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Abstract Open source software has become an important part of enterprise information systems due to its low cost, 
openness and transparency, and ease of customization. However, the open source software supply chain faces 
complex security risks, including management challenges brought about by multi-developer collaboration and 
difficulties in controlling third-party dependencies, which may lead to data leakage, system paralysis, and business 
interruption, and bring huge losses to enterprises. This paper proposes an artificial intelligence-driven open source 
software supply chain security risk identification and protection technology system. The study adopts AHP-entropy 
combination assignment model to assign weights to supply chain security evaluation indexes, and constructs a 
security risk identification model based on PSO-SVM, and finally designs a supply chain security protection system 
based on trusted computing. The results show that the weight of open source code component management is 
0.478, which is the most important first-level evaluation index, followed by open source code quality management 
with a weight of 0.422; among the second-level indexes, open source code submission frequency, self-developed 
code size and percentage and component vulnerability severity have the highest weights. The PSO algorithm 
obtains the optimal parameters after 136 iterations, and the constructed risk assessment model has a test set of 
The assessment accuracy rate reaches 90%, only one sample is misclassified, and the squared correlation 
coefficient of the regression analysis is 0.96432. The conclusion of the study shows that the combined 
empowerment method reduces the influence of subjective or objective bias of single empowerment, the PSO-SVM 
model can accurately identify supply chain security risks, and the end-to-end protection system based on trustworthy 
computing can realize the trustworthy monitoring of the whole process of business communication, which provides 
enterprises with a comprehensive and accurate open source software supply chain security management solution. 
 
Index Terms Open source software, supply chain security, risk identification, PSO-SVM, combined empowerment, 
trusted computing 

I. Introduction 
With the rapid development of the Internet and the increasing maturity of technology, open source software has 
become more and more important for enterprises [1], [2]. The advantages of open source software are low cost, 
openness and transparency, easy customization, etc. Because of this the open source software supply chain 
exposes a series of security risks [3], [4]. First of all, the development process of open source software generally 
involves contributions from multiple developers, organizations, and communities, and there is some complexity in 
the contribution and integration of its source code [5]-[7]. This makes the security of the open source software 
supply chain more difficult to manage [8]. Second, open source software often relies on other open source libraries 
or tools, and these third-party dependencies are often difficult to control and ensure their security [9], [10]. Once a 
third-party dependency is vulnerable or attacked, it will directly affect the security of using open source software 
[11]. These risks may lead to serious consequences such as data leakage, system paralysis, and business 
interruption, which will bring huge losses to enterprises [12], [13]. Therefore, enterprises must pay great attention 
to software supply chain security risks and take effective measures to deal with them. 

And with the development and application of artificial intelligence, AI-driven open source software supply chain 
security risk identification and protection technology has become an important means to deal with new security 
threats [14], [15]. Artificial intelligence technology has powerful data processing and analysis capabilities, which can 
help enterprises realize comprehensive monitoring and management of the open source software supply chain and 
improve the security and reliability of the supply chain [16]-[18]. Artificial intelligence technology can discover 
abnormal behaviors and potential risks in the supply chain through data mining and analysis, and warn the risks in 
the supply chain in advance based on intelligent perception and prediction [19]-[21]. In addition, AI technology can 
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improve the response speed and accuracy of the open source software supply chain and reduce human errors and 
risks in the supply chain through automation and intelligence [22]-[24]. 

