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Abstract Path planning has always been a key challenge in the field of robotic arm task execution and is a 
prerequisite for robotic arms to successfully complete specified tasks. This paper begins with the spatial pose and 
kinematic model of the robotic arm represented by DH, and solves the kinematic model of the robotic arm through 
forward and inverse kinematics. Starting from Cartesian space trajectory planning, the paper constructs a path 
optimization model for robotic arm task execution with the objective of minimizing the path execution time, while 
using kinematic metrics as constraints. Based on the DPPO algorithm in reinforcement learning, the paper 
introduces the CMA-ES mechanism to construct the DPPO-CMA algorithm and designs corresponding state-action 
and reward functions. Research shows that the average path length of the DPPO-CMA algorithm is 581.58 mm, 
which is 158.18 mm shorter than the average path length of the P-RRT* algorithm. The path search time decreases 
from the average of 163.25 seconds in the P-RRT* algorithm to 29.16 seconds. Additionally, the dynamic response 
results of the reward value are higher in this algorithm, and the task execution path planning results of the robotic 
arm exhibit higher stability and positioning accuracy. Reinforcement learning can better learn the task execution 
status of the robotic arm, thereby improving its efficiency during task execution and ensuring industrial production 
efficiency. 
 
Index Terms spatial pose, kinematic model, Cartesian space, reinforcement learning, DPPO-CMA algorithm 

I. Introduction 
In today's high-end manufacturing industry, robots serve as a critical enabling technology, playing an indispensable 
role across various fields and in human life. Among these, robotic arms are an essential component of industrial 
robots, with their motion efficiency directly impacting the service quality and control precision of industrial robots [1], 
[2]. Robotic arms possess robust working capabilities and a wide operational range, enabling them to perform heavy, 
complex, and high-risk tasks while maintaining high precision [3], [4]. For human society, robots have become 
highly efficient tools for intelligent production and daily life. With the continuous advancement of scientific and 
technological innovation, research on robotic arm collaboration systems can be further explored [5]-[7]. Therefore, 
the application prospects of this system are extremely broad, and its research holds significant importance. 

The control system of a robotic arm is a complex and advanced mechatronic system [8]. The target motion 
trajectory of a robotic arm can be obtained through manual calculation, and then the motion velocity curve of the 
robotic arm can be determined through trajectory planning [9], [10]. Currently, the phase plane method is generally 
used for robotic arm dynamics modeling, where, after setting the trajectory parameters, the dynamics model data 
is derived through formula derivation. However, this method has issues with low precision [11]-[13]. To address path 
planning issues during collaborative operations of robotic arms, it is necessary to find a path connecting the starting 
point and the target point within a given state space while ensuring that the path does not collide with any obstacles 
[14]-[16]. Therefore, exploring an efficient path planning algorithm to assist robots in performing obstacle avoidance 
tasks in environments with obstacles will further enhance efficiency and quality in practical applications [17], [18]. 

Currently, various path planning algorithms for robotic arm control systems have emerged in the academic 
community, each with its own advantages in different scenarios. Yu, X, et al. designed a robotic arm trajectory 
planning method aimed at time optimization, using a genetic algorithm to calculate the movement time of different 
points along the robotic arm's motion path, thereby obtaining the time-optimal robotic arm motion path [19]. Wang, 
L, et al. combined the TPBSO algorithm to explore the motion strategies of robotic arms under point-to-point path 
and fixed geometric path conditions. The robotic arm control model supported by this heuristic algorithm can achieve 
high computational speed and control performance without increasing computational complexity [20]. Cao, X et al. 
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established a motion trajectory planning model for robotic arms based on the multi-objective particle swarm 
optimization algorithm (GMOPSO), which ensures smooth operation of the robotic arm during task execution while 
maintaining high efficiency [21]. Kucuk, S. proposed an optimal trajectory generation algorithm (OTGA) for 
generating the shortest time smooth motion trajectories for serial and parallel robotic arms. This algorithm can 
optimize unreasonable motion path points, enabling smoother start and stop motions for robotic arm joints [22]. 
Zhang, Z et al. designed a novel three-criteria optimization-coordination-motion (TCOCM) strategy to address the 
redundancy issue in dual robotic arms. This strategy fully considers the physical constraints of robotic arm joints, 
effectively preventing excessive joint speeds and joint angle drift during robotic arm motion [23]. Chen, G et al. 
utilized the Probabilistic Landmark Method (PRM) to plan obstacle-avoidance paths for high-dimensional robotic 
arms, enabling the robotic arm to quickly generate a short and safe motion path in complex workspaces in response 
to existing obstacles. This method is applicable to robotic arms with any degree of freedom [24]. However, the 
aforementioned studies are all based on searches using predefined maps or environmental models. In dynamic 
environments, when the position or state of obstacles changes, the algorithms struggle to adjust in a timely manner. 
Additionally, they do not consider the various joint configurations and motion paths within the robot arm's reachable 
range, resulting in suboptimal path planning performance. 

