
International Journal for Housing Science and Its Applications
Publish August 10, 2025. Volume 46, Issue 4 Pages 218-231

218

https://doi.org/10.70517/ijhsa46417

Artificial Intelligence-Driven Security Risk Identification and
Protection Technology for Open Source Software Supply Chain
Qinman Li1, Xixiang Zhang1,*, Jing Xie1, Weiming Liao1 and Zhezhe Liang1
1 Guangxi Power Grid Co., LTD. Digital Operation Center, Nanning, Guangxi, 530023, China

Corresponding authors: (e-mail: xixixiang@outlook.com).

Abstract Open source software has become an important part of enterprise information systems due to its low cost,
openness and transparency, and ease of customization. However, the open source software supply chain faces
complex security risks, including management challenges brought about by multi-developer collaboration and
difficulties in controlling third-party dependencies, which may lead to data leakage, system paralysis, and business
interruption, and bring huge losses to enterprises. This paper proposes an artificial intelligence-driven open source
software supply chain security risk identification and protection technology system. The study adopts AHP-entropy
combination assignment model to assign weights to supply chain security evaluation indexes, and constructs a
security risk identification model based on PSO-SVM, and finally designs a supply chain security protection system
based on trusted computing. The results show that the weight of open source code component management is
0.478, which is the most important first-level evaluation index, followed by open source code quality management
with a weight of 0.422; among the second-level indexes, open source code submission frequency, self-developed
code size and percentage and component vulnerability severity have the highest weights. The PSO algorithm
obtains the optimal parameters after 136 iterations, and the constructed risk assessment model has a test set of
The assessment accuracy rate reaches 90%, only one sample is misclassified, and the squared correlation
coefficient of the regression analysis is 0.96432. The conclusion of the study shows that the combined
empowerment method reduces the influence of subjective or objective bias of single empowerment, the PSO-SVM
model can accurately identify supply chain security risks, and the end-to-end protection system based on trustworthy
computing can realize the trustworthy monitoring of the whole process of business communication, which provides
enterprises with a comprehensive and accurate open source software supply chain security management solution.

Index Terms Open source software, supply chain security, risk identification, PSO-SVM, combined empowerment,
trusted computing

I. Introduction
With the rapid development of the Internet and the increasing maturity of technology, open source software has
become more and more important for enterprises [1], [2]. The advantages of open source software are low cost,
openness and transparency, easy customization, etc. Because of this the open source software supply chain
exposes a series of security risks [3], [4]. First of all, the development process of open source software generally
involves contributions from multiple developers, organizations, and communities, and there is some complexity in
the contribution and integration of its source code [5]-[7]. This makes the security of the open source software
supply chain more difficult to manage [8]. Second, open source software often relies on other open source libraries
or tools, and these third-party dependencies are often difficult to control and ensure their security [9], [10]. Once a
third-party dependency is vulnerable or attacked, it will directly affect the security of using open source software
[11]. These risks may lead to serious consequences such as data leakage, system paralysis, and business
interruption, which will bring huge losses to enterprises [12], [13]. Therefore, enterprises must pay great attention
to software supply chain security risks and take effective measures to deal with them.

And with the development and application of artificial intelligence, AI-driven open source software supply chain
security risk identification and protection technology has become an important means to deal with new security
threats [14], [15]. Artificial intelligence technology has powerful data processing and analysis capabilities, which can
help enterprises realize comprehensive monitoring and management of the open source software supply chain and
improve the security and reliability of the supply chain [16]-[18]. Artificial intelligence technology can discover
abnormal behaviors and potential risks in the supply chain through data mining and analysis, and warn the risks in
the supply chain in advance based on intelligent perception and prediction [19]-[21]. In addition, AI technology can

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

219

improve the response speed and accuracy of the open source software supply chain and reduce human errors and
risks in the supply chain through automation and intelligence [22]-[24].

With the rapid development of the Internet and the increasing maturity of technology, open source software has
become more and more important for enterprises. The advantages of open source software are low cost, open and
transparent, easy to customize, etc. Because of this the supply chain of open source software exposes a series of
security risks. First of all, the development process of open source software generally involves contributions from
multiple developers, organizations and communities, and the contribution and integration of its source code also
has a certain degree of complexity. This makes the security of the open source software supply chain more difficult
to manage. Second, open source software often relies on other open source libraries or tools, and these third-party
dependencies are often difficult to control and ensure their security. Once a third-party dependency is vulnerable or
attacked, it will directly impact the security of using open source software. These risks may lead to serious
consequences such as data leakage, system paralysis, business interruption, etc., which will bring huge losses to
the enterprise. Therefore, enterprises must attach great importance to software supply chain security risks and take
effective measures to deal with them. And with the development and application of artificial intelligence, AI-driven
open source software supply chain security risk identification and protection technology has become an important
means to deal with new security threats. Artificial intelligence technology has powerful data processing and analysis
capabilities, which can help enterprises realize comprehensive monitoring and management of the open source
software supply chain and improve the security and reliability of the supply chain. Artificial intelligence technology
can discover abnormal behaviors and potential risks in the supply chain through data mining and analysis, and warn
of risks in the supply chain in advance based on intelligent perception and prediction. In addition, AI technology can
improve the response speed and accuracy of the open source software supply chain and reduce human errors and
risks in the supply chain through automation and intelligence.

