selecting actions in each state. The policy ( | ) ( | )t ta s P A a S s     
represents the probability of taking action a  given the input state s . 

The state value function ( )V s  represents the expected cumulative reward that the agent would receive in state 

s  by following a certain policy   in the Markov decision process. That is: 
 ( ) [ | ]t tV s G S s

 E  (3) 

The action value function ( , )Q s a  evaluates the expected cumulative reward of taking action a  in state s  

according to policy  . That is: 
 ( , ) [ | , ]t t tQ s a G S s A a

  E  (4) 

The relationship between the state value function and the action value function is as follows: 

 ( ) ( | ) ( , )
a A

V s a s Q s a 


  (5) 

When using strategy  , the value of taking action a  in state s  is: 

 ( , ) ( , ) ( | , ) ( )
s S

Q s a r s a P s s a V s 


 



    (6) 
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II. A. 3) Strategy optimization methods based on deep reinforcement learning 
Deep Reinforcement Learning combines the neural network technology of deep learning with the policy optimization 
methods of reinforcement learning. It uses neural networks to model the behavior strategies of agents, with the core 
idea being to learn optimal behavior strategies through extensive data interaction. Deep Reinforcement Learning 
applies deep learning to reinforcement learning, particularly in problems with large state spaces or action spaces. 
By using deep neural networks, DRL can handle high-dimensional inputs such as images or text to approximate 
optimal policies or value functions. The following are some key features of DRL: Function approximation: Using 
neural networks to approximate value functions (such as Q-values) or policy functions, thereby reducing the need 
for manual feature engineering. Experience replay: Breaking the correlation between data by storing and reusing 
past experiences to enhance learning efficiency. Target network: Introduces two networks, one for generating target 
values and another for updates, to improve stability and convergence. Currently, deep reinforcement learning 
algorithms are primarily divided into two categories: value-based deep reinforcement learning algorithms and policy 
gradient-based deep reinforcement learning algorithms. 
 
II. B. Building Automatic Layout Model Based on Reinforcement Learning 
II. B. 1) Overall Framework Design 
A multi-scenario building automatic layout method based on deep reinforcement learning. After initially determining 
the building height and number of buildings based on the floor area ratio of the residential area, the method can 
input the buildings into the model as an initial layout by randomly or empirically placing them. Each building is 
treated as an agent. At step t  , the observation of the environment is 

ts  , and the current reward value 
ir   is 

calculated based on the set constraints. The current environment, action strategy, reward value, and new 
environment are packaged into a tuple 

1( , , , )i i i is a r s 
 and stored in the experience pool. This process continuously 

accumulates experience from different layouts, which is used to train the deep reinforcement learning network for 
self-learning and self-optimization. Gradually, the model identifies building layouts that satisfy the constraints and 
achieve optimal building sunlight exposure duration, thereby achieving a building layout automatic design model 
that meets multiple constraints and is applicable to various scenarios. 
 
II. B. 2) State Space and Action Space Design 
The state space s  of intelligent agent observation is defined as: 

 [ , , , ]x y i is v v x x y y    (7) 

In the equation: ,x yv v   represent the current agent's velocity along the x   and y   axes; ,i ix y   represent the 

current agent's position information; 
1{ , , }Nx x x    and 

1{ , , }Ny y y    represent the position information of all 

buildings in the scene. 
The movement of the intelligent agent is a deterministic behavior, and the action space a  of the intelligent agent 

is defined as: 
 [ , , , , ]x x y ya Noop a a a a     (8) 

In the equation: Noop is unused, representing no operation; ,x xa a   and ,y ya a   represent the acceleration of the 
current intelligent agent in the positive and negative directions of the x  and y  axes, respectively. 

The default period of the environment is 0.1T s . Thus, the updated velocities ,x yv v   of the intelligent agent can 
be calculated as: 

 ( ) *x x x xv v a a T      (9) 

 ( ) *y y y yv v a a T      (10) 

The updated position coordinates of the intelligent body are: 
 *xx x v T     (11) 

 *yy y v T     (12) 

When an intelligent agent moves and the coordinates of a building unit change, the state space observed by the 
intelligent agent also changes accordingly. 