Path planning for robotic arm task execution is a critical step in completing operational tasks, and path 
optimization further enhances task completion quality while aligning with industrial development needs. This paper 
starts from the spatial pose of the robotic arm, models its kinematic behavior using the Denavit-Hartenberg model, 
and solves it using forward and inverse kinematics. Dynamic spatial constraints are imposed based on Cartesian 
space trajectory planning, and the shortest execution time for the robotic arm's task execution path is selected as 
the objective to construct a path optimization model for the robotic arm's task execution path. Starting from 
reinforcement learning, the DPPO algorithm is selected to solve the path optimization problem for the robotic arm's 
task execution path. To improve its solution efficiency, this paper introduces the CMA-ES mechanism to optimize 
the DPPO algorithm, thereby enhancing the quality of path planning for the robotic arm's task execution. 

II. Mechanical arm task execution path optimization model 
Robotic arms have been widely used in various fields of industrial production, especially in the automotive, aviation, 
and shipbuilding industries. Considering the complex nature of industrial environments, collisions may occur during 
the operation of robotic arms. To ensure the safety and efficiency of production, it is necessary to plan an obstacle-
avoidance and optimized path in advance for task execution. However, current robotic arm path planning often 
ignores dynamics and other forms of differential constraints, focusing solely on search algorithms, and thus fails to 
effectively meet the requirements for task execution paths in industrial robotic arms. 
 
II. A. Modeling of robotic arm kinematics 
II. A. 1) Spatial Pose Description of Robotic Arms 
The position and orientation description of a robotic arm primarily involves the specific position and state of the end-
effector of the robotic arm in space. This is typically represented by two main parameters: position and orientation. 
Position description refers to the coordinates of the end-effector in space. This is typically represented by three 
coordinate values ( , , )x y z , which denote the position distribution of the end-effector along the x , y , and z axes 
in the Cartesian coordinate system, indicating the movement of the robotic arm in the lateral, longitudinal, and height 
directions. Attitude description refers to the orientation of the end-effector in space. This is typically represented by 
three rotational coordinate quantities , ,x y zR R R , which denote the rotational changes around the x th axis, y th 
axis, and z th axis. These three rotational angles collectively determine the orientation of the end-effector [25]. 

(1) Position description. In three-dimensional space, to accurately describe the position of a moving object, this 
paper establishes a fixed coordinate system at the base of the robotic arm as the base coordinate system and also 
establishes a coordinate system at the rigid body position. After establishing the base coordinate system, the 
position of any point in space can be precisely represented using a matrix. Assuming that a base coordinate system 
{ }A  has been established in space and there is a point P , the position of point P  in the base coordinate system 
{ }A  can be represented by a matrix. That is: 

 
x

A y

z

p

P p

p

 
 

  
 
 

 (1) 

(2) Attitude description. When the attitude of a rigid body changes, the attitude of the coordinate system fixed to 
the rigid body also changes accordingly. Assume that a coordinate system { }B  is established on the rigid body, 
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with its origin at the center of the rigid body. The coordinate values of the rigid body's attitude along the three axes 
of coordinate system { }B , projected onto the three axes of the base coordinate system { }A , can be represented 
by matrix B

AR  in terms of the cosine of their direction relative to the base coordinate system { }A . That is: 

 
x x x

B B B B
A A A A y y y

z z z

n o a

R X Y Z n o a

n o a

 
      
 
 

 (2) 

(3) Pose description. The pose of a rigid body is determined by its position and orientation. Therefore, multiplying 
equations (1) and (2) yields the pose of the rigid body in the base coordinate system. That is: 

 

0 0 0 1

x x x x

y y y yB B
A A A

z z z z

n o a p

n o a p
P R P

n o a p

 
 

        
 
  

 (3) 

II. A. 2) Representation of the kinematic model of a robotic arm 
In practical applications, the tasks of a robotic arm are executed by the end-effector in Cartesian space, while control 
is implemented by the joints in joint space. Typically, only the relative pose between the robotic arm's base 
coordinate system and the world coordinate system is known. However, to achieve robotic arm operation, it is also 
necessary to know the pose of the end-effector in the workspace. Therefore, it is necessary to establish the relative 
pose relationship between the end effector and the base coordinate system, as well as the mapping relationship 
between Cartesian space and joint space. This paper selects the six-degree-of-freedom rigid robotic arm RockyOne 
from a certain company as the research object. This robotic arm consists of six rotational joints and six rigid arms. 
The standard Denavit-Hartenberg model is adopted for its modeling. First, it is simplified to the structural diagram 
shown in Figure 1, where numbers 1 to 6 represent the six rotational joints of the robotic arm. Then, based on the 
principles of the coordinate systems of each joint of the robotic arm, the joint coordinate systems are constructed, 
where 0O  is the world coordinate system and i i ix y z  is the coordinate system of each joint. Finally, the standard 
DH model parameters of the robotic arm are obtained. 

