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Abstract The rapid development of artificial intelligence in the field of education has injected new momentum into 
the systematic transformation of educational models, driving innovation and optimization in teaching methods, 
evaluation systems, and management models. This paper uses the OpenPose algorithm to obtain skeletal point 
data for sports movements and standardizes the skeletal coordinate data. Based on the ST-GCN model, a multi-
scale temporal attention mechanism is introduced to enhance the model's feature extraction capabilities, and a 
residual module is incorporated into the GCN to improve the model's local feature extraction performance. On this 
basis, the DTW algorithm is used to construct a sports movement evaluation model. Experiments show that the 
improved ST-GCN model achieves a MAP value of 79.3%, which is 9% and 6.8% higher than the MAP values of 
the image-based pose estimation algorithms SimpleBaseline and HRNet, respectively. The overall score for sports 
actions based on the DTW algorithm is 88.19 points, differing from the manually scored results by only 1.12 points. 
Integrating artificial intelligence technology with sports education and teaching can significantly enhance the 
intelligent reform of sports education and provide a technological foundation for the personalized development of 
sports education. 
 
Index Terms artificial intelligence technology, OpenPose, attention mechanism, ST-GCN model, DTW algorithm 

I. Introduction 
As global educational reforms continue to deepen, teachers' classroom teaching practices are undergoing 
significant transformations [1]. In traditional physical education classroom teaching models, teachers primarily 
employ “lecture-based” and “rote learning” teaching methods, which emphasize the transmission of knowledge and 
skills, primarily achieved through explanations and demonstrations, while interactive activities, questioning, and 
discussion in the classroom are often neglected. Under the broader context of educational reform, innovative 
teaching models such as “inquiry-based learning,” “collaborative learning,” “project-based learning,” and “contextual 
learning” have been integrated into physical education classroom practices [2], [3]. Consequently, the objectives 
and forms of teaching behavior have undergone significant changes. The purpose of teaching behavior has shifted 
from the acquisition of knowledge and skills to the comprehensive development of students' various abilities, 
fostering their personalized development, and actively cultivating their autonomous learning capabilities [4]-[7]. The 
forms of teaching behavior have shown a trend toward diversification, with a significant increase in interactive, 
questioning, and discussion activities in the classroom, placing greater emphasis on the guiding role of teaching 
behavior in student learning [8]. Against the backdrop of rapid information technology development, artificial 
intelligence (AI) technology, with its powerful data processing and intelligent analysis capabilities, has gradually 
penetrated the education sector, significantly driving the transformation of educational models and teaching 
methods [9]-[11]. 

In their study on the application of artificial intelligence technology in sports teaching resource management, Lee, 
H, and Lee, J [12] examined the potential transformative role of artificial intelligence in sports education through 
customized personalized courses, knowledge transmission, assessment, and consultation, while emphasizing that 
future sports teachers need to enhance their professional capabilities in artificial intelligence. Wang, C, and Wang, 
D [13] proposed utilizing cloud computing, virtualization technology, and AI technology to manage physical 
education teaching resources in Chinese universities. Their research found that compared to traditional methods, 
this approach could improve resource sharing and utilization rates, thereby promoting the development of higher 
education. Hu, Z et al.[14] explored the trend toward AI-driven intelligent transformation in physical education and 
future research directions, identifying current limitations such as high technical costs, insufficient teaching resources, 
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and data security issues, to provide a framework for future development. Li, S et al.[15] developed a multi-feature 
fuzzy evaluation model based on AI technology to address challenges in assessing physical education teaching 
methods in universities. Liu, T et al. [16] proposed an AI-optimized physical education activity development model 
aimed at enhancing students' physical fitness and motor skills under the new curriculum reform. This model 
achieves high accuracy in motion recognition and meets practical needs. In summary, the application of AI 
technology in physical education resource management has significantly improved resource utilization efficiency 
[17]. Through intelligent management and analysis, teachers can quickly access and process large amounts of 
teaching resources, reducing the time and effort required for traditional manual organization. For example, artificial 
intelligence can be used to collect and analyze students' movement data in real time. The accumulation and analysis 
of this data provide a solid foundation for teachers to develop personalized teaching plans [18]. 

The introduction of artificial intelligence technology has injected new possibilities into physical education teaching, 
from scientific movement skill training to personalized exercise plan development, providing more efficient and 
precise tool support for physical education. The article relies on the OpenPose algorithm to obtain skeletal point 
coordinate data and standardizes the data. By combining the ST-GCN model with the attention mechanism, an 
improved ST-GCN model based on a multi-scale temporal attention mechanism was constructed for human motion 
recognition and estimation in physical education teaching. Based on the motion recognition results, a physical 
education motion evaluation model was constructed using the DTW algorithm. Through simulation experiments, the 
intelligent application effects of artificial intelligence technology in physical education teaching were verified. 

II. Skeletal point data acquisition and preprocessing based on OpenPose 
Artificial intelligence is having a revolutionary impact on the development of education, and physical education, as 
an important part of education, should also actively embrace artificial intelligence so that it can play a role in 
promoting physical education in the new era. Therefore, when faced with students who have grown up in the age 
of artificial intelligence and will be influenced by it throughout their lives, physical education has a strong need for 
the application of artificial intelligence. 