This study constructs a complete set of open source software supply chain security risk identification and
protection technology system, firstly, it proposes open source software supply chain security evaluation index
system, including three first-level indexes and 14 second-level indexes for open source code component
management, open source code quality management and open source code source management. Then a
combined assignment model combining the hierarchical analysis method and entropy value method is used to
assign weights to each indicator, which overcomes the limitations of a single assignment method. Then the support
vector mechanism (SVM) risk identification model is improved based on particle swarm optimization algorithm, and
the SVM parameters are optimized by PSO algorithm to improve the accuracy and generalization ability of the
model. Finally, a supply chain security protection system based on trusted computing technology is designed to
realize the entire security protection from the source to the end of the supply chain and the end-to-end trusted
construction.

II. Open source software supply chain security risk identification model
II. A. Combinatorial Empowerment Model
II. A. 1) Standardization of data
Normalization, as is often the case, refers to the process of feature scaling in feature engineering. The use of feature
scaling can have two effects on data processing: first, features of different magnitudes can be in the same numerical
magnitude. Since data with large variance implies a large discrepancy from the mean value of the data, feature
scaling can reduce the impact of features with large variance on the system and eliminate model errors as much as
possible. The second is to speed up the convergence of the learning algorithm.

The first method is the commonly used z-score normalization process, and the second method is min-max
normalization. z-score normalization as the more common normalization method, and therefore also directly called
Standardization, the specific method is:

 ' i
i

x x
x




 (1)

where '
ix is the normalized value of the variable x , x is the mean of the variable x , and  is the standard

deviation of the variable data.
After z-score normalization, the data becomes a distribution with mean 0 and standard deviation 1.
Another more commonly used method, called min-max normalization, often abbreviated as normalization, is:

 ' min

max min

i
i

x x
x

x x





 (2)

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

220

where
ix
 is the normalized value of the variable x ,

maxx is the maximum value of the variable x , and
minx is

the minimum value of the variable x . This approach maps the data range into the interval [0, 1]. Also, it is possible
to map the data to any interval, for example to map to the interval (,)a b is handled as follows:

 ' min

max min

i
i

x x
x

x x





 (3)

There is also a less commonly used method called centering, which is done as follows:

 '

max min

i
i

x x
x

x x





 (4)

II. A. 2) AHP hierarchical approach
Hierarchical analysis is a decision analysis method that combines quantitative and qualitative analysis proposed by
American operations researcher A.L. Satty [25]. Its main steps are as follows:

1) Establish the hierarchical structure model
First of all, according to the objectives of the research problem and the influencing factors of each level, the

corresponding hierarchical analysis structure model is constructed.
2) Construct two-by-two judgment matrix
The 1 to 9 scale method proposed by Satty et al. was used to compare different influencing factors at the same

level two by two, i.e., the importance of the i factor and the j factor relative to the factors at the previous level

was assigned to determine the relative weights of the individual indicator factors, and is expressed as ija .

3) Hierarchical single sorting and consistency test
Hierarchical single sorting refers to calculating the maximum characteristic root

max and eigenvector W of
each hierarchical judgment matrix one by one, and thereafter obtaining the relative weights of each index
respectively. In practical applications, the calculation results of each matrix will have a certain degree of
inconsistency. Therefore, in order to improve the scientificity and rationality of the judgment matrix, the following
methods are used to test its consistency.

(1) Calculate the consistency indicator CI.

 max

1

n
CI

n

 



 (5)

If CI=0, it means that the matrix is completely consistent; if CI tends to 0, it means that the matrix has better
consistency.

(2) Determine the random consistency index RI to better determine the consistency ratio of the matrix.
(3) Calculate the consistency ratio CR.

 CI
CR

RI
 (6)

If the CR is less than 0.1, it means that the judgment matrix passes the consistency test, and vice versa, the
judgment matrix needs to be adjusted.

(4) Calculate indicator weights
After single-sorting each level, the comprehensive weight of each indicator under the hierarchical analysis method

is obtained jw .

II. A. 3) Entropy method
Entropy value method is a method of analysis under objective conditions, which is now widely used in many fields
such as social economy, science and technology and engineering practice [26]. The entropy value method can
minimize the subjective influence of the weights of the factors on the evaluation results and make them more in line
with the objective reality.

(1) Construct judgment matrix
Based on the information data provided, the judgment matrix of m programs n evaluation indicators is constructed.