3x
3z

3O
3y

4 6,y y
4 5 6, ,O O O

4 5 6, ,z z z

4 5 6, ,x x x
5z

2z

2y

2x

2O0 1,O O

0x

0 1,z z

0 1,y x

 

Figure 1: A simplified diagram of the coordinate structure of the robotic arm joint 

In a rigid arm, the following relationship holds between two adjacent joint coordinate systems: 
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 (4) 

In the equation, ic   represents 1cos  , is   represents 1 1sin , ,i i     , and id   represents the standard DH 
model parameters. By successively multiplying the transfer matrix from the right, the transfer matrix from the end-
effector coordinate system to the base coordinate system can be obtained as follows: 

 0 0 1 2 3 1
1 2 3 4

n
n nT T T T T T   (5) 

In the equation, n  represents the number of joints in the robotic arm. This equation represents the forward 
kinematic model of the robotic arm. By substituting the standard DH model parameters, the pose of the robotic arm's 
end effector relative to the world coordinate system in the workspace can be obtained [26]. In robotics, the mapping 
from Cartesian space to joint space is typically achieved using the Jacobian matrix, which maps joint velocities to 
generalized Cartesian velocities at the end of the robotic arm, satisfying the following relationship: 

 ( )x J q q   (6) 

In the formula: 

 
T

x y z x y zx v v v w w w     (7) 

where v  is the Cartesian linear velocity at the end of the robotic arm, w  is the Cartesian angular velocity at the 
end of the robotic arm, and 6( ) nJ q    is the Jacobian matrix, then: 

 1 2[ ]Tnq         (8) 

  is the speed of the robot arm joint. 
 

II. A. 3) Solving forward and inverse kinematics of robotic arms 
(1) Forward kinematics solution of the robotic arm 

After completing the DH representation of the robotic arm, perform the forward kinematics solution of the robotic 
arm, i.e., obtain the end-effector pose and coordinate position through the known link joint variable values. The 
homogeneous transformation coordinate matrix between adjacent links of the robotic arm is: 
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1 1 1 1

cos sin 0
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0 0 0 1
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i

i i i i i i i

a

a a a d a
T

a a a d a

 
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

   

   

 
   
 
 
 

 (9) 

Using the DH method, the parameters between the joints and linkages of the two robotic arms have been obtained. 
Next, we will solve the forward kinematics of the main robotic arm. Substituting the DH parameters of the main 
robotic arm into the above equation, we obtain: 

 

1 1

1 10
1

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

T

 
 

 
 
 
 
 
 

 (10) 

 

2 2

1
2

2 2

cos sin 0 0.285

0 0 1 0

sin cos 0 0

0 0 0 1

T

 

 

 
 
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 
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 (11) 
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cos sin 0 0

0 0 1 0.225
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 
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Multiplying the above matrices yields the pose transformation matrix of the end-effector coordinate system of the 
main robotic arm relative to the base coordinate system, i.e.: 

 6 1 2 3 4 5
0 0 1 2 3 4 5

6

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p
T T T T T T T

n o a p

 
 
    
 
  

 (16) 

In the equation, 
x x x

y y y

z z z

n o a

n o a

n o a

 
 
 
 
 

 represents the attitude vector, indicating the attitude of the coordinate system 

relative to the reference coordinate system; [ ]Tx y zn n n  represents the X-axis direction of the coordinate system; 

[ ]Tx y zo o o   represents the Y-axis direction of the coordinate system; [ ]Tx y za a a   represents the Z-axis 

direction of the coordinate system; and [ ]x y zp p p  represents the current coordinate values of the end-effector. 