 
II. A. Research on Pose Matching Based on OpenPose 
II. A. 1) Overview of OpenPose 
The OpenPose algorithm represents a significant advancement in the field of computer vision, particularly in the 
realm of real-time multi-person 2D pose estimation. This algorithm employs PAF detection to identify human body 
parts in images or videos. It estimates poses by iteratively refining partial affinity fields and partial detection 
confidence maps through consecutive stages. The architecture begins with a feedforward network, predicting a 2D 
confidence map of body part locations and a 2D vector field of partial affinity fields, encoding the degree of 
association between body parts. This setup enables OpenPose to process multiple individuals in an image, 
identifying anatomical keypoints for each person. By optimizing the network framework, larger convolutional kernels 
are replaced with multiple smaller ones to reduce computational load while maintaining accuracy. This approach 
combines deep learning techniques with iterative refinement of pose estimation. 

OpenPose has been widely recognized for its performance and efficiency, winning the COCO Keypoint Challenge. 
The COCO Challenge is one of the most influential image recognition challenges in the field of artificial intelligence, 
aimed at advancing research and development in computer vision. The COCO dataset, proposed by Microsoft 
Research, is a large-scale computer vision dataset commonly used for analyzing and evaluating common visual 
tasks, including object detection, instance segmentation, human keypoint detection, and panoramic segmentation. 

 
II. A. 2) OpenPose Principle 
OpenPose is an open-source library developed based on convolutional neural networks and supervised learning, 
which implements pose estimation for human movements, finger movements, and facial expressions. It 
demonstrates excellent robustness in pose estimation under both single-person and multi-person conditions, thanks 
to its use of a bottom-up human pose estimation algorithm that utilizes human joint vector fields (PAFs) [19]. The 
process of OpenPose for input image processing is as follows: 

First, calculate the joint confidence map and joint vector field to identify specific human joint points. Then, use the 
binary matching algorithm to connect the corresponding joint points for each person, thereby forming a human 
skeleton. OpenPose takes an image of size w h   as input and outputs the two-dimensional positions of the 
skeleton joint points for each person in the image. 

The feedforward network outputs a set of human joint confidence maps S  and a set of human body part vector 

fields L  . Where 
1 2( , , , )JS S S S    and n h

jS R   , [1... ]j J  , where J   is the number of human joint nodes. 

1 2( , , , )CL L L L   where 2w h
cL R    and [1... ]c C , with C  being the number of body parts. 



Exploring the Application of Artificial Intelligence Technology in the Intelligent Management of Sports Education and Teaching Content 

1988 

The feedforward network model architecture consists of two parts: the front half is a pre-trained backbone network, 
which is VGG-19 in OpenPose, and the back half uses two branches to output joint confidence maps and joint 
vector fields, respectively. 

The two branches go through k  stages to predict the output joint confidence maps and joint vector fields. First, 
the input image is processed by the first part of the model to obtain a feature map F . In the first stage, the feature 
map F  is fed into the two branches of the first stage, which output corresponding results: the joint confidence map 
set S  and the body part relationship field set L , where S  contains J  confidence maps and L  contains C  
body part relationship fields. 

The outputs of the first stage and the subsequent 1k   stages can be represented as: 
 1 1( )S F  (1) 

 1 1( )L F  (2) 

 1 1( , , ), 2t t t tS F S L t      (3) 

 1 1( , , ), 2t t t tL F S L t      (4) 

After each stage is completed, the output results are merged, and the original feature map F  is concatenated 
as the input for the next stage. Then, the Hungarian algorithm is used to perform maximum bipartite graph matching. 
After matching all adjacent joints, the joints of each person are obtained, and the optimal connection results for 
multiple joints are finally obtained. 

 
II. B. Acquisition and standardization of skeletal point coordinate data 
II. B. 1) Acquisition of skeletal point coordinate data 
Joint points can describe human posture more directly and clearly, and human movement characteristics can also 
be represented by the movement of joint points. In dynamic environments, to reduce experimental costs, joint node 
positions are estimated from human motion images using human pose estimation technology. The joint node names 
required for the experiment are: left shoulder, right shoulder, neck, spine, hips, left elbow, right elbow, left hand, right 
hand, left knee, right knee, left foot, right foot, and head, numbered K1 to K14. The coordinates of the hip joint are 
approximately estimated using the intersection point of the straight lines connecting the right shoulder and left knee 
with the straight lines connecting the left shoulder and right knee. To ensure that the movement trajectories of joint 
points remain within the same range across different actions, each joint point is centered. Among these, the 
centering of all joint points ( , , )i i i iP x y z  around the hip can be expressed as: 

 
5 5 5 5( , , ) ( , , ) ( , , )i i i i i i i iP x y z P x y z P x y z   (5) 

After centralizing the joints, a simple skeleton is formed. The simple skeleton undergoes preprocessing, which 
includes skeleton scale normalization, skeleton perspective rotation, and removal of invalid frames. This paper only 
performs scale normalization on the skeleton, with the hip joint's position as the origin of the coordinate system. The 
vector formed by the spine and hip joint is set to 

4 4 4 4( , , )P x y z , and the scale normalization standard ensures that 

the magnitude of the vector formed by the spine and hip joint is 1. Similarly, other joints are transformed in the same 
manner: 

 
4 4 4 4( , , ) ( , , )/ | ( , , ) |i i i i i i i iP x y z P x y z P x y z  (6) 

II. B. 2) Skeletal coordinate standardization processing 
Since coordinate point data is based on pixels, the skeletal point coordinate data obtained from the same video 
frame image in videos with different resolutions will differ. Therefore, the obtained skeletal coordinate data must be 
standardized and scaled [20]. 