With the rapid development of the Internet and the increasing maturity of technology, open source software has 
become more and more important for enterprises. The advantages of open source software are low cost, open and 
transparent, easy to customize, etc. Because of this the supply chain of open source software exposes a series of 
security risks. First of all, the development process of open source software generally involves contributions from 
multiple developers, organizations and communities, and the contribution and integration of its source code also 
has a certain degree of complexity. This makes the security of the open source software supply chain more difficult 
to manage. Second, open source software often relies on other open source libraries or tools, and these third-party 
dependencies are often difficult to control and ensure their security. Once a third-party dependency is vulnerable or 
attacked, it will directly impact the security of using open source software. These risks may lead to serious 
consequences such as data leakage, system paralysis, business interruption, etc., which will bring huge losses to 
the enterprise. Therefore, enterprises must attach great importance to software supply chain security risks and take 
effective measures to deal with them. And with the development and application of artificial intelligence, AI-driven 
open source software supply chain security risk identification and protection technology has become an important 
means to deal with new security threats. Artificial intelligence technology has powerful data processing and analysis 
capabilities, which can help enterprises realize comprehensive monitoring and management of the open source 
software supply chain and improve the security and reliability of the supply chain. Artificial intelligence technology 
can discover abnormal behaviors and potential risks in the supply chain through data mining and analysis, and warn 
of risks in the supply chain in advance based on intelligent perception and prediction. In addition, AI technology can 
improve the response speed and accuracy of the open source software supply chain and reduce human errors and 
risks in the supply chain through automation and intelligence. 

This study constructs a complete set of open source software supply chain security risk identification and 
protection technology system, firstly, it proposes open source software supply chain security evaluation index 
system, including three first-level indexes and 14 second-level indexes for open source code component 
management, open source code quality management and open source code source management. Then a 
combined assignment model combining the hierarchical analysis method and entropy value method is used to 
assign weights to each indicator, which overcomes the limitations of a single assignment method. Then the support 
vector mechanism (SVM) risk identification model is improved based on particle swarm optimization algorithm, and 
the SVM parameters are optimized by PSO algorithm to improve the accuracy and generalization ability of the 
model. Finally, a supply chain security protection system based on trusted computing technology is designed to 
realize the entire security protection from the source to the end of the supply chain and the end-to-end trusted 
construction. 

II. Open source software supply chain security risk identification model 
II. A. Combinatorial Empowerment Model 
II. A. 1) Standardization of data 
Normalization, as is often the case, refers to the process of feature scaling in feature engineering. The use of feature 
scaling can have two effects on data processing: first, features of different magnitudes can be in the same numerical 
magnitude. Since data with large variance implies a large discrepancy from the mean value of the data, feature 
scaling can reduce the impact of features with large variance on the system and eliminate model errors as much as 
possible. The second is to speed up the convergence of the learning algorithm. 

The first method is the commonly used z-score normalization process, and the second method is min-max 
normalization. z-score normalization as the more common normalization method, and therefore also directly called 
Standardization, the specific method is: 

 ' i
i

x x
x




  (1) 

where '
ix  is the normalized value of the variable x , x  is the mean of the variable x , and   is the standard 

deviation of the variable data. 
After z-score normalization, the data becomes a distribution with mean 0 and standard deviation 1. 
Another more commonly used method, called min-max normalization, often abbreviated as normalization, is: 
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where 
ix
  is the normalized value of the variable x , 

maxx  is the maximum value of the variable x , and 
minx  is 

the minimum value of the variable x . This approach maps the data range into the interval [0, 1]. Also, it is possible 
to map the data to any interval, for example to map to the interval ( , )a b  is handled as follows: 

 ' min

max min

i
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x x
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There is also a less commonly used method called centering, which is done as follows: 

 '

max min
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II. A. 2) AHP hierarchical approach 
Hierarchical analysis is a decision analysis method that combines quantitative and qualitative analysis proposed by 
American operations researcher A.L. Satty [25]. Its main steps are as follows: 

1) Establish the hierarchical structure model 
First of all, according to the objectives of the research problem and the influencing factors of each level, the 

corresponding hierarchical analysis structure model is constructed. 
2) Construct two-by-two judgment matrix 
The 1 to 9 scale method proposed by Satty et al. was used to compare different influencing factors at the same 

level two by two, i.e., the importance of the i  factor and the j  factor relative to the factors at the previous level 

was assigned to determine the relative weights of the individual indicator factors, and is expressed as ija . 