(2) Solving the inverse kinematics of the robotic arm 
Inverse kinematics refers to the process of obtaining the rotation angles of each joint of the robotic arm by solving 

the inverse of the forward kinematics transformation matrix after the pose matrix of the end-effector coordinate 
system of the robotic arm is known. The process of solving the inverse kinematics solution using matrix inversion is 
as follows: 

 

1 2 3 4 5
1 2 3 4 5

1 1 2 3 4 5
1 2 3 4 5

11 1 2 3 4 5
1 2 3 4 5

11 12 13 1 5

0

1 2 3 4 5 6

,

,

T T T T T T T

T T T T T T T

T T T T T T T

T T T T T T T



 

   

 




 


 



 (17) 

Due to the complexity of the derivation process, the specific details will not be elaborated upon in this paper. 
According to Picper's principle, the solution to the inverse kinematics of a robotic arm is not unique. Therefore, in 
practical applications, the corresponding inverse solution for the robotic arm should be determined based on the 
specific task requirements and the motion trajectory of the path planning. 
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II. B. Task execution path optimization model 
II. B. 1) Cartesian Space Trajectory Planning 
To ensure that the joint positions, joint angular velocities, and joint angular accelerations of each rotational joint of 
the robotic arm are continuous and smooth, it is necessary to perform joint space trajectory planning for the robotic 
arm. Solving for the function describing how the pose of the robotic arm's end-effector changes over time in the 
workspace constitutes Cartesian space trajectory planning for the robotic arm. The basic approach involves first 
obtaining a sequence of paths in Cartesian space and using interpolation algorithms to implement them. Then, 
inverse kinematics calculations are performed on the spatial coordinates of each joint of the robotic arm to map the 
position and orientation of the robotic arm at each point in Cartesian space to the position and orientation of each 
joint in joint space [27]. 

Linear trajectory planning for a robotic arm in Cartesian space is achieved by knowing the base coordinate system 
B  of the robotic arm, as well as the starting coordinates ( , , )s s s sP x y z  and ending coordinates ( , , )g g g gP x y z  of 
its end effector. The goal is to ensure that the end effector of the robotic arm moves along a straight-line trajectory 
between these two sets of coordinates. The following steps are used to plan the straight-line trajectory of the robotic 
arm in its workspace: 

(1) When the end effector moves along a straight line, set its velocity v and the robot arm's control cycle sT . 
(2) Calculate the total movement time t and the number of interpolations N along the trajectory, i.e.: 

 
| |s gP P

t
v

  (18) 

 ( )
s

t
N round

T
  (19) 

Here, |·|  represents the vector length, and ·( )round  represents the floor function. Therefore, the accuracy of 
the straight-line trajectory is determined by the number of interpolations. To make the end-effector's motion trajectory 
more closely approximate a straight line, more interpolations are required. However, the more interpolations there 
are, the higher the computational load required for the robot arm's trajectory generation. 

(3) Calculate the coordinates ( , , )i i i iP x y z  of the third interpolation point i , that is: 

 

g s
i s

g s
i s

g s
i s

x x
x x i

N
y y

y y i
N

y y
x x i

N


 




 



 



 (20) 

(4) Solve for ,s gP P  and the interpolation points using inverse kinematics, then convert the configuration of the 
interpolation points of the robotic arm's motion function in Cartesian space into the rotational joint configuration of 
the robotic arm in joint space. Then perform trajectory planning for the robotic arm in joint space to optimize the 
linear motion planning function of the robotic arm in Cartesian space. 

 
II. B. 2) Task execution path optimization design 
Assuming that the end-effector of the robotic arm needs to pass through n task points in three-dimensional space, 
and the coordinates of these task points in the workspace are given, the inverse kinematics of the robotic arm can 
be directly used to solve the problem, converting the spatial position coordinates into joint angle values for each 
joint of the robotic arm. Additionally, the path between any two adjacent points is a short segment. For n  task 
points, there are 1n   path segments. Let the total time the robotic arm's end-effector takes to traverse each path 
segment be ( 0,1,2,3, , 1)iT i n   and 1i i iT t t  , respectively. Here, it  represents the time it takes for the 
robotic arm to move to the i th task point. Therefore, the total time required for the robotic arm's operation is: 

 
1

1 2 1
1

n

i i
i

T T T T T





      (21) 
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Among them, the total time T  is the objective function, and the time iT  used for each segment of the path is 
the variable. Based on the hardware parameters of the robotic arm, the maximum angular velocity, maximum 
angular acceleration, and maximum angular acceleration of each joint are used as constraint conditions. The 
objective function and constraint conditions for the six-degree-of-freedom robotic arm trajectory optimization 
problem used in this paper are as follows: 

(1) The objective function can be expressed as: 

 
1

1

min
n

i
i

T T




  (22) 

(2) The constraints are as follows: 
The angular velocity constraint in kinematics is: 

 
1

max

[ , ]

| ( ) |
i i

i

t t t

t 
 

     (23) 

Among them, max  is the maximum angular velocity that each joint can reach when the robotic arm is working. 
The angular acceleration constraint in kinematics is: 

 
1

max

[ , ]

| ( ) |
i i

i

t t t

t 
 

     (24) 

Among them, max   is the maximum angular acceleration that each joint can reach when the robotic arm is 
working. 