Define the coordinate data of the i nd skeletal point at j  resolution as 
, , , ,( , , )i j i j i j i jp x y c . For example, taking 

the Nose with joint number 0 as an example, the coordinate data at 280p and 720p resolutions are: 

 0,280

0,720

(136.911,216.846,0.857697)

(352.442,558.547,0.855352)

p

p

p

p




 (7) 

We measure the difference in bone point coordinates at different resolutions using point scaling ratios, i.e.: 

 ,280 ,280

,720 ,720

i p i p
p

i p i p

x y
k

x y
   (8) 

The shoulder joint coordinate data for numbers 2 and 5 are as follows: 
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2,280

5,280

2,720

5,720

(115.510,248.001,0.908061)

(162.244,244.141,0.923461)

(297.227,638.978,0.906463)

(417.859,629.000,0.932781)

p

p

p

p

p

p

p

p









 (9) 

Then, using the point-to-point distance formula 2 2
1 2 1 2( ) ( )l x x y y     , we can calculate the length of the 

shoulder joint. 
Similarly, we measure the length of the limbs at different resolutions using the limb scaling ratio, i.e.: 

 280

720

p
l

p

l
k

l
  (10) 

The skeletal point coordinate data at different resolutions, point coordinate data, and limb lengths have the same 
scaling ratio, so we can directly use the position data of the Nose skeletal point with index 0 in the first frame of the 
video at two resolutions to obtain the scaling ratio of the limb length. 

Therefore, joint point standardization is performed to achieve consistent pixel scale, and the transformation is 
obtained using the following equation. 

 
0

0

x z x

y z y

     
          

 (11) 

where ( , )x y    are the coordinates of the human skeleton points in the normalized image, ( , )x y   are the 

coordinates of the human skeleton points in the source image, 
, 1 0, 2/o j jz x x , z  is the scaling ratio, 

, 1o jx  is the 

coordinate data of the nose in the normalized image, and 
0, 2jx   is the edge length of the source image, both 

measured in pixels. 

III. Improved ST-GCN human action recognition model with fusion attention 
In modern physical education teaching, how can artificial intelligence technology be fully integrated to assist in 
physical education teaching and further promote the innovative development of physical education teaching content? 
The use of artificial intelligence technology for physical movement recognition also lays a reliable foundation for 
optimizing physical education teaching content and developing personalized physical education training plans. This 
chapter builds upon the ST-GCN model by introducing a temporal attention mechanism to construct an improved 
ST-GCN human movement recognition model, aiming to provide support for optimizing movement training in 
physical education teaching processes. 

 
III. A. Spatio-temporal Convolutional Neural Networks and Attention Mechanisms 
III. A. 1) Spatio-temporal Convolutional Neural Networks 
Spatio-Temporal Graph Convolutional Neural Network (ST-GCN) extracts human skeleton from action videos by 
separating the two steps of spatial feature extraction and temporal feature extraction. It uses a Graph Convolutional 
Network (GCN) module to extract spatial features from the human skeleton graph, and then employs a Spatio-
Temporal TCN module to extract temporal features of the action. In ST-GCN, the human skeleton graph signal first 
undergoes spatial feature extraction via the GCN module. Subsequently, the TCN module, composed of 
convolutional layers with a kernel size of 1×9, performs convolutional operations on the output feature maps from 
the GCN module. Finally, the features are fused with a residual structure to obtain the output features [21]. 

For human skeleton graphs, three partitioning methods are used: uniform label partitioning, distance partitioning, 
and spatial structure partitioning. The differences between these methods in the model lie in the different ways of 
decomposing the adjacency matrix. That is: 

 
1

k

i
i

A I A


   (12) 

In this context, k  denotes the number of decomposed adjacency matrices under different partitioning schemes. 

The matrix A I  represents the adjacency matrix of a human skeleton graph with self-connections, as described 
earlier, while the matrix 

iA  denotes the decomposed sub-adjacency matrices. 

ST-GCN adopts a spatial structure partitioning method. Its GCN module implementation uses the graph 
convolution implementation method from existing literature. Graph convolution operations are performed on the 
three matrices decomposed from the adjacency matrix with self-connections, and the results are added together to 
obtain the GCN module's computational result. 
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III. A. 2) Principles of Attention Mechanisms 
The concept of the attention mechanism is based on research into human vision. When humans observe certain 
types of objects, they often only notice key information rather than all of the object's information. Information that is 
not noticed is often subconsciously ignored, and this phenomenon is called the attention mechanism. Under normal 
circumstances, when humans receive visual signals, the brain's ability to process the information conveyed by the 
visual signals is not the same, and this phenomenon is called visual sensitivity [22]. 