3) Hierarchical single sorting and consistency test 
Hierarchical single sorting refers to calculating the maximum characteristic root 

max  and eigenvector W  of 
each hierarchical judgment matrix one by one, and thereafter obtaining the relative weights of each index 
respectively. In practical applications, the calculation results of each matrix will have a certain degree of 
inconsistency. Therefore, in order to improve the scientificity and rationality of the judgment matrix, the following 
methods are used to test its consistency. 

(1) Calculate the consistency indicator CI. 

 max

1

n
CI

n

 



 (5) 

If CI=0, it means that the matrix is completely consistent; if CI tends to 0, it means that the matrix has better 
consistency. 

(2) Determine the random consistency index RI to better determine the consistency ratio of the matrix. 
(3) Calculate the consistency ratio CR. 

 CI
CR

RI
  (6) 

If the CR is less than 0.1, it means that the judgment matrix passes the consistency test, and vice versa, the 
judgment matrix needs to be adjusted. 

(4) Calculate indicator weights 
After single-sorting each level, the comprehensive weight of each indicator under the hierarchical analysis method 

is obtained jw . 

 
II. A. 3) Entropy method 
Entropy value method is a method of analysis under objective conditions, which is now widely used in many fields 
such as social economy, science and technology and engineering practice [26]. The entropy value method can 
minimize the subjective influence of the weights of the factors on the evaluation results and make them more in line 
with the objective reality. 

(1) Construct judgment matrix 
Based on the information data provided, the judgment matrix of m programs n evaluation indicators is constructed. 
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(2) Data standardization treatment 
The original data were standardized using the extreme value method. Among them, equation (8) is used to deal 

with positive indicators, and equation (9) is used to deal with negative indicators, and finally get the standardized 
matrix that has eliminated the differences in the unit of measurement of each indicator. 
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where ijx  represents the j th indicator value of the i th sample ( 1, 2,...., ; 1,2,.... )i m j n   and ijr  is the 

normalized data. In order to avoid the situation that some of the data after the standardization process have low 
values or even negative values, thus they are uniformly shifted. 

 '
ij ijr r H   (10) 

where H is the magnitude of the indicator panning, generally taken as 0.01. 
(3) Determine the entropy value of the evaluation indicators 
① Normalize the normalization matrix. 
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② Calculate the information entropy value je  for the j th evaluation index. 
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③ Calculate the coefficient of variation jg  for indicator j . 

 1j jg e   (13) 

Calculate the weight of the j th indicator as jv . 
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II. A. 4) AHP-entropy approach 
AHP-entropy value method refers to the use of hierarchical analysis and entropy value method to assign subjective 
and objective weights to the indicators, and combine the two weights to get more reasonable and objective indicator 
weights. This method can not only weaken the influence of some subjective factors on the assignment of hierarchical 
analysis, but also weaken the bias of objective assignment caused by the large differences in the original data 
information. In order to make the indicator weights more accurate and scientific, the formula (15) is used to calculate 
the combined weights of the evaluation indicators. 

 * j j
j

j j

w v
w

w v



 (15) 

where jw  is the weight of the hierarchical analysis method and jv  is the weight of the entropy method. 
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II. B. Security risk identification model based on PSO-SVM 
II. B. 1) SVM model for risk identification 
Let the open source software supply chain risk pattern recognition system consist of m  sample data Sample set 

1 2[ , , , , ]Tj mX X X X X   , samples 1 2[ , , , , , , ]( 1, 2, , )j j j ji jn jX x x x x y j m     consists of n  risk metrics 

observations jmx  and 1 risk pattern category jy  with jy Y  the pattern category vector, and Y  corresponds to 

the set of rubrics 
1 2{ , , , }( 1,2, )lV v v v l   . 