 
II. B. 3) Constraint Conditions and Reward Function Design 
(1) Constraints imposed by the land use boundary line 

The land use boundary line is the boundary line of the land use rights area. The constraints imposed by the land 
use boundary line are expressed as follows: 

 1

1

0, 0

10000, 0landuse

N
C

N


  

 (13) 
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(2) Fire separation distance constraints 
To determine whether the building layout complies with fire separation distance regulations, the constraints are 

expressed as follows: 

 
0, 0

, 0
fire

fire
fire fire

A
C

A A

  
 (14) 

The fire separation distance constraint value fireC  defined by the above design can be used to constrain collision 

issues between buildings. If a collision occurs between buildings, a penalty value of fireA  will be applied. 

(3) Constraints and optimization of sunlight exposure duration 
The two vertices and the center point of the southbound boundary line of the building unit are used as sunlight 

exposure test points. The calculation method for the duration of sunlight exposure test point obstruction is as follows: 
(i) Between 8:00 and 11:00, the shadow length L  and shadow azimuth A  at the corresponding time. The lower 

left vertex ( , )ld ld ldP x y   of building n   is obtained by the following formula: the vertex ( , )ld ld ldS x y   

corresponding to the shadow of the lower left vertex, that is: 
 cos(3 / 2 * /180)*ld ld sx x A L      (15) 

 sin(3 / 2 * /180)*Id ld sy y A L      (16) 

(ii) At time 12:00, calculate the vertices ,lu ruS S  corresponding to the shadows of the upper left vertex 
luP  and 

upper right vertex 
ruP  of building n  according to equations (15) and (16). At this time, point , , ,lu lu ru ruP S S P  is the 

vertex sequentially forming the polygonal area, which is the shadow area n
jS  of building n  at time j , which is 

12:00. 
(iii) From 13:00 to 16:00 at the moment, calculate the lower right vertex 

ndP , the upper right vertex 
ndP , and the 

upper left vertex 
luP   of building n   according to equations (15) and (16) to determine the three vertices 

corresponding to the three vertices , ,rd ru luS S S  of the shadow. At this point, the polygonal area formed sequentially 

with point , , , ,lu lu ru rd ruP S S S P  as the vertex is the shadow area n
jS  of building n  at time j , which is 13:00 to 16:00. 

(4) Additional constraints for multiple scenarios 
Under the automatic layout optimization of buildings in complex scenarios, the sum of the building areas 

overlapping with the forbidden range is determined to be forbidA , and its constraints are expressed as follows: 

 
0, 0

, 0
forbid

addition
forbid forbid

A
C

A A

  
 (17) 

(5) Reward function design 
Add up all the results, and when the total constraint condition value 

allC  is 0, a reasonable high-rise residential 
building layout plan can be output: 

 all sunshine fire landuse additionC C C C C     (18) 

In the design of the model's reward function 
tr , the total duration of shading of the sunlight test points for buildings 

awaiting demolition within the plot 
shadowL  is included, i.e.: 

 t sunshine fire landuse addition shadowr C C C C L      (19) 

II. B. 4) Deep Deterministic Policy Gradient Algorithm 
The continuous action values, state space values, and reward values of a building moving in the environment are 
input into the deep deterministic policy gradient (DDPG) algorithm [37]. The specific process of the algorithm is as 
follows: 

1) The parameters of the actor and critic in the main network are randomly initialized as 

, Q   , the Actor obtains the mapping from state to action ( | )s    , and the Critic obtains the Q-value 

( , | )QQ s a   

2) Assign the parameters of the main network to the target network for parameter initialization, , Q Q    
 

  , 

and initialize the experience pool at the same time. 
3) Initialize the layout state 

1s . The Actor of the main network selects action 
ta  for exploration based on the 

current policy   plus Gaussian perturbation 
tN : 

 ( | )t ta s N    (20) 

4) After executing action 
ta , the corresponding reward 

tr  and the next state 
1ts 
 are obtained, and the tuple 

1( , , , )t t t ts a r s 
 as a sampling value and store it in the experience pool as the dataset for training the main network. 
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5) Randomly sample N sample data points 
1( , , , )t t t ts a r s 

 from the experience pool, which serve as a mini-batch 
of training data for the main network. The current Q  value is estimated using the Bellman equation: 

 
1 1( , ( | ) | )Q

i i i iy Qr s s   
  

    (21) 

In the formula:    represents the discount rate, which indicates the degree of influence of estimated future 
rewards on current decisions. If 0  , then no future value is considered; if 1  , then future value does not decay 
over time. 