The attention mechanism simulates the human brain's strategy for allocating attention. It employs a probability-
based weighting approach to apply different probability weights to various regions, enabling focused attention on 
critical areas to achieve specific task objectives. The attention mechanism can be divided into two categories: soft 
attention and hard attention. Soft attention focuses on specific regions and channels within an image. This 
mechanism trains and identifies corresponding features through the backpropagation process of a convolutional 
neural network. Diverse soft attention structures can be embedded within a convolutional neural network, with their 
specific types depending on the network architecture design, and calculations can be performed directly based on 
the direction of gradients. Hard attention mechanisms, on the other hand, focus on pixels in the image as the primary 
concern, without using gradient directions for computation. Instead, they employ a random selection method to 
choose focal points. As such, the essence of attention mechanisms in selecting focal regions is to assign different 
weights to different positions in the input sequence, thereby prioritizing and learning from regions with higher weight 
values while selectively ignoring redundant information. This approach aims to allocate key information to resource 
processors. 

 
III. B. Improving the ST-GCN Human Action Recognition Model 
III. B. 1) Improving the ST-GCN Model Framework 
To better capture changes in human body movements during sports training, this paper introduces a multi-scale 
spatio-temporal attention mechanism to learn spatio-temporal features of the human skeleton and seamlessly 
integrates them into the spatio-temporal graph convolutional network (ST-GCN) model, resulting in an improved ST-
GCN model with integrated spatio-temporal attention mechanisms, enabling end-to-end training. Figure 1 shows 
the framework of the improved ST-GCN model. Based on the original ST-GCN module, this paper adds a multi-
scale spatio-temporal attention module to extract and fuse human joint features from both temporal and spatial 
dimensions, thereby enhancing the global feature information of the feature maps. 

Spatio-temporal 
attention module

Graph convolution 
module

Time product 
module

Residual convolution 
module

Human 
skeletal data

Fully connected 
layer

Classification 
result

Improve the 
ST-GCN Block

Improve the 
ST-GCN Block

…

10-layer improved ST-GCN module

Attention 
Module

Feature extraction 
and fusion of 
spatial joints

Inter-frame co-joint 
feature extraction 

and fusion

CCN 
Block

TCN
Block

 

Figure 1: Overall structure of improved ST-GCN 

III. B. 2) Multi-scale temporal attention 
The multi-scale temporal attention module can more efficiently aggregate average pooling features and max pooling 
features to capture sensitive information about operations in the temporal dimension. Compared to previous multi-
scale temporal modules, this module adds a shared multi-layer perceptron (S-MLP) to the module, better combining 
local temporal features with global temporal features. The S-MLP first shrinks and then expands features, effectively 
stacking multiple convolutional blocks to obtain more local temporal information, addressing the limitation of 
previous similar works like SENet that were insensitive to temporal features. Additionally, this module uses the 
Squeeze operation to compress feature dimensions, accelerating computation while reducing model computational 
complexity. Due to these operations, subsequent aggregation of local temporal features can be performed using 
simple 1D convolutions. 
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Given an intermediate feature N T C H WX R      from the upper-level network output, use the max pooling layer to 

process and obtain global pooling information 1 1 1
max

N TF R     . Then, the global pooling information 
maxF  is output 

to a shared multi-layer perceptron, which has a structure similar to that in the spatial difference module in the 
previous chapter, but the scaling factor is different, both being r . After the shared multi-layer perceptron processes 

maxF  , the intermediate spatio-temporal feature 1 1 1
1

N T
tempF R       is obtained. The above operations can be 

summarized as: 
 

1 ( ( ( )))tempF Smlp Max X  (13) 

The input intermediate features X  are pooled using a 3D average pooling layer to obtain the average pooling 
features 1 1 1 1N T

avgF R       . Next, the average pooling features are passed through the same shared multi-layer 

perceptron, where the multi-layer perceptron shares parameters with the previous path, to generate the second 
attention feature 1 1 1

2
N T

tempF R     , which can be represented as: 

 
1 1

1
( ) [:,:,:, , ]

H W

i j

Avg x X i j
H W  


   (14) 

 
2 ( ( ( )))tempF Smlp Avg X  (15) 

The obtained features 
maxF  and 

avgF  are each compressed to obtain 
max

F   and 
avgF  , respectively, where both 

features have a dimension of N×T×1. Then, through a dimension concatenation operation, a new aggregated 
feature 2 1N T

iosF R    is generated. Through a 1D convolution, the aggregated average pooling and max pooling 

features 
iosF  are further enhanced, where the convolution kernel size of the 1D convolution is 3×1. Subsequently, 

an Unsqueeze operation is used to restore the original feature dimensions, and through a Sigmoid activation 
function, the model obtains the third and most important attention feature 

3tempF , where 1 1 1
3

N T
tempF R     . The above 

operations can be formalized as: 
 ' ( ( ( )))avgF Sqz Smlp Avg x  (16) 

 '
max ( ( ( )))F Sqz Smlp Max x  (17) 

 
3 ( ( ([ , ])))temp avg maxF Unsqz Conv F F    (18) 

After summing the three feature matrices and then performing a dot product with the original features, the final 
multi-scale temporal attention features are obtained. In summary, combining the above formulas, temporal attention 
feature extraction can be simplified to: 

 ( ( ) ( ) ( ))Y X X H x G x Z X      (19) 