Due to the different meanings, scales, and value ranges of the indicator data, data normalization is required. In 
order to minimize the loss of information during data normalization, the risk model category cut-off point of each 
indicator is set according to the meaning and value range of the indicator, and the value range of the indicator is 
thus divided into multiple value intervals to establish a new data normalization method. Let ( ) ( 1) ( 1, 2, )i k i ku u k    be 

the vectors corresponding to the risk pattern category cutoffs ( 1) ( ) ( 1)( ), ( )i i k i k i kx k x x x   for the i -th indicator, then 

The specification of the indicator data jix  is done according to equation (16): 

 

( ) ( )

( 1)'
( 1) ( ) ( 1) ( ) ( 1)

( 1) ( )

( 1) ( 1)

( )

i k i i k

i k i
ji i k i k i k i k i i k

i k i k

i k i k i

u x x

x x
x u u u x x x

x x

u x x


  



 

 


    


 

 (16) 

For the normalized sample data 
1 2[ , , , , , ]Tj mX X X X X       , where 

1 2[ , , , , , ]j j j ji jnX x x x x       is the input 

vector, and 
iy  is the output value corresponding to jX .The SVM passes a nonlinear mapping   maps the data 

jX  to a high-dimensional feature space and performs a linear regression, i.e: 

 ( ) ( )Tf x x b    (17) 

where,   is the weight vector of the hyperplane; b  is the bias term. 
According to the structural risk minimization principle, Eq. (18) is equivalent to minimizing the cost generalized 

function: 
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where, 0  , known as the slack variable; 0C  , the penalty parameter; 

( ) ( , )i jx K x x     is the kernel function, , 1,2, ,i j m  . 

The SVM classification decision function is obtained by transforming to dyadic form and solving using Lagrange 
operator: 

 ' '

1

( ) ( , )
n

i j
i

f x a K x x b


   (19) 

( , )iK x x   is a positive definite function that satisfies Mercer's condition, and the radial basis function (RBF) is the 

more commonly used kernel function: 
2

2
( , ) exp( ), 0

2

|| ||i
i

x x
K x x 



 
  

    in the SVM model using RBF. The penalty parameter C  and the kernel 

parameter   jointly affect the performance of the SVM, so the selection of the optimal SVM parameters has a 
great impact on the pattern recognition accuracy.PSO has the advantages of fewer parameters, simplicity, and 
strong global search ability, etc. PSO is introduced to optimize the parameters C  and  . 

 
II. B. 2) PSO algorithm 
Let there be a population 

1 2( , , , )sZ Z Z Z   of s  particles in a D -dimensional search space, where the i th 

particle is denoted as a D -dimensional vector 
1 2( , , , )Ti i i iDZ z z z  , which represents the particle i  in the D -
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dimensional vector 
1 2( , , , )Ti i i iDZ z z z  , which represents the position of the particle i  in D -dimensional space, 

i.e., a potential solution of the problem. The fitness value corresponding to each particle position 
iZ  can be 

calculated based on the objective function, the velocity of particle i  
1 2( , , , )Ti i i iDV V V V  , and the individual 

extremum of the population 
1 2( , , , )Ti i i iDP P P P  , and global extremes 

1 2( , , , )Tg g g gDP P P P  , where each particle 

is updated according to Eq. (20) to update its own velocity and position: 

 
1

1 1 2 2
1 1

( ) ( )k k k k k k
id id id id gd id

k k k
id id id

V wV c r P Z c r P Z

Z Z V



 

     


 
 (20) 

where, k  is the k th iteration; w  is the inertia weight; 1, 2, , ; 1,2, ,d D i s   ; 
1 2,c c  is the learning factor, a 

non-negative constant; 
1 2,r r  are the random numbers between [0, 1];   is the the constraint factor that controls 

the velocity weights. 
The inertia weight w  reflects the extent to which the particle inherits the previous velocity at the current velocity, 

and the linear decreasing inertia weight (LDIW) is a more commonly used method: 

 
max( ) ( ) /start start endw k w w w k k     (21) 

where, 
startw  is the initial inertia weight; 

endw  is the weight for the maximum number of iterations; and 
maxk  is the 

maximum number of iterations. 
 