The angular acceleration constraint in kinematics is: 

 
1

max

[ , ]

| ( ) |
i i

i

t t t

t 
 

     (25) 

Among them, max  is the maximum angular acceleration that each joint can achieve when the robotic arm is 
operating. 

III. Optimization of task execution paths for robotic arms 
Robotic arms are one of the earliest types of robots to be applied in actual production fields. Among them, serial 
robotic arms are the most widely used. They consist of a series of linked rods connected by joints, forming an open-
chain link mechanism with multiple degrees of freedom. One end is fixed to a base, while the other end serves as 
the end-effector, primarily performing grasping operations. The intermediate section is composed of a series of 
driven rotating or moving joints connected in series. Robotic arm kinematics studies the mathematical relationships 
between the motion of each link joint and the position and orientation of various parts of the robotic arm (typically 
the end-effector). Understanding these relationships is essential for designing robotic arm motion controllers and is 
a key focus of research into optimizing task execution paths for robotic arms. 
 
III. A. Reinforcement Learning and DPPO Algorithm 
III. A. 1) Basic Principles of Reinforcement Learning 
Reinforcement learning is a type of machine learning that primarily describes how an intelligent agent interacts with 
its environment through action selection to obtain rewards, thereby gradually learning the strategy that maximizes 
cumulative value. The structure of reinforcement learning consists of an intelligent agent, actions, states, rewards, 
value, and the environment. 

(1) Agent. The agent can make different action selections based on its strategy, transitioning from the current 
state to the next state and thereby receiving a reward. Since the rewards obtained from transitioning to different 
states vary, the agent can gradually accumulate rewards from different selections through multiple training 
processes, ultimately learning the strategy that maximizes cumulative rewards. The agent is the basic unit of the 
reinforcement learning model. 

(2) Action. The agent selects different actions to reach different states, with action selections based on the strategy. 
(3) Rewards. Rewards are the feedback received by the agent after selecting an action and transitioning from the 

current state. Rewards reflect the impact of the selection on the overall task. The agent receives corresponding 
rewards for each state transition, and through the accumulation of multiple rewards, the agent gradually learns the 
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strategy that maximizes rewards. 
(4) Value. Unlike immediate rewards, the value function reflects long-term cumulative benefits, including the 

agent's estimation of the total benefits from a series of subsequent actions. This prevents the agent from focusing 
solely on immediate gains, making its choices more globally oriented. 

(5) Policy. A policy is the mapping from the state space to the action space. The agent makes action selections 
based on the policy to change its current state. The ultimate goal of reinforcement learning is to obtain an optimal 
policy. During the model learning process, it is necessary to consider how to properly balance exploration and 
exploitation. 

Reinforcement learning problems are typically described using Markov decision processes (MDPs). Most 
reinforcement learning algorithms use MDPs to build models, which are then solved to address reinforcement 
learning problems. A quintuple ( , , , , )M r p  S A  can be used to describe an MDP, where S  and A  represent 
a set of states and actions, p  represents the probability of state transitions, r  represents the reward for state 
transitions due to environmental changes, and   is a discount factor used to determine the priority of short-term 
rewards, typically a value between 0 and 1. The agent's policy is expressed as: 

 ( | )p a s   (26) 

Among these, p  represents the probability of taking action a  in state s . For each state, a deterministic policy 
only outputs one deterministic action, with a probability of 1, while the probabilities of all other possible actions are 
0. A stochastic policy provides an action probability distribution, i.e., the probability of each possible action being 
selected. In an MDP, the policy is only dependent on the current state and does not consider historical states. 
Reinforcement learning agents learn how to maximize their long-term rewards through interaction with the 
environment. This long-term reward is typically the sum of discounted rewards, with rewards further in the future 
receiving larger discounts. Rewards can be represented as: 

 ( , )
r

i t
t t t

i t

R r s a 



  (27) 

At each discrete time step t , given a state, the agent can select an action using policy   to obtain a reward r , 
and then transition to the next state. In an MDP, the agent observes the environment state to select an action, which 
acts on the environment. The environment then provides a new state and reward, and the agent updates its policy 
based on this information. It then continues to observe the new state and select the next action. This process 
continues until a termination condition is met. 