III. B. 3) Multi-scale temporal convolutional networks 
To improve the performance of TCN in both time and space, and to enhance the training efficiency and performance 
of deep networks, this paper incorporates residual units into the commonly used TCN and selects convolutional 
kernels of different time lengths. Selecting convolutional kernels of different lengths enables the proposed learning 
network to capture dynamic feature signals from inputs of varying durations. Meanwhile, residual connections 
ensure that the deep network maintains robust performance, achieving both improved performance and faster 
learning speeds while maintaining accuracy. The TCN with residual units performs the following operations: 

 
1 1( , )l l l lX X F W X    (20) 

 
1 1( , ) * ( )l l l lF W X W X   (21) 

Among these, the residual unit is F . For the first layer, the output of the previous layer is X , which is also the 
input of the first layer. The weight value is W  and the nonlinear activation function is  . Setting the ReLU function 
as the activation function, this function sets all negative values to zero while preserving all positive values. This 
allows the network parameters to be optimized through continuous forward and backward learning cycles, resulting 
in the following rewritten equation: 

 
1 1* ( ) *max(0, )i iW X W X    (22) 

Therefore, when N residual units are used, the output of the hidden layer is: 

 
1 1

2

*max(0, )
N

N i l
i

X X W X 


   (23) 

 
1 1 0X W X  (24) 

In this case, the original input is X , which is the feature sequence formed by the joint angles of each dimension. 
From the above equation, it can be seen that the output 

NX  of the entire network is closely related to 
1X . After 
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the second layer, as the values of X  approach zero, the weight parameters of that layer are selected for discard, 
thereby forming residual connections to optimize the network's performance and structure. 

To enable the network to learn dynamic features more efficiently across different time durations and thereby 
perform classification, this paper introduces improvements in the temporal network aspect. First, the initial input X  
undergoes a convolution operation with a duration of 

td , a total of N  convolution kernels, and a stride of 1, which 

is then fed into the temporal convolution network. Second, the TCN is modified by selecting only its encoding layer, 
and the TCN with a duration of is used to process X . The results from the fully connected layer of the encoding 
layer are then correlated and subjected to global average pooling. Finally, the output values are classified using a 
SoftMax classifier to obtain the recognition results. 

 
III. C. Validation of the effectiveness of human motion recognition models 
III. C. 1) Training results of the recognition model 
The experiment was conducted using a Windows 10 system, with an NVIDIA GeForce RTX 3060 (6GB) GPU and 
an Intel(R) Core(TM) i3-10100 CPU @ 3.60GHz 3.60 GHz processor. The experimental environment utilized the 
Python and PyTorch deep learning frameworks. 

The improved ST-GCN human action recognition model designed in this paper was trained with 15k training 
iterations, an input size of 512×512, an initial learning rate of 0.001, and a batch size of 20. The curve of the loss 
function value during model training is shown in Figure 2. 

As shown in the figure, the learning curve gradually decreases with each iteration, and the output almost entirely 
becomes 0. If left unchanged, it is believed that the reason is that the number of bits processed by the average loss 
has decreased, and the gradient has effectively disappeared. After 1.5 × 10⁴ iterations, the training loss drops to 
0.012, and the validation loss drops to 0.013. It can be seen that during the first 0.3 × 10⁴ iterations of training on 
the training set, the loss value decreases rapidly due to the weights being initialized with random values. After the 
subsequent 1.2 × 10⁴ iterations, the weights representing human skeleton features are fine-tuned, causing the loss 
value to decrease slowly and eventually stabilize. From the convergence curve, it can be concluded that the network 
model training has achieved the expected results. 

 

Figure 2: Model training and validation loss curves 

The tests with and without scale search are denoted as maximum accuracy and 1-scale, respectively. This 
analysis uses the same images and batch size of 1 for each algorithm. Each analysis was repeated 500 times, and 
the average was taken. The performance of the improved OpenPose model, Alpha-Pose, and improved ST-GCN 
model in human action recognition under the same conditions is shown in Figure 3. As can be seen from the figure, 
the improved OpenPose model, Alpha-Pose, and improved ST-GCN, as top-down human action recognition models, 
have runtime that is proportional to the number of human detectors extracted. In contrast, the inference time of the 
improved ST-GCN model during human action recognition changes relatively little with the number of human actions. 
This to some extent demonstrates the efficiency of the model in this paper for human action estimation, providing 
support for sports training instruction. 
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Figure 3: Comparison of model inference time 

III. C. 2) Performance Comparison of Different Models 
This paper collects sports competition video data through self-shot and online downloads, including single-person 
and multi-person scenes. Then, the OpenPose model is used to automatically label human joint points, with each 
complete human body consisting of 14 joint points. Finally, these preliminarily labeled data are manually proofread. 
The dataset constructed in this paper contains a total of 16,000 frames, of which 14,000 frames are used for training 
and 2,000 frames are used for testing. Additionally, the PoseTrack dataset was selected for comparison. 

First, the proposed algorithm was compared with four existing advanced pose estimation algorithms—CPM, 
LSTM-PM, SimpleBaseline, and HRNet—on the self-constructed sports competition dataset. Table 1 shows the 
comparison results on the self-constructed sports competition dataset. 