II. B. 3) PSO-SVM Recognition Models 
The PSO-SVM model construction for open source software supply chain risk pattern recognition is shown in 

Figure 1. 

Construction of the risk 
indicator system

Classification of risk mode 
categories

Acquisition of typical 
sample data

Standardization of sample 
data

Establishment of SVM 
pattern recognition model

PSO trains the SVM model

Acquisition of the optimal 
parameters of SVM

Application of SVM Pattern 
Recognition Model  

Figure 1: PSO-SVM model for patter recognition 

III. Open source software supply chain security risk assessment 
III. A. Open source software supply chain security evaluation index system construction 
The index system of the open source software supply chain security evaluation model proposed in this paper is 
adjusted to the first-level indicators: open source code component management, open source code quality 
management and open source code source management. For the secondary indicators, the design of the model 
should, on the basis of following the original indicator system of the Chinese standards as much as possible, fully 
consider factors such as the data accessibility and compliance of the evaluation objects in the actual implementation 
of the organization, and optimize and adjust the indicators. As the original "Open-source Code source-related 
Indicators" model was refined from the dimensions of organizational activity, collaborative development, and open-
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source community services and support, and indicators such as the original "open-source code richness" were 
deleted, the final evaluation indicators are shown in Table 1. 

Table 1: Safety evaluation index of open source software supply chain 

Target Primary indicator Secondary indicator 

Open source software supply 

safety index 

Open source code component 

management(A1) 

Safe open source component ratio (B1) 

Component vulnerability severity (B2) 

Component license compliance (B3) 

Open source code quality 

management (A2) 

The scale of the self-research code is compared to the 

proportion of the code (B4) 

Open source code vulnerability rate (B5) 

Open source code vulnerability repair rate (B6) 

The open source code is a serious loophole (B7) 

Open source code pr resolution percentage (B8) 

Open source code bug type issue processing time (B9) 

Source code source management 

(A3) 

Open source software organization activity (B10) 

Open source collaborative development (B11) 

Open source community or project activity (B12) 

Open source community services and support (B13) 

Open source code submission frequency (B14) 

 
III. B. Results and analysis of indicator empowerment 
III. B. 1) Determination of subjective weights 
The experiment invites a total of five software supply chain security experts to score the importance of each level 
of indicators, adopts hierarchical analysis to obtain the subjective weight value, takes expert A as an example, 
constructs the judgment matrix of the level one indicators and calculates it, and the results are shown in Table 2, 
and finally sums and averages the evaluation results of the weights of the five experts to derive the subjective weight 
of the final level one indicators, and the results are shown in Table 3. Through the normalization of the optimal 
parameters, the relative weights of each level of indicators W = (0.291, 0.655, 0.071) are obtained. 

Table 2: Primary index judgment matrix 

Primary indicator A1 A2 A3 Weighting max  CR 

A1 1 1/4 6 0.291 

3.151 0.067 A2 4 1 8 0.655 

A3 1/6 1/8 1 0.071 

Table 3: The primary index is the subjective weight  

Experts 
Weighting 

max  CR 
A1 A2 A3 

Z1 0.288 0.648 0.079 3.086 0.067 

Z2 0.441 0.491 0.083 3.017 0.014 

Z3 0.462 0.459 0.093 3 0 

Z4 0.637 0.264 0.113 3.042 0.044 

Z5 0.554 0.245 0.215 3.029 0.023 

Average 0.476 0.421 0.117 -  

III. B. 2) Determination of objective weights 
The data of open source software-related indicators are shown in Table 4. 

The data of open source software-related indicators were calculated to obtain the formula for calculating the 
objective weights of the 14 secondary indicators: 

 1 2 3 12 13 14( )

(0.031 064 0.053 0.122 0.025 0.391)

, , , , , ,

, , , , , ,

W w w w w w w

 
 

 (22) 
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Table 4: Data on source software 