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

221

11 1

1

m

n nm

x x

X

x x

 
   
  



 



 (7)

(2) Data standardization treatment
The original data were standardized using the extreme value method. Among them, equation (8) is used to deal

with positive indicators, and equation (9) is used to deal with negative indicators, and finally get the standardized
matrix that has eliminated the differences in the unit of measurement of each indicator.

min()

max() min()
ij ij

ij
ij ij

x x
r

x x





 (8)

max()

max() min()
ij ij

ij
ij ij

x x
r

x x





 (9)

where ijx represents the j th indicator value of the i th sample (1, 2,...., ; 1,2,....)i m j n  and ijr is the

normalized data. In order to avoid the situation that some of the data after the standardization process have low
values or even negative values, thus they are uniformly shifted.

 '
ij ijr r H  (10)

where H is the magnitude of the indicator panning, generally taken as 0.01.
(3) Determine the entropy value of the evaluation indicators
① Normalize the normalization matrix.

1

'

'

ij
ij m

ij
i

r
p

r





 (11)

② Calculate the information entropy value je for the j th evaluation index.

1

()
m

ij ij

j

p ln p
e

lnm
 
 (12)

③ Calculate the coefficient of variation jg for indicator j .

 1j jg e  (13)

Calculate the weight of the j th indicator as jv .

1

j
j n

j

g
v

g



 (14)

II. A. 4) AHP-entropy approach
AHP-entropy value method refers to the use of hierarchical analysis and entropy value method to assign subjective
and objective weights to the indicators, and combine the two weights to get more reasonable and objective indicator
weights. This method can not only weaken the influence of some subjective factors on the assignment of hierarchical
analysis, but also weaken the bias of objective assignment caused by the large differences in the original data
information. In order to make the indicator weights more accurate and scientific, the formula (15) is used to calculate
the combined weights of the evaluation indicators.

 * j j
j

j j

w v
w

w v



 (15)

where jw is the weight of the hierarchical analysis method and jv is the weight of the entropy method.

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

222

II. B. Security risk identification model based on PSO-SVM
II. B. 1) SVM model for risk identification
Let the open source software supply chain risk pattern recognition system consist of m sample data Sample set

1 2[, , , ,]Tj mX X X X X   , samples 1 2[, , , , , ,](1, 2, ,)j j j ji jn jX x x x x y j m    consists of n risk metrics

observations jmx and 1 risk pattern category jy with jy Y the pattern category vector, and Y corresponds to

the set of rubrics
1 2{ , , , }(1,2,)lV v v v l   .

Due to the different meanings, scales, and value ranges of the indicator data, data normalization is required. In
order to minimize the loss of information during data normalization, the risk model category cut-off point of each
indicator is set according to the meaning and value range of the indicator, and the value range of the indicator is
thus divided into multiple value intervals to establish a new data normalization method. Let () (1) (1, 2,)i k i ku u k   be

the vectors corresponding to the risk pattern category cutoffs (1) () (1)(), ()i i k i k i kx k x x x  for the i -th indicator, then

The specification of the indicator data jix is done according to equation (16):

() ()

(1)'
(1) () (1) () (1)

(1) ()

(1) (1)

()

i k i i k

i k i
ji i k i k i k i k i i k

i k i k

i k i k i

u x x

x x
x u u u x x x

x x

u x x


  



 

 


    


 

 (16)

For the normalized sample data
1 2[, , , , ,]Tj mX X X X X       , where

1 2[, , , , ,]j j j ji jnX x x x x      is the input

vector, and
iy is the output value corresponding to jX .The SVM passes a nonlinear mapping  maps the data

jX to a high-dimensional feature space and performs a linear regression, i.e:

 () ()Tf x x b   (17)

where,  is the weight vector of the hyperplane; b is the bias term.
According to the structural risk minimization principle, Eq. (18) is equivalent to minimizing the cost generalized

function:

2 2

1

1 1
min(|| ||)

2 2

. . ()

m

i
i

T
i i i

C

s t y x b

 

  








    

 (18)

where, 0  , known as the slack variable; 0C  , the penalty parameter;

() (,)i jx K x x    is the kernel function, , 1,2, ,i j m  .

The SVM classification decision function is obtained by transforming to dyadic form and solving using Lagrange
operator:

 ' '

1

() (,)
n

i j
i

f x a K x x b


  (19)

(,)iK x x  is a positive definite function that satisfies Mercer's condition, and the radial basis function (RBF) is the

more commonly used kernel function:
2

2
(,) exp(), 0

2

|| ||i
i

x x
K x x 



 
  

   in the SVM model using RBF. The penalty parameter C and the kernel

parameter  jointly affect the performance of the SVM, so the selection of the optimal SVM parameters has a
great impact on the pattern recognition accuracy.PSO has the advantages of fewer parameters, simplicity, and
strong global search ability, etc. PSO is introduced to optimize the parameters C and  .