6) Calculate the loss function L  by taking the difference between the estimated value of Q and the actual value, 
and use gradient descent to update the Critic network: 

 21
( ( , | ))Q

i i i
i

L y Q s a
N

   (22) 

7) Update the Actor network using the strategy gradient method: 

 0
, ( )

1
( ) ( , | ) ( | ) ||

i i ia s s a s s
i

J Q s a s
N

 


 
      ▽  (23) 

8) After several iterations, assign the parameters of the main network to the target network and update the target 
network parameters: 

 
(1 )

(1 )

Q Q Q

  

   

   

 

 

   


  
 (24) 

II. C. Analysis of the automatic generation of building layouts based on the DDPG algorithm 
This paper sets up an experimental scenario for a site requiring solar optimization, which includes multi-story 
buildings to be arranged, existing buildings, and a simulated surrounding environment outside the site. After 
designing the model, experiments are conducted. In the state space, buildings are represented by two coordinate 
points, with one point set at the center of the building's north-south axis. The experiment involves six buildings to 
be arranged. Initially, the initial arrangement coordinates of the six buildings are input into the model, along with 
their initial layout states. The initial arrangement of the multi-story buildings on the site is shown in Figure 1. After 
the six buildings are arranged to satisfy the solar access constraints, the building coordinates and corresponding 
visualization experimental results are obtained. 

 

Figure 1: The initial layout of multi-storey buildings in the site 

The optimized building coordinates for multi-story buildings are shown in Table 1. The visualization results of the 
multi-story building solar access optimization scheme are shown in Figure 2, where (a) to (e) represent the 
visualization results of optimization schemes 1 to 5, respectively. In all experimental results, after solar radiation 
calculations, each multi-story building to be arranged within the site meets the minimum solar radiation constraints. 
In the optimized schemes obtained based on solar radiation constraints, the selection of the scheme is made by 
professionals in the architectural field. 
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Table 1: Multi-layer buildings are optimized after the sun is optimized 

Optimization plan X-axis Y-axis 

Multi-layer building sunshine optimization scheme 1 coordinate 

0.4482 0.3353 

-0.0906 0.3069 

-0.5492 0.213 

0.0992 -0.1654 

-0.5044 -0.3125 

-0.0089 -0.6092 

Multi-layer building sunshine optimization scheme 2 coordinate 

0.5827 0.4648 

-0.0065 0.4625 

-0.5554 0.2752 

0.1857 -0.1589 

-0.4873 -0.1316 

-0.3391 -0.497 

Multi-layer building sunshine optimization scheme 3 coordinate 

0.5233 0.3127 

-0.059 0.2258 

-0.5809 0.4834 

0.5694 -0.2259 

-0.5522 -0.3241 

0.0359 -0.5935 

Multi-layer building sunshine optimization scheme 4 coordinate 

0.4866 0.2217 

-0.0506 0.1364 

-0.5708 0.3402 

0.5619 -0.1911 

-0.5535 -0.247 

0.1513 -0.6031 

Multi-layer building sunshine optimization scheme 5 coordinate 

0.5304 0.4519 

0.0189 0.4344 

-0.4742 0.4455 

0.2059 -0.0904 

-0.5944 -0.3929 

-0.1006 -0.6008 

 
II. C. 1) Training Data Set Creation 
Three different types of training datasets were created for comparison: Mode A dataset: residential area contour 
images (color block diagram) and master plan of the strong layout scheme (figure-ground relationship diagram); 
Mode B dataset: residential area contour images (contour lines) and master plan diagrams of the forced layout 
scheme (figure-ground relationship diagram); Mode C dataset: residential area contour images (color block 
diagrams) and master plan diagrams of the forced layout scheme (satellite images). Each dataset sample in these 
modes represents the corresponding relationship between the residential area contours and the master plan 
diagrams. 

Different mode datasets were used to train the network model. After training, images were selected from the test 
set for evaluation. The generated images were comprehensively evaluated based on clarity, realism, and feasibility, 
and the mode with better generated image results was selected for subsequent training dataset creation. For 
evaluating the realism of generated images, the Image Structure Similarity Index (SSIM) algorithm was applied to 
calculate the similarity between the real image and the image generated by the network model. This study 
categorizes major cities nationwide into three types. Residential areas in major cities located in the mid-latitude 
region (latitude range 30°N to 38°N) were selected as training dataset samples, totaling 11 cities. The selected 
residential area samples in the dataset have an area range of 15,300 to 154,100 m², with buildings predominantly 
arranged in a grid-like layout, and some combining grid-like and perimeter-style layouts. 