As shown in the table, the proposed algorithm achieved an AP of 79.3% for each keypoint and a MAP of 79.3% 
for all keypoints. Notably, the proposed algorithm achieved a MAP of 79.3%, demonstrating the most advanced 
estimation performance compared to existing methods, with improvements of 9% and 6.8% over the image-based 
pose estimation algorithms SimpleBaseline and HRNet, respectively. This fully demonstrates that sequence-level 
modeling of the collected video information and introducing additional local spatio-temporal information into the 
model can effectively enhance the richness and completeness of the input information. Additionally, the algorithm 
in this paper demonstrates significant improvements in accuracy for joints that are difficult to estimate, such as the 
wrist and ankle, with AP values of 80.8% and 66.8%, respectively, representing improvements of 5.4% and 10% 
compared to HRNet. The above results further underscore the importance of fully leveraging local sequence 
information and multi-scale spatial information. 

Table 1: Comparison results of the self-built data set (%) 

Model CPM LSTM-PM SimpleBaseline HRNet Ours 

Head 69.1 71.5 78.7 81.5 84.6 

Shoulders 60.5 65.2 73.6 75.3 80.5 

Elbow 68.4 69.4 79.3 81.2 85.1 

Wrist 66.3 67.3 73.5 75.4 80.8 

Crotch 54.6 59.8 65.2 66.8 81.4 

Knee 59.3 63.4 67.8 70.2 75.9 

Ankle 49.7 51.8 54.1 56.8 66.8 

MAP 61.1 64.1 70.3 72.5 79.3 

 
To further evaluate the model's performance, this paper conducted validation on the PoseTrack public benchmark 

dataset. Table 2 presents the accuracy rates for each keypoint and the final average accuracy rate of the proposed 
algorithm compared to other pose estimation algorithms, including PoseTracker, PoseFlow, FastPose, 
SimpleBaseline, STEmbedding, and HRNet. As shown in the table, the algorithm designed in this paper 
demonstrates the best estimation performance, achieving a final average accuracy of 80.5%, which is 3.4% higher 
than HRNet. For the challenging wrist and ankle joints, the algorithm achieves high prediction accuracy. The 
algorithm maintains high pose estimation accuracy in complex scenarios such as occlusion, motion blur, and 
changes in background lighting, and exhibits good robustness. 
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Table 2: Comparison results of the PoseTrack data set (%) 

Model Head Shoulders Elbow Wrist Crotch Knee Ankle 

PoseTracker 67.4 70.4 62.4 51.5 60.8 58.5 50.5 

PoseFlow 66.3 73.5 68.5 61.2 67.4 67.3 61.3 

FastPose 80.2 80.6 69.3 59.3 71.2 67.9 59.5 

SimpleBaseline 81.9 83.1 80.2 72.5 75.6 74.2 67.3 

STEmbedding 83.7 81.7 77.5 70.8 77.9 73.9 70.2 

HRNet 82.3 83.9 80.9 73.6 75.2 75.2 68.4 

Ours 85.9 84.2 81.7 75.1 89.4 76.1 70.9 

 
III. C. 3) Ablation experiment results of the model 
To validate the impact of the multi-scale temporal attention (A) and multi-scale temporal convolutional network 
modules (B) on the model's feature extraction capability and human keypoint detection accuracy, ablation 
experiments were conducted to assess the effects of changes in the backbone network structure. The evaluation 
metrics selected were the percentage of correct keypoints (PCK), the number of parameters, and the average 
precision rate. PCK is defined as the proportion of correctly estimated keypoints, calculated as the ratio of detected 
keypoints whose normalized distance to their corresponding labels is below a set threshold. Table 3 presents the 
ablation experiment results for the model. 

According to the experimental results in the table, the baseline model without the multi-scale temporal attention 
mechanism and multi-scale spatio-temporal convolutional network has a parameter count of 21.4 MB. Adding the 
multi-scale temporal attention mechanism and multi-scale spatio-temporal convolutional network increased the 
parameter counts by 6.07% and 5.14%, respectively. The overall parameter count of the improved ST-GCN model 
increased by 8.41%. The addition of the attention mechanism and spatio-temporal convolutional network 
significantly improved mPCK and MAP. Although this increases the model's parameter count to some extent, the 
improved accuracy results justify the increase. Introducing the attention mechanism does not significantly impact 
the model's computational complexity, and adding the attention mechanism can moderately improve the model's 
accuracy in detecting keypoints. 

Table 3: The ablation experiment results of the model 

Model Parameter/MB mPCK MAP/% 

Baseline 21.4 0.843 78.5 

Baseline+A 22.7 0.909 85.3 

Baseline+B 22.5 0.914 86.1 

Ours 23.2 0.932 88.2 

 

IV. Sports motion evaluation analysis combining the DTW algorithm 
In the field of education, the rapid development of artificial intelligence can drive systematic change in the education 
sector and promote internal renewal and transformation of the education system. The introduction of artificial 
intelligence technology can help students quickly master basic sports knowledge and skills in physical education, 
and will also make sports training more scientific and efficient, contributing to the visualization and personalization 
of physical education. 