II. B. 2) PSO algorithm
Let there be a population

1 2(, , ,)sZ Z Z Z  of s particles in a D -dimensional search space, where the i th

particle is denoted as a D -dimensional vector
1 2(, , ,)Ti i i iDZ z z z  , which represents the particle i in the D -

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

223

dimensional vector
1 2(, , ,)Ti i i iDZ z z z  , which represents the position of the particle i in D -dimensional space,

i.e., a potential solution of the problem. The fitness value corresponding to each particle position
iZ can be

calculated based on the objective function, the velocity of particle i
1 2(, , ,)Ti i i iDV V V V  , and the individual

extremum of the population
1 2(, , ,)Ti i i iDP P P P  , and global extremes

1 2(, , ,)Tg g g gDP P P P  , where each particle

is updated according to Eq. (20) to update its own velocity and position:

1

1 1 2 2
1 1

() ()k k k k k k
id id id id gd id

k k k
id id id

V wV c r P Z c r P Z

Z Z V



 

     


 
 (20)

where, k is the k th iteration; w is the inertia weight; 1, 2, , ; 1,2, ,d D i s   ;
1 2,c c is the learning factor, a

non-negative constant;
1 2,r r are the random numbers between [0, 1];  is the the constraint factor that controls

the velocity weights.
The inertia weight w reflects the extent to which the particle inherits the previous velocity at the current velocity,

and the linear decreasing inertia weight (LDIW) is a more commonly used method:

max() () /start start endw k w w w k k    (21)

where,
startw is the initial inertia weight;

endw is the weight for the maximum number of iterations; and
maxk is the

maximum number of iterations.

II. B. 3) PSO-SVM Recognition Models
The PSO-SVM model construction for open source software supply chain risk pattern recognition is shown in

Figure 1.

Construction of the risk
indicator system

Classification of risk mode
categories

Acquisition of typical
sample data

Standardization of sample
data

Establishment of SVM
pattern recognition model

PSO trains the SVM model

Acquisition of the optimal
parameters of SVM

Application of SVM Pattern
Recognition Model

Figure 1: PSO-SVM model for patter recognition

III. Open source software supply chain security risk assessment
III. A. Open source software supply chain security evaluation index system construction
The index system of the open source software supply chain security evaluation model proposed in this paper is
adjusted to the first-level indicators: open source code component management, open source code quality
management and open source code source management. For the secondary indicators, the design of the model
should, on the basis of following the original indicator system of the Chinese standards as much as possible, fully
consider factors such as the data accessibility and compliance of the evaluation objects in the actual implementation
of the organization, and optimize and adjust the indicators. As the original "Open-source Code source-related
Indicators" model was refined from the dimensions of organizational activity, collaborative development, and open-

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

224

source community services and support, and indicators such as the original "open-source code richness" were
deleted, the final evaluation indicators are shown in Table 1.

Table 1: Safety evaluation index of open source software supply chain

Target Primary indicator Secondary indicator

Open source software supply

safety index

Open source code component

management(A1)

Safe open source component ratio (B1)

Component vulnerability severity (B2)

Component license compliance (B3)

Open source code quality

management (A2)

The scale of the self-research code is compared to the

proportion of the code (B4)

Open source code vulnerability rate (B5)

Open source code vulnerability repair rate (B6)

The open source code is a serious loophole (B7)

Open source code pr resolution percentage (B8)

Open source code bug type issue processing time (B9)

Source code source management

(A3)

Open source software organization activity (B10)

Open source collaborative development (B11)

Open source community or project activity (B12)

Open source community services and support (B13)

Open source code submission frequency (B14)

III. B. Results and analysis of indicator empowerment
III. B. 1) Determination of subjective weights
The experiment invites a total of five software supply chain security experts to score the importance of each level
of indicators, adopts hierarchical analysis to obtain the subjective weight value, takes expert A as an example,
constructs the judgment matrix of the level one indicators and calculates it, and the results are shown in Table 2,
and finally sums and averages the evaluation results of the weights of the five experts to derive the subjective weight
of the final level one indicators, and the results are shown in Table 3. Through the normalization of the optimal
parameters, the relative weights of each level of indicators W = (0.291, 0.655, 0.071) are obtained.

Table 2: Primary index judgment matrix

Primary indicator A1 A2 A3 Weighting max CR

A1 1 1/4 6 0.291

3.151 0.067 A2 4 1 8 0.655

A3 1/6 1/8 1 0.071

Table 3: The primary index is the subjective weight

Experts
Weighting

max CR
A1 A2 A3

Z1 0.288 0.648 0.079 3.086 0.067

Z2 0.441 0.491 0.083 3.017 0.014

Z3 0.462 0.459 0.093 3 0

Z4 0.637 0.264 0.113 3.042 0.044

Z5 0.554 0.245 0.215 3.029 0.023

Average 0.476 0.421 0.117 -

III. B. 2) Determination of objective weights
The data of open source software-related indicators are shown in Table 4.

The data of open source software-related indicators were calculated to obtain the formula for calculating the
objective weights of the 14 secondary indicators:

 1 2 3 12 13 14()

(0.031 064 0.053 0.122 0.025 0.391)

, , , , , ,

, , , , , ,

W w w w w w w

 
 

 (22)

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

225

Table 4: Data on source software

Index Open source software

A1

B1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

B2 0.898 0.962 1.072 0.998 0.963 0.984 0.97 0.996 0.987 0.994

B3 0.745 0.489 0.732 0.337 0.178 0.467 0.013 0 0.255 0.253

A2

B4 0.847 0.882 0.799 0.925 0.881 0.979 0.513 0.807 0.968 0.966

B5 0.995 0.719 0.873 0.95 0.917 0.799 1 0.847 0.998 0.851

B6 0.017 0 0 0 0.011 0.013 0.391 0 0.006 0.003

B7 0.436 0.905 1.054 0.807 0.739 0.973 0.85 0.839 0.986 0.837

B8 0.301 0.605 0.814 0.268 0.358 0.533 0.37 0.258 0.413 0.538

B9 1 0.998 0.985 0.962 0.941 0.997 0.965 0.996 0.989 0.981

A3

B10 3.013 25.274 26.422 21.128 25.642 38.571 26.415 31.414 2.46 26.792

B11 73.55 88.2 87.4 97.17 98.1 79.09 78.54 94.03 79.42 91.342

B12 87.01 89.1 99.03 89.42 88.42 83.42 79.23 87.73 79.83 89.45

B13 78.14 91.14 87.42 95.1 90.22 83.42 78.63 85.1 84.94 94.12

B14 80.09 91.28 90.09 89.02 86.154 10.57 81.03 89.52 84.52 88.03

III. B. 3) Determination of portfolio weights
Substituting the objective weights in Table 4 into the formula yields the coefficient of degree of difference

eR =0.498
and the correction coefficient a =0.541, and then the comprehensive weights of the indicators are obtained, as
shown in Table 5. From the table, it can be seen that the first-level indicator of open source code component
management has the highest weight assigned, with a value of 0.478, indicating that relatively speaking, open source
code component management is the most important to experts, and it is also the one that should be emphasized in
the identification of security risks in the open source software supply chain. Secondly, the weight of open source
code quality management is higher, with a value of 0.422. Among the secondary indicators, the frequency of open
source code submission, the scale and proportion of self-study code, and the severity of component vulnerability
have the highest weight in the identification of security risks in the open source software supply chain.

Table 5: The primary index is the subjective weight

Primary indicator Subjective weight Secondary indicator Objective weight Composite weight

A1 0.478

B1 0.019 0.253

B2 0.052 0.026

B3 0.043 0.022

A2 0.422

B4 0.056 0.243

B5 0.007 0.004

B6 0.043 0.021

B7 0.036 0.018

B8 0.013 0.007

B9 0.038 0.019

A3 0.100

B10 0.041 0.079

B11 0.023 0.012

B12 0.112 0.055

B13 0.019 0.01

B14 0.498 0.231

III. C. Risk assessment results and analysis
III. C. 1) Matlab Implementation of Supply Chain Risk Assessment Models
In this paper, Matlab 2014a and LIBSVM 3.22 toolbox are selected to write Matlab program to implement PSO-SVM
model for virtual supply chain risk assessment. The model parameters are set. The parameters of the support vector
machine are set as follows: a Gaussian radial basis kernel function is selected, the kernel parameter   (100,1.0),
and the penalty parameter C  (0.1,100).

PSO algorithm parameter settings: particle dimension  ,C , the maximum number of iterations is 300, the
number of populations is 20, take

1C =1.7,
2C =1.9, and take the value of fixed inertia weights  =1. Taking the

training results of the training samples and the actual values of the mean square error (MSE) as the particle fitness.

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

226

Run the Matlab program of the model, read the sample data of the training set, and calculate the average and
optimal adaptation of the particles until the end of the iteration as shown in Fig. 2.

Figure 2: PSO algorithm fitness curve

The optimal parameters after PSO algorithm optimization are C=1.8841,  = 0.103. The comparison of training
results and actual results of the training set is shown in Fig. 3, and the comparison of evaluation results and actual
results of the test set is shown in Fig. 4. The mean square deviation of the model assessment results is small, the
correlation coefficient is closer to 1, and the model fits well. The risk level value of the test set obtained by using the
model assessment is closer to the actual value. As can be seen from the figure, most of the sample assessment
results for the test set fall within the actual risk level interval of the corresponding samples, and the accuracy of the
assessment of the 10 test set samples is 90%, with one sample being misclassified. The standard PSO-SVM model
can accurately assess the risk level of the supply chain during its complete life cycle after its formation based on
the current values of the supply chain risk indicators.

Figure 3: The training set evaluates the comparison of the results

Figure 4: The test set evaluates the comparison of the results

III. C. 2) Accuracy test and error analysis of the evaluation model
The extent of supply chain risk impact and its quantitative values are shown in Table 6.