Index Open source software 

A1 

B1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

B2 0.898 0.962 1.072 0.998 0.963 0.984 0.97 0.996 0.987 0.994 

B3 0.745 0.489 0.732 0.337 0.178 0.467 0.013 0 0.255 0.253 

A2 

B4 0.847 0.882 0.799 0.925 0.881 0.979 0.513 0.807 0.968 0.966 

B5 0.995 0.719 0.873 0.95 0.917 0.799 1 0.847 0.998 0.851 

B6 0.017 0 0 0 0.011 0.013 0.391 0 0.006 0.003 

B7 0.436 0.905 1.054 0.807 0.739 0.973 0.85 0.839 0.986 0.837 

B8 0.301 0.605 0.814 0.268 0.358 0.533 0.37 0.258 0.413 0.538 

B9 1 0.998 0.985 0.962 0.941 0.997 0.965 0.996 0.989 0.981 

A3 

B10 3.013 25.274 26.422 21.128 25.642 38.571 26.415 31.414 2.46 26.792 

B11 73.55 88.2 87.4 97.17 98.1 79.09 78.54 94.03 79.42 91.342 

B12 87.01 89.1 99.03 89.42 88.42 83.42 79.23 87.73 79.83 89.45 

B13 78.14 91.14 87.42 95.1 90.22 83.42 78.63 85.1 84.94 94.12 

B14 80.09 91.28 90.09 89.02 86.154 10.57 81.03 89.52 84.52 88.03 

 
III. B. 3) Determination of portfolio weights 
Substituting the objective weights in Table 4 into the formula yields the coefficient of degree of difference 

eR =0.498 
and the correction coefficient a =0.541, and then the comprehensive weights of the indicators are obtained, as 
shown in Table 5. From the table, it can be seen that the first-level indicator of open source code component 
management has the highest weight assigned, with a value of 0.478, indicating that relatively speaking, open source 
code component management is the most important to experts, and it is also the one that should be emphasized in 
the identification of security risks in the open source software supply chain. Secondly, the weight of open source 
code quality management is higher, with a value of 0.422. Among the secondary indicators, the frequency of open 
source code submission, the scale and proportion of self-study code, and the severity of component vulnerability 
have the highest weight in the identification of security risks in the open source software supply chain. 

Table 5: The primary index is the subjective weight 

Primary indicator Subjective weight Secondary indicator Objective weight Composite weight 

A1 0.478 

B1 0.019 0.253 

B2 0.052 0.026 

B3 0.043 0.022 

A2 0.422 

B4 0.056 0.243 

B5 0.007 0.004 

B6 0.043 0.021 

B7 0.036 0.018 

B8 0.013 0.007 

B9 0.038 0.019 

A3 0.100 

B10 0.041 0.079 

B11 0.023 0.012 

B12 0.112 0.055 

B13 0.019 0.01 

B14 0.498 0.231 

 
III. C. Risk assessment results and analysis 
III. C. 1) Matlab Implementation of Supply Chain Risk Assessment Models 
In this paper, Matlab 2014a and LIBSVM 3.22 toolbox are selected to write Matlab program to implement PSO-SVM 
model for virtual supply chain risk assessment. The model parameters are set. The parameters of the support vector 
machine are set as follows: a Gaussian radial basis kernel function is selected, the kernel parameter    (100,1.0), 
and the penalty parameter C   (0.1,100). 

PSO algorithm parameter settings: particle dimension  ,C , the maximum number of iterations is 300, the 
number of populations is 20, take 

1C =1.7, 
2C =1.9, and take the value of fixed inertia weights  =1. Taking the 

training results of the training samples and the actual values of the mean square error (MSE) as the particle fitness. 
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Run the Matlab program of the model, read the sample data of the training set, and calculate the average and 
optimal adaptation of the particles until the end of the iteration as shown in Fig. 2. 