The original data for the training dataset was obtained from city shapefile format files on the CSDN website. The 
open-source geographic information tool QGIS was used to read the city shapefile format files. Based on the 
correspondence between building location attributes and floor information, residential areas were classified, and 
samples of each residential area category were screened according to floor area ratio. Floor area ratio is an 
important indicator reflecting the intensity of three-dimensional land development. Low-rise residential areas with a 
FAR > 0.5 were defined as low-rise high-density residential areas, and multi-story residential areas with a FAR 
between 1.2 and 1.6 were defined as multi-story high-density residential areas. The study selected high-density 
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residential area samples with a FAR > 0.5 for low-rise residential areas, a FAR > 1.5 for multi-story residential areas, 
and a FAR > 2.5 for high-rise residential areas to create the training dataset. 

  

(a) The visual results of optimization plan 1 (b) The visual results of optimization plan 2 

  

(c) The visual results of optimization plan 3 (d) The visual results of optimization plan 4 

 

(e) The visual results of optimization plan 5 

Figure 2: Visualization of the optimization scheme of multi-layer buildings 
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III. Analysis of the effectiveness of urban building functional zoning optimization based 
on CGAN 

III. A. Design of residential area forced drainage schemes based on CGAN 
The design process for generating a forced drainage plan for residential areas based on CGAN is shown in Figure 
3. Taking an actual residential area plot as an example, its contour image is used as the model input to generate a 
forced drainage design plan. In the parametric modeling tool, the geometric model of the residential area buildings 
is constructed based on the correspondence between the pixel gray values and the number of layers in the 
generated forced drainage design plan. The geometric model of the residential area buildings is then subjected to 
a solar radiation simulation analysis to validate and evaluate the generated plan. 

Production of the 
training dataset

Construction of 
CGAN model in 
Residential areas

Generation design 
and verification 

evaluation of strong 
evacuation scheme 
in residential area

The 
outline of 

the 
planned 

residential 
area is 

proposed

CGAN model of high-
rise residential area
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Figure 3: The residential area is a strong line scheme to generate the design process 

 
III. A. 1) Construction of the CGAN model for residential areas 
The residential area CGAN model consists of a residential area generator network and a residential area 
discriminator network, which engage in a competitive game against each other. The input of the residential area 
generator network is the residential area contour image, and the output is the master plan of the residential area 
layout scheme. The loss function for the residential area generator and discriminator networks is based on the 
CGAN loss function and incorporates an L1 loss function to enhance the accuracy and realism of the generated 
master plan for the residential area layout. 

The CGAN loss function is: 
 , ,( , ) [log ( , )] [log(1 ( , ( , ))]CGAN x y x zL G D E D x y E D x G x z    (25) 

The L1 loss function can improve the accuracy and realism of the master plan for residential area drainage 
schemes, and can be expressed as: 

 1,1 , , 1( ) [|| ( , ) || ]x y zL G E y G x z   (26) 

The final residential area CGAN loss function is: 
 * arg min max ( , ) ( )CGAN LJG D

G L G D L G   (27) 

In the equation: G  is the residential area generator network; D  is the residential area discriminator network; 
x   is the residential area contour image; y   is the actual residential area strong-exclusion plan master plan; 
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( , )G x z  is the generated image from the residential area generator network; z  is the input random noise, replaced 
by dropout;   is the set weight value. 

The study was conducted using the open-source programming platform Anaconda, the deep learning framework 
TensorFlow, and the interactive editing tool Jupyter Notebook to construct CGAN models for high-rise, multi-story, 
and low-rise residential areas. The model's input is the residential area contour image, and the output is the master 
plan of the residential area's forced relocation scheme. Model training parameters are divided into optimizer 
hyperparameters and model hyperparameters, with model hyperparameters using the default parameter settings 
from the pix2pix algorithm. Considering both image quality and training time costs, the number of iterations in the 
optimizer hyperparameters is set to 500, and the initial learning rate is set to 0.0001. 