 
III. A. 2) Distributed proximal strategy optimization algorithm 
The core of the Distributed Proximal Policy Optimization (DPPO) algorithm is the Proximal Policy Optimization (PPO) 
algorithm. The PPO algorithm is a deep reinforcement learning algorithm based on the Actor-Critic framework, 
designed to address the issues of slow network parameter updates and difficulty in determining the learning rate 
(learning step size) in the Actor's Policy Gradient (PG) algorithm. If the learning rate is set too high, the action 
strategy will experience significant fluctuations, making it difficult to converge. If the learning rate is too low, 
parameter updates will be slow, significantly increasing training time and failing to meet experimental requirements. 
The PPO algorithm limits the update magnitude of the new strategy based on the ratio of new to old strategies, 
enabling the PG algorithm to train and converge at a higher learning rate [28]. 

The objective function of the PG algorithm in the Actor is: 

 ( ) [ ( , ) ( | )]t t t t tJ E A s a a s   (28) 

In the equation, ( )    represents the policy function,    represents the Actor network parameters, ,t ts a  
represents the state and action at step t , ( , )t tA s a  represents the advantage function, and tE  represents the 
empirical expectation of the time step length. 

The advantage function compares the score obtained by selecting ta  under state ts  with the average score. If 
the score is higher, the advantage function is positive; otherwise, it is negative. The gradient ascent method is used 
to update  , maximizing the objective function ( )J   to achieve the goal of optimizing the strategy score. 

Since the PG algorithm uses online strategy updates, each parameter update requires resampling, making it 
difficult to determine the learning rate. The PPO algorithm converts online strategy updates to offline strategy 
updates, i.e., it uses a new and old Actor strategy, where the training data for the new Actor can be obtained from 
the old Actor. The action probability ratio ( )ir   between the new and old strategies is used to represent the new 
strategy weight, which is expressed as: 
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In the formula, '  represents the old strategy network parameters. 
The PPO algorithm objective function can be expressed as: 
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In gradient ascent methods, to ensure that the expected return of the policy is monotonically increasing, the PPO 
algorithm restricts the difference between the old and new policy distributions to be small. That is, under the same 
state, the action probabilities obtained by the two networks cannot differ too greatly; otherwise, a large number of 
samples would be required to obtain an approximate result. To address the issue of significant changes in the policy, 
the PPO algorithm employs two solutions: one is to use a KL-penalty, and the other is to use a clip to limit the range 
of changes between the old and new policies within a specified interval. This paper adopts the clip method for 
training, with the objective function defined as: 

 ( ) [min( ( , ) ( ), ( ( ),1 ,1 ) ( , ))]CLIP
t t t t t t tJ E A s a r clip r A s a         (31) 

In the equation,   is the hyperparameter, and ( )clip   is the clipping function. This limits the value of ( )tr   to 
within the range of [ ,1 ]   . The objective function ultimately selects the minimum value between the original 
value and the clipped value to prevent the parameters of the new policy network   from updating too quickly. 

The DPPO algorithm builds upon the PPO algorithm by introducing multi-threading. The multi-threading 
framework of the DPPO algorithm is shown in Figure 2. The main thread is responsible for updating the Actor and 
Critic parameters, while multiple auxiliary threads interact independently with the environment to collect data. By 
calculating gradients and aggregating them, they collectively update the network parameters. Specifically, multiple 
agents are added to the environment for parallel training. An agent can communicate with other agents and provide 
mutual feedback between strategies, significantly improving training efficiency and addressing issues such as slow 
convergence. 
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Figure 2: Multi-thread processing framework of DPPO 

III. B. Optimization Design of Mechanical Arm Task Execution Path 
III. B. 1) Task Execution Path Optimization Framework 
Robot arm task execution path planning is a crucial component of robot control. Traditional robot arm trajectory 
planning methods are generally applicable to known structured environments and cannot address trajectory 
planning issues for robot arms in unknown working environments under dynamic spatial constraints. The emergence 
of deep reinforcement learning (DRL) has enabled robot arms to acquire autonomous learning capabilities, allowing 
them to independently complete trajectory planning in unknown environments. Based on this, this paper uses the 
DPPO algorithm as a foundation and introduces the CMA-ES mechanism to construct a robot arm task execution 
path optimization framework under Cartesian dynamic spatial constraints, as shown in Figure 3. The agent in the 
DPPO algorithm uses an “exploration-trial and error” mechanism. Based on the reward values provided by the 
reward function, it controls the robot arm to continuously explore the unknown working environment and ultimately 
plans a motion trajectory with the maximum cumulative reward through autonomous learning. 
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Figure 3: Optimal design of the task execution path for the robotic arm 