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

227

Table 6: Risk impact of supply chain and its quantification

Risk level Corresponding risk

Low [0,0.2]
Lower (0.2,0.4]

General (0.4,0.6]

Higher (0.6,0.8]

Height (0.8,1]

The output of this model evaluation is: number of iterations iter=136, minimum value obj=-8.74312 obtained from

quadratic programming solution converted from SVM file, constant term b of the judgment function is rho=-0.150127,
number of support vectors nSV=45, number of support vectors on the boundaries nBSV=14.
MSE=0.031201(regression), squared correlation coefficient=0.96432(regression).), squared correlation
coefficient=0.96432(regression). The evaluation results are shown in Table 7, and the results show that the
assessed risk level of PSO-SVM model is closer to the actual risk level with higher accuracy.

Table 7: Evaluation result

Supply chain number Actual risk level The actual area Assess risk level Assessment area

Test 1 1.000 Height 0.801 Highet

Test 2 0.311 Lower 0.308 Lower

Test 3 0.561 General 0.412 General

Test 4 0.574 General 0.513 General

Test 5 0.895 Highet 0.893 Highet

Test 6 0.058 Low 0.154 Low

Test 7 0.472 General 0.511 General

Test 8 0.158 Low 0.127 Low

Test 9 0.937 Height 0.893 Height

Test 10 0.312 Lower 0.397 Lower

IV. Trusted computing-based supply chain security protection system
IV. A. Credible Computing
Trustworthy computing is a technology that guarantees the predictability of information systems, which refers to the
security protection while calculating, so that the results of the calculation are always the same as the expected
value, so that the whole calculation is measurable and controllable, without interference.

The development of trusted computing has gone through several stages. The initial trusted 1.0 comes from
computer reliability, mainly by means of troubleshooting and redundant backup, which is a security measure based
on fault-tolerant methods. Trusted 2.0 is marked by TPM1.0 introduced by Trusted Computing Group (TCG), which
mainly takes hardware chip as the root of trust, and takes trusted metrics, trusted storage, and trusted reports as
means to realize single-computer protection of computers. The shortcomings are: it does not consider the security
problem from the computer architecture level, and it is difficult to realize active defense [27]. China's trusted
computing technology has developed to the 3.0 stage of the “active defense system”, to ensure that the whole
process can be measured, controlled and not be interfered with, i.e., parallel defense and computing “active
immunity computing mode”. The system architecture is based on password, chip as a pillar, motherboard as a
platform, software as the core, network as a link, application into a system to provide security for the application
execution environment and network environment. The basic principle of Trusted Computing 3.0 is shown in Fig. 5.
Since the platform is powered up, the trust is transferred from TPCM (Trusted Platform Control Module) to the
operating system layer by gradually constructing a trust chain to ensure the trustworthiness of the whole information
system from the source.

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

228

Application
program

Kernel extension
module

OS kernel image

OS boot program

Motherboard
firmware

Active measurement
mechanism

The basic trust base module
of the kernel layer

The basic trust base module
of the boot layer

The basic trust base module
of the firmware layer

TPCM

System expansion

Trusted measurement

Hook mechanism

Figure 5: Schematic diagram of the reliable calculation of 3.0

IV. B. Architectural design
IV. B. 1) Trusted supply chain controls
The power system software supply chain control program can learn from the technical route of Apple's application
software installation control, applying trusted computing technology and commercial confidentiality system to the
power monitoring system, and constructing a full security protection system from the source to the terminal of the
supply chain as shown in Figure 6.

Apple requires the developer to sign the software installation package with the certificate issued by the developer
during the application software installation process, and the IOS device verifies the signature based on the trusted
computing technology before the software installation package is installed and started to ensure that the app has
not been tampered with since the installation or the last update. Similarly, in the electric power system, the trust
chain transfer mechanism of trusted computing technology can also be used to realize the control of devices and
software versions, ensuring that uncertified devices and software versions cannot be executed.

Developer/
Enterprise

Software installation package
(signed by Developer)

Apple Certificate
Authority

AppleStore

Apple Trusted (with built-
in apple Public Key)

IOS device

Register and join the Apple
Developer/Developer
Enterprise Program

Issue a certificate

Upload

AppleStore

Verify the developer's
signature and use the

Apple private key to sign
the software installation

package with Apple

Software installation
package (signed by Apple)

Verify the Apple signature
before installation and startup

The technical route for apple application software installation control

Digital signature
of the R&D unit

Software
development

Trusted software
development
environment

Digital signature of
the testing institution

Source code
inspection

Safety
inspection

Trusted software
detection

environment

White
box test

Black
box Test

Safety test

Trusted environment

Digital signature for
software warehousing

Communication
certificate

Deployment and
implementation

Run and
use

Version
maintenance

Dispatch digital certificate authentication

Trusted computing

Figure 6: The overall technical framework of trust management of supply chains

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

229

IV. B. 2) End-to-end trusted construction
The purpose of end-to-end trusted construction is to ensure that in the grid environment, regardless of the
downstream type of business (such as control instructions, remote configuration issuance) or upstream type of
business (such as terminal access, data collection and access), the legality and security of the access connection
can be realized for the whole process of monitoring and protocol authentication. In Figure 7, by building an end-to-
end trusted authentication module and terminal trusted transformation in the trusted management center, the system
is able to carry out trusted monitoring and control of the entire business communication process, ensure the integrity,
confidentiality and compliance of key business data, and prevent malicious attacks, data tampering and improper
access.