 
III. B. Analysis of residential group layout results based on deep learning 
III. B. 1) Experimental Design 
Taking a six-story residential building as an example, divide it into three datasets with 200, 400, and 800 units, 
respectively. Test after each round of training, compare the results generated in each round, record the loss of the 
generator and discriminator in each round, and plot it into a line chart. 
 
III. B. 2) Generation Process and Results Analysis 
The generation process mainly consists of the following steps: 

Step 1: Create a dataset. Divide the six-story residential buildings into datasets containing 200, 400, and 800 
data points, respectively. Select condition images that do not appear in the training set as the test set to test the 
performance of the generated model. 

Step 2: Input data for training. Match the target images and conditional images of the layout scheme into pairs 
and feed them into the pix2pix network. Each dataset undergoes 20 rounds of training. 

Step 3: Test the generated model, printing the generated results every two rounds. 
The loss of the generator and discriminator, as well as the accuracy of the discriminator, are shown in Figure 4. 

As can be seen from the figure, overall, the loss of the generator and the loss of the discriminator both decrease as 
the number of training rounds increases. The loss of the discriminator stabilizes after a certain number of rounds, 
while the loss of the generator decreases with fluctuations, so the generation results fluctuate to some extent as the 
number of rounds increases. The accuracy rate of the discriminator fluctuates significantly, with larger data volumes 
leading to greater fluctuations, and gradually improves over time. From the generated results, the model with a data 
volume of 200 achieves relatively good results after 11 training rounds, the dataset with a data volume of 400 
achieves the best results after 10 training rounds, and the dataset with a data volume of 800 achieves the best 
results after 5 training rounds. It can be seen that the more data there is, the fewer rounds are needed to achieve 
relatively good results. From the best results generated by each dataset, it can be seen that the more data there is, 
the better the best results generated. Therefore, when the training results are poor, the training results can be 
improved by increasing the amount of data. When the amount of data is limited, the model's performance can be 
improved by increasing the number of training rounds. However, when the amount of data is small, even increasing 
the number of training rounds cannot achieve the best results that can be achieved with a large amount of data. 
III. C. Analysis of the optimization design effects of functional zoning in building layout 
All images in this dataset are 256×256 pixels in size. This paper simplifies the classification of urban spatial buildings, 
dividing them into two main categories: residential buildings and recreational buildings, which include three common 
functional zones: “green areas, supporting service areas, and living areas.” 

By calculating according to the specified indicators, the floor area of buildings under the corresponding urban 
scale can be determined. During calculation, only the floor area indicators required for buildings in different-tier cities 
are included. 

By counting the number of RGB value pixels representing a specific function in the image and the number of RGB 
value pixels within the land use area, the proportion of pixels for each functional zone can be obtained. 

(1) Residential building floor area ratio 
When calculating the floor area of residential buildings in the dataset, the following methods are used: residential 

buildings in the central area are calculated based on a 21-story building, while other residential buildings are 
calculated based on a 6-story building. The comparison results of residential building floor areas between the 
training set and the test set are shown in Figure 5. The results show that the average values for the training set and 
test set are 263,604 m² and 250,126 m², respectively, with the training set slightly higher than the test set. This is 
partly because the land area of the training set is slightly larger than that of the test set. The reason is that the 
training data is compressed before being input into the computer for learning, which may cause inaccuracies in the 
RGB values of some building pixels, leading to information loss during model learning. This loss results in slightly 
fewer building pixels in the final model-generated images. However, in terms of the relationship between land area 
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and residential building floor area, the distributions of the training set and test set are basically consistent, indicating 
that the overall learning performance of the model is still quite good. Ultimately, 25.67% of the residential building 
floor area in the training set meets the recommended indicators, while 74.33% exceeds them; in the test set, 38.74% 
of the residential building floor area meets the recommended indicators, while 61.26% exceeds them, which 
generally meets the requirements. 