 
IV. A. Action evaluation based on the DTW algorithm 
IV. A. 1) Dynamic Time Warping Algorithm 
A time series is an ordered set of feature values observed at fixed time intervals in sequential order. Feature values 
can be one-dimensional or multi-dimensional. Let 

1 2{ , , , }nX x x x    and 
1 2{ , , , }mY y y y    are two one-

dimensional time series of lengths n  and m , respectively. The distance between points 
ix  and 

jy  is defined as 

( , ) | |pi jd i j x y  , where ||p  denotes the p th norm. Create an n m  distance matrix, where the element ( , )i j  

represents the alignment of the i th point in X  with the j th point in Y . Find a path through several grid points 

in the matrix, which represents the matching relationship between each point in sequences X  and Y . Different 
paths correspond to different matching relationships. 
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The DTW algorithm finds a curved path such that the sum of distances between all matched point pairs along the 
path is minimized. This minimum distance sum corresponds to the DTW distance, and the path is called the optimal 
curved path. Let the curved path be R , where R  is an ordered set containing K  binary arrays, i.e.: 

 
1 1 2 2{( , ), ( , ), , ( , ), , ( , )}k k K KR i j i j i j i j    (25) 

The curved path R  must satisfy the following three conditions: 
(1) The boundary conditions are 

1 1 1, ,K Ki j i n j m    . 

(2) Monotonicity: 
1 1,k k k ki i j j   . 

(3) Continuity: 
11 1, 1k k k ki i j j     . 

The formula for calculating the DTW distance is: 

 
1

( , ) min ( , )
K

P
p k kDTW X Y d i j

   
 
  (26) 

Based on the constraints, use dynamic programming to construct a cumulative distance matrix D . The above 
problem can then be converted into the following solution: 

 ( , ) ( , )p
pDTW X Y D m n  (27) 

 

( 1, )

( , ) ( , ) min ( , 1)

( 1, 1)

D i j

D i j d i j D i j

D i j


  
  

 (28) 

Among these, (0,0) 0, ( ,0) (0, ) , 1, , , 1, ,D D i D j i n j m       , The cumulative distance ( , )D i j  is the sum of 

the current element's distance ( , )d i j  and the cumulative distance to the smallest neighboring element that can 

be reached from it. The final cumulative distance ( , )D m n  corresponds to the DTW distance between sequences 

X  and Y , which is a measure of the similarity between time series X  and Y . For two time series of lengths n  
and m , the time complexity of the DTW distance is ( )O m n . 

 
IV. A. 2) Sports motion evaluation based on DTW 
There are significant differences in the difficulty of various movements in physical education instruction. When 
evaluating movements, specific evaluation methods must be applied to specific types of movements. During 
physical movement evaluation, the time taken by most performers to complete a movement typically deviates from 
the standard time, necessitating the alignment of recorded movements. The DTW algorithm enables temporal 
alignment and matching of movements, facilitating accurate analysis and comparison. This study investigates the 
application of the DTW algorithm for movement alignment in physical training data. 

The research design for physical education training movement evaluation includes three sub-items: movement 
pre-evaluation, movement segmentation, and movement detail evaluation. Movement pre-evaluation can detect 
issues such as missing movements and disordered movement sequences in movement sequences. First, the 
Euclidean distance vector between the standard posture and the user's movement sequence posture is calculated. 
That is: 

 
1 2|| ||i id b p   (29) 

In the equation, 
id  represents the Euclidean distance between the i th pose and the first standard pose in the 

standard action library, 
1b  represents the joint angle vector of the first standard pose, and 

ip  represents the joint 

angle vector of the i th pose of the user. 

Action segmentation involves generating an Euclidean curve using the Euclidean distance vector, adding a 
positive offset to the minimum Euclidean distance, calculating the corresponding start frame and end frame, and 
using the start frame and end frame for action segmentation. Action detail evaluation assesses action quality based 
on joint angles, action center time, action duration, and dynamic joint average angular velocity. The similarity of 
static action joint angles can be expressed as: 

 
1 2

1
|| ( ) ||s nd c c c b
n

      (30) 

In the formula, 
sd  represents the joint similarity of static movements, n  represents the total number of frames 

of static movements, c  represents the joint angle vector in static movements, and b  represents the standard 

posture vector. When calculating the joint angle similarity of dynamic movements, first calculate the Euclidean 
distance between the user's posture and the standard movement posture, that is: 
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2|| ||ij i jd e e   (31) 

In the formula, 
ijd  represents the Euclidean distance between the i th pose of the user and the j th pose of 

the standard action, and e  represents the joint angle vector. The cumulative matrix is obtained using the distance 
matrix, and then the shortest path is calculated, i.e.: 

 
1 , 1 1, 1min{ , , }ij ij i i j i jg d g g g      (32) 

In the formula, 
ig  represents the shortest path from the first row and first column of the accumulation matrix to 

the i th row and j th column. The similarity of dynamic joint angles is calculated as follows: 

 nm
d

g
d

n m



 (33) 

In the formula, 
dd  represents the similarity of dynamic motion joint angles. When calculating the similarity of 

motion center times, first calculate the similarity of the user's motion center times, that is: 

 
1 1

( )
2c start end

c c c

t f f

e t t




   

  

 (34) 

In the formula, 
ct  represents the center time of the user's action, 

smartf  represents the start frame of the action, 

endf  represents the end frame of the action,   is the sampling frequency of the device, and 
ct
  represents the 

center time of the standard action. The expression for calculating the similarity of action duration is: 

 
1

( )s start end

s s s

t f f

e t t


   

  

 (35) 

In the equation, 
st  and 

st
  represent the duration of the user's action and the standard action, respectively, and 

se  represents the similarity of the action duration. The similarity of the average angular velocity of the joints is 

calculated as follows: 

 
1 1

1
|| ( ) ||

1w i ie e e w
n

   


 (36) 

In the equation, 
ie  represents the pose joint angle vector, w  represents the standard angular velocity, and n  

represents the total number of frames in the motion sequence. 
 