End-to-end
trusted

authentication
module

Trusted cryptographic
component

Master station system

Trusted cryptographic
component

Secure and trusted terminal

Commercial cryptography
security system

Situation
awareness

Identity verification

Trusted Connection
Management

Integrity measurement

Alarm reporting1. Device
identity

verification

2. Connection
and control

1. Device identity
verification

2. Connection
and control

Secure communication
kernel

Master station system End-to-end trusted
authentication module

S
ecure com

m
unication

kernel

Strategy Management

Trusted network
connection management

Access control

Identity verification

Integrity measurement
service

Trusted connection
component

Access control

Trusted network
connection management

Secure communication
kernel

Trusted
Defense

component

PCIE trusted board card

StorageCPU

Hardware layer

Business terminal

Trusted
cryptographic

component

Password service
invocation

Commercial
cryptography

security system

Basic password
service

Trusted
Measurement service

Connection
management service

Trusted hardware
root

Trusted Defense
component

Trusted connection
component

Figure 7: End-to-end credible overall technical plan

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

230

V. Conclusion
This study constructs an artificial intelligence-driven open source software supply chain security risk identification
and protection technology system, and the main conclusions are as follows:

The weights of open source software supply chain security evaluation indicators are assigned by AHP-entropy
combination assignment model, and the results show that open source code component management is the
highest-weighted first-level indicator, which takes the value of 0.478, followed by open source code quality
management with a weight of 0.422, and open source code source management with a weight of 0.100. Among the
second-level indicators, the frequency of open source code submission, the size and percentage of self-developed
code and component vulnerability severity rank in the top three, which indicates that enterprises should focus on
risk management in these aspects.

The risk identification model constructed based on PSO-SVM shows high accuracy. The model was iterated 136
times by the PSO algorithm to obtain the optimal parameters, and the accuracy of sample evaluation on the test set
was 90%, with only one sample being misclassified. The mean square error MSE of the model is 0.031201, and the
squared correlation coefficient is 0.96432, which indicates that the model fits well and can accurately assess the
risk level of the open source software supply chain.

The supply chain security protection system based on trusted computing technology realizes the whole security
protection from the source to the end of the supply chain. The system draws on the technical route of Apple's
application software installation control, utilizes the trust chain transfer mechanism of trusted computing technology
to realize the control of equipment and software version, and ensures the security of the business communication
process through the end-to-end trusted construction, effectively preventing malicious attacks, data tampering and
improper access.

This study provides theoretical guidance and practical solutions for enterprise open source software supply chain
security management, which is of great significance for improving enterprise information system security.

References
[1] Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial companies contribute to open source software?. International

journal of information management, 32(2), 106-117.
[2] Shahrivar, S., Elahi, S., Hassanzadeh, A., & Montazer, G. (2018). A business model for commercial open source software: A systematic

literature review. Information and Software Technology, 103, 202-214.
[3] Russo, D. (2016, January). Benefits of open source software in defense environments. In Proceedings of 4th International Conference in

Software Engineering for Defence Applications: SEDA 2015 (pp. 123-131). Cham: Springer International Publishing.
[4] Sage, D., Donati, L., Soulez, F., Fortun, D., Schmit, G., Seitz, A., ... & Unser, M. (2017). DeconvolutionLab2: An open-source software for

deconvolution microscopy. Methods, 115, 28-41.
[5] Titov, A., & Vukolov, A. (2019). Free and open source software for technical texts editing, its advantages and experience of usage on TMM

training in Bauman University. In New Trends in Educational Activity in the Field of Mechanism and Machine Theory: 2014-2017 (pp. 208-
215). Springer International Publishing.

[6] Zajdel, S., Costa, D. E., & Mili, H. (2022, September). Open source software: an approach to controlling usage and risk in application
ecosystems. In Proceedings of the 26th ACM International Systems and Software Product Line Conference-Volume A (pp. 154-163).

[7] Silic, M., Back, A., & Silic, D. (2015). Taxonomy of technological risks of open source software in the enterprise adoption context.
Information & computer security, 23(5), 570-583.

[8] Haider, S., Khalil, W., Al-Shamayleh, A. S., Akhunzada, A., & Gani, A. (2023). Risk Factors and Practices for the Development of Open
Source Software From Developers’ Perspective. IEEE Access, 11, 63333-63350.