 

 

Figure 4: The generator, the discriminator loss and the accuracy of the discriminator 

 

Figure 5: The training set is compared with the test set teaching building area 

(2) Leisure building area ratio 
When calculating the area of leisure buildings (parks or amusement parks) in the dataset, all parks were 

calculated based on an area of 5,000 square meters. The comparison results of the leisure building areas in the 
training set and test set are shown in Figure 6. The average values for the training set and test set are 697,358 
square meters and 662,091 square meters, respectively, with a fluctuation of no more than 10%, which is within a 
reasonable range. In terms of the relationship between land area and recreational building area, the distributions of 
the training set and test set are relatively consistent. However, under the same land area, the training set shows a 
significant number of cases where the recreational building area is lower than that of the test set, indicating that the 
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model has some errors when generating the recreational building portion. Compared with the recommended 
indicators, 62.15% of the residential building area in the training set meets the recommended indicators, while 37.85% 
is below the recommended indicators; 45.22% of the residential building area in the test set meets the recommended 
indicators, while 54.78% is below the recommended indicators, with an overall tendency toward smaller values. The 
reasons are as follows: 1. The training set already had cases with relatively small recreational area sizes during 
annotation. 2. Compared to other buildings, recreational buildings are more sparsely distributed and irregularly 
arranged, and some indoor areas are easily confused with residential buildings. Therefore, errors are more likely to 
occur in the output data, thereby affecting the completeness and clarity of recreational buildings. 

 

Figure 6: The training set is compared with the test set leisure building area 

(3) Proportion of land area for each functional zone 
By counting the number of RGB value pixels representing a specific function in the image and the number of RGB 

value pixels within the land area, we can obtain the proportion of pixels for each functional zone, which is essentially 
the proportion of land area. Based on this logic, we used Python code to calculate the proportion of land area for 
each functional zone in the dataset and found that the average area proportions of each functional zone in the test 
set and training set are largely consistent, enabling further analysis. 

The comparison of land area proportions across the three functional zones between the training set and test set 
is shown in Figure 7, where (a) to (c) represent the land areas of the green zone, transportation zone, and residential 
zone, respectively. The results indicate that the distribution trends of the training set and test set are consistent 
across the three zones. The proportion of land area in the green space functional zone decreases as the total land 
area of the city increases. This is because as the city's population grows, the demand for land to meet residential 
needs increases. Under the premise of basically meeting the city's green space requirements, this further drives 
the conversion of other available land in the city into residential, industrial, and other commercially valuable 
functional zones to meet people's survival needs. Meanwhile, the proportion of land area allocated to supporting 
service functional zones and residential zones generally shows a subtle upward trend as the total land area of the 
city increases, but overall remains relatively stable with minimal changes in proportion. This aligns with the principle 
that as the scale of urban development grows and the population increases, the area of living space provided 
increases proportionally. 

(4) Building density and floor area ratio 
Research indicates that urban building density typically remains below 25%, with most cities averaging around 

20%. Urban spatial planning and construction should determine land use based on the total floor area and 
corresponding floor area ratio of various functional zones, with a recommended floor area ratio of 0.5, without 
specifying building density. Statistical analysis of the floor area ratio in the dataset reveals that the average floor 
area ratio in the training set is 0.5329, with a maximum value of 0.6925 and a minimum value of 0.4608; the average 
floor area ratio in the test set is 0.5217, with a maximum value of 0.6458 and a minimum value of 0.3746. Compared 
to the recommended indicator of 0.5, the floor area ratio of the test set data generally aligns with the recommended 
indicator. 
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(a)The area of land in the green area (b)The area of land in the traffic area 

 

(c)The area of land in the living area 

Figure 7: The training set is compared to the area of the test set 

IV. Conclusion 
This paper constructs an automatic urban building layout model based on reinforcement learning and uses the 
CGAN model to analyze and verify the effectiveness of the generated urban residential area layout schemes. 

(1) The results of the sunlight calculation show that each multi-story building to be laid out in the plot meets the 
minimum sunlight constraint, indicating that the automatic building layout generated based on the DDPG algorithm 
meets the requirements of this paper. 

(2) When the dataset size is 800, the model achieves optimal performance after only 5 training rounds, reducing 
the number of training rounds by over 50% compared to a dataset size of 200. This demonstrates that as the dataset 
size increases, the number of training rounds decreases, leading to better experimental results. 

(3) An evaluation of the generated scheme's indicators across six aspects—land area, the ratio of residential and 
recreational building areas, the proportion of land area for the three functional zones (“green areas, supporting 
service areas, and residential areas”), and floor area ratio—revealed that the final experimental results exhibit 
reasonable functional relationships, meet training requirements, and generally align with regulatory 
recommendations, confirming that the experiment achieved satisfactory outcomes. 
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