The DPPO algorithm is used for trajectory planning tasks of robotic arms in unknown environments. Its penalty 
term mechanism is utilized to keep the update amplitude of the planning strategy within a reasonable range. In 
addition, this paper comprehensively considers factors such as the relative direction and relative position of the 
robotic arm in relation to the task objective during the learning and planning process. A new reward function design 
method is proposed to accurately evaluate the quality of the planned trajectory and reduce ineffective exploration 
by the robotic arm. 
III. B. 2) Action Selection and Reward Function Design 
For a discrete point dP   on the task trajectory, once the six joint angle offsets of the robotic arm gripping the 
heterogeneous component are determined, the pose of point dP  in the world coordinate system can be derived 
using the DH parameters. Then, based on the relationship between the two robotic arm base coordinate systems 

1
2
B
BT , the processing pose of point dP  is transformed into the robotic arm base coordinate system. By solving the 

inverse problem, the six joint angle offsets of the robotic arm are determined, thereby obtaining the information of 
the twelve joint angles of the dual robotic arm (the inverse solution may be unsolvable, i.e., the joint angle offsets 
are “null”). 

The six joint angle offsets of the robotic arm are used as the state, i.e., 1 2 3 4 5 6( , , , , , )s       . The action is the 
change in the pose of the end of the sixth axis of the robotic arm, i.e., ( , , , , , )x y ze x y z    , and , ,x y z  is the 
change in the coordinates of the end of the sixth axis in the base coordinate system, with a range of [−30mm, 30mm]. 
𝜃𝑧, 𝜃𝑦, and 𝜃𝑥 are the three Euler angle coordinate axis angle changes of the end of the sixth axis rotating in the 
ZYX order, ranging from [−Π/5, Π/5]. 

For a task execution trajectory line, given the initial state, i.e., the joint angle offset of the robotic arm at the starting 
point, control the robotic arm to perform a certain action to enter the next discrete point. The joint angle offset of the 
robotic arm corresponding to the solution is obtained. Based on the information of the twelve joint angles, analyze 
the robotic arm's reachability, collision, and other metrics. When a collision occurs or all discrete points on the 
trajectory are completed, the round ends; otherwise, continue to control the robotic arm to perform a certain action 
and move to the next discrete point. 

The reward function guides the learning process to make the results tend toward the optimization goal. The goal 
of reinforcement learning is to obtain the maximum cumulative reward value, find the optimal robotic arm pose 
combination corresponding to the processing trajectory on the heterogeneous part, and achieve path optimization. 
For the reward value 𝑟 obtained from moving from the previous discrete point to the current discrete point, it must 
first be ensured that the robotic arm's position is reachable, that the robotic arm has an inverse solution, and that 
there is no collision between robotic arms. Otherwise, a low reward value is directly assigned, and the round is 
terminated, prompting the robotic arm to gradually avoid such positions in subsequent rounds. If the robotic arm 
position is reachable and there are no collisions, the reward function for the robotic arm moving from the current 
discrete point to the next discrete point is defined as: 

 
1

r
f

  (32) 

Among them, is the stability optimization function, i.e., 
12

1

( )i i i
i

f K  


  . iK  is the weighted coefficient of the 

i-th joint of the dual robotic arm, and its value is selected based on the impact of joint displacement changes on 
stability. ,i    represents the angular displacement of the i-th joint of the robotic arm at the current discrete point 

and the previous discrete point, respectively. 
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III. B. 3) Adaptive DPPO-CMA Algorithm 
The Distributed Proximal Policy Optimization (DPPO) algorithm is integrated into industrial robot systems, 
employing parallel training to train robotic arms in the same environment. Drawing on existing relevant research, 
the core mechanism of CMA-ES is introduced into the DPPO framework to improve the process of strategy 
parameter optimization. By expanding the exploration range of strategy variance, the update mechanism for strategy 
parameters is refined, thereby enhancing the ability to search for local optima. In CMA-ES, the update of strategy 
parameters is based on multiple candidate models generated by perturbing internal parameters. The mean and 
standard deviation of the strategy for the robotic arm system are generated by independent networks, and their 
parameters are updated independently. The strategy is expressed as: 

 
2( ( ))

0.5log ( ) ~ ( | ) |
( )

t t
t t ti i

i it
ik

i
a o

o a o
o


 



 



 
 

  
  (33) 

where ( | )t t
i ia o  represents the current policy. “~” indicates that the distributions on both sides are identical. Policy 

parameter   has two forms of representation:   and  , representing the parameters of the mean network 
and variance network, respectively. The update process for    involves independent updates of    and   . 
Specifically, during the update of  , gradient optimization of the policy mean is paused, and similarly, during the 
update of  , gradient optimization of the policy variance is paused. This sequence helps to expand the exploration 
distribution in the optimal search direction and avoid premature variance contraction. 