[9] Linh, N. D., Hung, P. D., Diep, V. T., & Tung, T. D. (2019, February). Risk management in projects based on open-source software. In
Proceedings of the 2019 8th International Conference on Software and Computer Applications (pp. 178-183).

[10] Schueller, W., & Wachs, J. (2024). Modeling interconnected social and technical risks in open source software ecosystems. Collective
intelligence, 3(1), 26339137241231912.

[11] Harutyunyan, N. (2020). Managing your open source supply chain-why and how?. Computer, 53(6), 77-81.
[12] Nadgowda, S. (2022, November). Engram: the one security platform for modern software supply chain risks. In Proceedings of the Eighth

International Workshop on Container Technologies and Container Clouds (pp. 7-12).
[13] Merigala, J., Kumar, V., Gujjarlapudi, J., Gupta, M., & Kumar, A. S. (2024, December). Analysis of Supply Chain Attacks in Open-Source

Software and Mitigation Strategies. In 2024 5th International Conference on Communication, Computing & Industry 6.0 (C2I6) (pp. 1-5).
IEEE.

[14] Obioha Val, O., Lawal, T., Olaniyi, O. O., Gbadebo, M. O., & Olisa, A. O. (2025). Investigating the feasibility and risks of leveraging artificial
intelligence and open source intelligence to manage predictive cyber threat models. Temitope and Olaniyi, Oluwaseun Oladeji and
Gbadebo, Michael Olayinka and Olisa, Anthony Obulor, Investigating the Feasibility and Risks of Leveraging Artificial Intelligence and
Open Source Intelligence to Manage Predictive Cyber Threat Models (January 23, 2025).

[15] Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: state of the art and
future research directions. International journal of production research, 57(7), 2179-2202.

[16] Brintrup, A., Kosasih, E., Schaffer, P., Zheng, G., Demirel, G., & MacCarthy, B. L. (2024). Digital supply chain surveillance using artificial
intelligence: definitions, opportunities and risks. International Journal of Production Research, 62(13), 4674-4695.

[17] Benedetti, G., Verderame, L., & Merlo, A. (2022, September). Alice in (software supply) chains: risk identification and evaluation. In
International Conference on the Quality of Information and Communications Technology (pp. 281-295). Cham: Springer International
Publishing.

Artificial Intelligence-Driven Security Risk Identification and Protection Technology for Open Source Software Supply Chain

231

[18] Nwamekwe, C. O., & Igbokwe, N. C. (2024). Supply Chain Risk Management: Leveraging AI for Risk Identification, Mitigation, and
Resilience Planning. International Journal of Industrial Engineering, Technology & Operations Management.

[19] Röhrs, S., Rohn, S., Pfeifer, Y., & Romanova, A. (2025). Supplier Risk Assessment—A Quantitative Tool for the Identification of Reliable
Suppliers to Enhance Food Safety Across the Supply Chain. Foods, 14(8), 1437.

[20] Baryannis, G., Dani, S., & Antoniou, G. (2019). Predicting supply chain risks using machine learning: The trade-off between performance
and interpretability. Future Generation Computer Systems, 101, 993-1004.

[21] Shaked, A., & Margalit, O. (2022). Sustainable risk identification using formal ontologies. Algorithms, 15(9), 316.
[22] Sharma, R., Shishodia, A., Gunasekaran, A., Min, H., & Munim, Z. H. (2022). The role of artificial intelligence in supply chain management:

mapping the territory. International Journal of Production Research, 60(24), 7527-7550.
[23] Li, Y., & Kong, X. (2023, August). Research on Risk Identification of New Retail Supply Chain in the Context of Internet. In 2023 2nd

International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2023) (pp. 381-389). Atlantis Press.
[24] Charles, V., Emrouznejad, A., & Gherman, T. (2023). A critical analysis of the integration of blockchain and artificial intelligence for supply

chain. Annals of Operations Research, 327(1), 7-47.
[25] Mattas Konstadinos,Georgiou Pantazis,Lazaridou C. Dimitra,Mattas Christos,Nastis A. Stefanos,Seddaiu Giovanna... & Ramson

Adombilla. (2025). Assessing sustainable water management in a resource-scarce environment (Ghana, West Africa) via the Analytic
Hierarchy Process. Agricultural Water Management,313,109497-109497.

[26] Borko Stosic,Vladimir Djurdjević,Ivana Tošić,Antonio Samuel Alves da Silva & Tatijana Stosic. (2025). Quantifying the Rainy Season in the
Brazilian Northeast Through a Modification of the Relative Entropy Method. Water,17(7),1086-1086.

[27] Jie Lu,Yuexia Zhang & Taifu Yuan. (2024). Blockchain-assisted trusted computing and communication resource allocation strategy for
industrial Internet of Things. Internet of Things,27,101249-101249.