 

Figure 2: PSO algorithm fitness curve 

The optimal parameters after PSO algorithm optimization are C=1.8841,   = 0.103. The comparison of training 
results and actual results of the training set is shown in Fig. 3, and the comparison of evaluation results and actual 
results of the test set is shown in Fig. 4. The mean square deviation of the model assessment results is small, the 
correlation coefficient is closer to 1, and the model fits well. The risk level value of the test set obtained by using the 
model assessment is closer to the actual value. As can be seen from the figure, most of the sample assessment 
results for the test set fall within the actual risk level interval of the corresponding samples, and the accuracy of the 
assessment of the 10 test set samples is 90%, with one sample being misclassified. The standard PSO-SVM model 
can accurately assess the risk level of the supply chain during its complete life cycle after its formation based on 
the current values of the supply chain risk indicators. 

 

Figure 3: The training set evaluates the comparison of the results 

 

Figure 4: The test set evaluates the comparison of the results 

III. C. 2) Accuracy test and error analysis of the evaluation model 
The extent of supply chain risk impact and its quantitative values are shown in Table 6. 
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Table 6: Risk impact of supply chain and its quantification 

Risk level Corresponding risk 

Low [0,0.2] 
Lower (0.2,0.4] 

General (0.4,0.6] 

Higher (0.6,0.8] 

Height (0.8,1] 

 
The output of this model evaluation is: number of iterations iter=136, minimum value obj=-8.74312 obtained from 

quadratic programming solution converted from SVM file, constant term b of the judgment function is rho=-0.150127, 
number of support vectors nSV=45, number of support vectors on the boundaries nBSV=14. 
MSE=0.031201(regression), squared correlation coefficient=0.96432(regression). ), squared correlation 
coefficient=0.96432(regression). The evaluation results are shown in Table 7, and the results show that the 
assessed risk level of PSO-SVM model is closer to the actual risk level with higher accuracy. 

Table 7: Evaluation result 

Supply chain number Actual risk level The actual area Assess risk level Assessment area 

Test 1 1.000 Height 0.801 Highet 

Test 2 0.311 Lower 0.308 Lower 

Test 3 0.561 General 0.412 General 

Test 4 0.574 General 0.513 General 

Test 5 0.895 Highet 0.893 Highet 

Test 6 0.058 Low 0.154 Low 

Test 7 0.472 General 0.511 General 

Test 8 0.158 Low 0.127 Low 

Test 9 0.937 Height 0.893 Height 

Test 10 0.312 Lower 0.397 Lower 

 

IV. Trusted computing-based supply chain security protection system 
IV. A. Credible Computing 
Trustworthy computing is a technology that guarantees the predictability of information systems, which refers to the 
security protection while calculating, so that the results of the calculation are always the same as the expected 
value, so that the whole calculation is measurable and controllable, without interference. 

The development of trusted computing has gone through several stages. The initial trusted 1.0 comes from 
computer reliability, mainly by means of troubleshooting and redundant backup, which is a security measure based 
on fault-tolerant methods. Trusted 2.0 is marked by TPM1.0 introduced by Trusted Computing Group (TCG), which 
mainly takes hardware chip as the root of trust, and takes trusted metrics, trusted storage, and trusted reports as 
means to realize single-computer protection of computers. The shortcomings are: it does not consider the security 
problem from the computer architecture level, and it is difficult to realize active defense [27]. China's trusted 
computing technology has developed to the 3.0 stage of the “active defense system”, to ensure that the whole 
process can be measured, controlled and not be interfered with, i.e., parallel defense and computing “active 
immunity computing mode”. The system architecture is based on password, chip as a pillar, motherboard as a 
platform, software as the core, network as a link, application into a system to provide security for the application 
execution environment and network environment. The basic principle of Trusted Computing 3.0 is shown in Fig. 5. 
Since the platform is powered up, the trust is transferred from TPCM (Trusted Platform Control Module) to the 
operating system layer by gradually constructing a trust chain to ensure the trustworthiness of the whole information 
system from the source. 
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Figure 5: Schematic diagram of the reliable calculation of 3.0 

IV. B. Architectural design 
IV. B. 1) Trusted supply chain controls 
The power system software supply chain control program can learn from the technical route of Apple's application 
software installation control, applying trusted computing technology and commercial confidentiality system to the 
power monitoring system, and constructing a full security protection system from the source to the terminal of the 
supply chain as shown in Figure 6. 