IV. B. Analysis of sports movement evaluation results 
IV. B. 1) Joint Angle Distance in Sports Movements 
Motion evaluation aims to compare test motions with standard motions to assess the performance of the test 
motions. Traditional motion evaluation methods involve manual observation and assessment by experienced 
personnel such as coaches and referees; however, the results of such evaluations may be influenced by subjective 
factors. To achieve fair and impartial scoring, computer-assisted scoring can be considered, utilizing the principle of 
similarity. The DTW algorithm is employed to calculate the distance between the test motion and the standard 
motion sequence across eight joint angles, which serves as the similarity assessment parameter. The front punch 
from the dataset of ten actions is selected as the evaluation object, with 30 samples chosen as test sequences. 
Action video data from sports majors is used as the standard action sequence template. Figures 4–7 show the DTW 
distance distributions for the left shoulder, left elbow, right shoulder, right elbow, left knee, left hip, right knee, and 
right hip, respectively. 

As shown in the figures, the DTW distances for the left shoulder joint angle are mostly distributed between 550° 
and 1000°, with a small portion between 1000° and 1100°, which is discarded. The DTW distances for the left elbow 
joint angle are mostly distributed between 550° and 1000°, with a small portion between 400° and 550°, which is 
discarded. The DTW distances for the right shoulder joint angle are distributed between 120° and 280°, while those 
for the right elbow joint angle are distributed between 135° and 280°. The DTW distance distributions for the left 
knee and left hip joint angles, as well as the right knee and right hip joint angles, can be obtained from the figure. 
From the DTW distances in the figure, it can be seen that the four joint angles of the upper limbs have a relatively 
sparse distribution, while the four joint angles of the lower limbs have a relatively dense distribution, indicating that 
the range of motion of the upper limbs is larger. 
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(a) Left shoulder (b) Left elbow 

Figure 4: DTW distance distribution of left shoulder and left elbow 

  

(a) Right shoulder (b) Right elbow 

Figure 5: DTW distance distribution of right shoulder and right elbow 

IV. B. 2) Sports Movement Evaluation Results 
Based on the above experimental analysis, an evaluation method was constructed for sports movements, and the 
movement score was calculated using 

1 2( )a c cS S d d f     In the equation, 
aS  represents the score for an angle 

feature, 
cS   represents the score for angle allocation. 

1d   and 
2d   represent the DTW distance value and the 

minimum value within the effective interval of the DTW distance, respectively. 
cf  is the loss parameter, whose 

value is related to the amplitude of the action change. Joints with larger amplitudes have smaller loss parameters, 
while those with smaller amplitudes have larger loss parameters. The final total score is the sum of the scores for 
the eight joint angles: 8

1 aa
S S


 . 

Each joint angle has a DTW distance distribution interval. After multiple experiments, the baseline DTW distance 
values and joint loss parameters for different joint angles were obtained, and these were then substituted into the 
formula to calculate the action evaluation score. The action evaluation results are shown in Table 4. As shown in 
the table, the total evaluation score obtained using the method proposed in this paper is 88.19 points, which is only 
1.12 points different from the professional scoring results. This indicates that using the DTW distance based on the 
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joint angle curve of sports movements as a parameter, the action evaluation method has been validated through 
action assessment, demonstrating its rationality. 

  

(a) Left knee (b) Left crotch 

Figure 6: DTW distance distribution of left knee and left crotch 

  

(a) Right knee (b) Right crotch 

Figure 7: DTW distance distribution of right knee and right crotch 

Table 4: Action evaluation results 

Joint Angle DTW distance Evaluation score Professional score 

Right shoulder  963 10.42 10.18 

Left shoulder  1005 10.98 10.54 

Right elbow 1123 11.63 12.26 

Left elbow 1294 10.76 11.37 

Right crotch 463 11.53 11.94 

Left crotch 472 11.42 10.98 

Right knee 569 11.17 11.35 

Left knee 738 10.28 10.69 
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Relying on sports movement scoring methods can help physical education teachers grasp the standardization of 
students' movements during sports activities. Combined with the human movement recognition model mentioned 
above, it can ensure the richness of physical education teaching content and provide a reform path for personalized 
training in physical education teaching. 

V. Conclusion 
The paper uses OpenPose to obtain skeletal point data for sports movements, then introduces a multi-scale 
temporal attention and residual-enhanced ST-GCN model to construct a human motion recognition model, and 
combines it with the DTW algorithm for sports movement evaluation analysis. The results show that the MAP value 
of the improved ST-GCN model is 79.3%, which is 9% and 6.8% higher than the image-based pose estimation 
algorithms SimpleBaseline and HRNet, respectively. Sports movements evaluated using the DTW algorithm scored 
88.19 points, differing by only 1.12 points from manual scoring. Therefore, integrating artificial intelligence 
technology with sports education and teaching can promote the intelligent development of sports education and 
teaching, and also provide support for personalized training in sports education. 
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