Apple requires the developer to sign the software installation package with the certificate issued by the developer 
during the application software installation process, and the IOS device verifies the signature based on the trusted 
computing technology before the software installation package is installed and started to ensure that the app has 
not been tampered with since the installation or the last update. Similarly, in the electric power system, the trust 
chain transfer mechanism of trusted computing technology can also be used to realize the control of devices and 
software versions, ensuring that uncertified devices and software versions cannot be executed. 

Developer/
Enterprise

Software installation package 
(signed by Developer)

Apple Certificate 
Authority

AppleStore

Apple Trusted (with built-
in apple Public Key)

IOS device

Register and join the Apple 
Developer/Developer 
Enterprise Program

Issue a certificate

Upload

AppleStore

Verify the developer's 
signature and use the 

Apple private key to sign 
the software installation 

package with Apple

Software installation 
package (signed by Apple)

Verify the Apple signature 
before installation and startup

The technical route for apple application software installation control

 

Digital signature 
of the R&D unit

Software 
development

Trusted software 
development 
environment

Digital signature of 
the testing institution

Source code 
inspection

Safety 
inspection

Trusted software 
detection 

environment

White 
box test

Black 
box Test

Safety test

Trusted environment

Digital signature for 
software warehousing

Communication 
certificate

Deployment and 
implementation

Run and 
use

Version 
maintenance

Dispatch digital certificate authentication

Trusted computing  

Figure 6: The overall technical framework of trust management of supply chains 
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IV. B. 2) End-to-end trusted construction 
The purpose of end-to-end trusted construction is to ensure that in the grid environment, regardless of the 
downstream type of business (such as control instructions, remote configuration issuance) or upstream type of 
business (such as terminal access, data collection and access), the legality and security of the access connection 
can be realized for the whole process of monitoring and protocol authentication. In Figure 7, by building an end-to-
end trusted authentication module and terminal trusted transformation in the trusted management center, the system 
is able to carry out trusted monitoring and control of the entire business communication process, ensure the integrity, 
confidentiality and compliance of key business data, and prevent malicious attacks, data tampering and improper 
access. 
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Figure 7: End-to-end credible overall technical plan 
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V. Conclusion 
This study constructs an artificial intelligence-driven open source software supply chain security risk identification 
and protection technology system, and the main conclusions are as follows: 

The weights of open source software supply chain security evaluation indicators are assigned by AHP-entropy 
combination assignment model, and the results show that open source code component management is the 
highest-weighted first-level indicator, which takes the value of 0.478, followed by open source code quality 
management with a weight of 0.422, and open source code source management with a weight of 0.100. Among the 
second-level indicators, the frequency of open source code submission, the size and percentage of self-developed 
code and component vulnerability severity rank in the top three, which indicates that enterprises should focus on 
risk management in these aspects. 

The risk identification model constructed based on PSO-SVM shows high accuracy. The model was iterated 136 
times by the PSO algorithm to obtain the optimal parameters, and the accuracy of sample evaluation on the test set 
was 90%, with only one sample being misclassified. The mean square error MSE of the model is 0.031201, and the 
squared correlation coefficient is 0.96432, which indicates that the model fits well and can accurately assess the 
risk level of the open source software supply chain. 

The supply chain security protection system based on trusted computing technology realizes the whole security 
protection from the source to the end of the supply chain. The system draws on the technical route of Apple's 
application software installation control, utilizes the trust chain transfer mechanism of trusted computing technology 
to realize the control of equipment and software version, and ensures the security of the business communication 
process through the end-to-end trusted construction, effectively preventing malicious attacks, data tampering and 
improper access. 

This study provides theoretical guidance and practical solutions for enterprise open source software supply chain 
security management, which is of great significance for improving enterprise information system security. 
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