The hyperparameter    (typically 0.2   ) specified in the original DPPO algorithm has been adjusted and 
changed to a dynamic parameter  . The new objective function is defined as: 

 ( ) [min( ( ) , ( ( ),1 ,1 )) ]P t t t t
t i iL E r A clip r A        (34) 

Among them, 
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  is defined as the strategy ratio, which quantifies the change in strategy before 

and after parameter update.    is a dynamic parameter adjusted according to the difference in KL divergence 

between the old and new strategies. After the strategy update, the KL divergence between the old and new 
strategies is calculated as follows: 
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At this point, the cut range of the strategy can be expressed as: 
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 (36) 

Among them,   is the initial shear range, and   and   are sensitivity parameters for adjusting the shear 
range. The max function is used to limit the variation amplitude of   to ensure training stability. targetD  is the target 
value of KL  divergence. 

IV. Simulation results of robotic arm task execution experiments 
Since its inception, the robotic arm has been widely applied in various fields such as industrial production and 
military applications. In the field of robotic arm research, path planning is one of the key areas of study, and the 
level of path planning is also an important indicator of the robotic arm's intelligence. This paper conducts path 
optimization for robotic arm task execution under the constraints of Cartesian dynamic space and kinematic 
constraints, with the objective of minimizing the time required for the robotic arm to execute its task. The aim is to 
further enhance the application effectiveness of the robotic arm. 
 
IV. A. Adaptability of task execution path optimization algorithms 
IV. A. 1) Adaptive verification results of the algorithm 
To validate the advantages and effectiveness of the DPPO-CMA algorithm proposed in this paper, the algorithm 
was verified through MATLAB simulation. The computer processor used was an Intel(R) Core(TM) i3-10100 CPU 
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@ 3.60GHz 3.60 GHz, with 8GB of RAM, and the simulation experiment platform was MATLAB R2023. 
The algorithm's adaptability metrics in complex state spaces are measured by path search time, path length, and 

iteration stability. In this paper, four different types of environments were set up in the dynamic space of a robotic 
arm: sphere (E1), rectangular prism (E2), cylinder (E3), and rectangular prism, cylinder, and sphere (E4). The main 
comparison algorithms selected were RRT*, Bi-RRT*, and P-RRT*. Each comparison experiment involved 
searching for paths within different obstacle state spaces, with a search step size of 4 mm, a threshold of 15 mm, a 
radius of 20 mm, and a maximum iteration count of 3,000. Each experiment was conducted 50 times, and the 
average was taken. Table 1 presents the results for path length, search time, and iteration count across different 
algorithms. 

Analysis of the data in the table shows that in complex obstacle sampling spaces, the DPPO-CMA algorithm 
converges significantly faster in terms of path planning time and iteration count. In four environments, the average 
iteration counts for P-RRT* and DPPO-CMA were 964.05 and 534.55, respectively. The average number of 
iterations for the DPPO-CMA algorithm was reduced by 44.55%. Additionally, the average path lengths for the P-
RRT* and DPPO-CMA algorithms were 739.76 mm and 581.58 mm, respectively. The DPPO-CMA algorithm 
reduced the average path length by 158.18 mm, improving path planning length quality by 20.47%. Furthermore, 
the path search time decreased from an average of 163.25 seconds for the P-RRT* algorithm to 29.16 seconds, 
improving the path search time by 82.14%. In summary, compared to the P-RRT* algorithm, the DPPO-CMA 
algorithm demonstrates stronger environmental adaptability and can plan progressively optimal task execution 
paths for the robotic arm in a shorter time. 

Table 1: Comparison of performance indicators of algorithms in four environments 

Algorithms - Iteration number Path length/mm Search time/s 

RRT* 

E1 94.1 336.24 6.51 

E2 132.9 385.37 8.19 

E3 149.8 412.68 9.03 

E4 4135.7 1984.36 753.19 

Bi-RRT* 

E1 82.6 376.52 4.03 

E2 90.1 412.85 5.15 

E3 98.4 454.27 5.63 

E4 2374.5 2155.43 552.13 

P-RRT* 

E1 79.3 316.39 4.74 

E2 86.7 367.92 6.23 

E3 142.9 431.73 8.16 

E4 3547.3 1842.98 633.87 

DPPO-CMA 

E1 42.1 263.41 0.92 

E2 43.9 273.58 1.53 

E3 62.7 365.37 2.06 

E4 1989.5 1423.95 112.13 

 
IV. A. 2) Comparison of task execution path planning 
To visually demonstrate the advantages of the DPPO-CMA algorithm in path planning for robotic arm tasks, a data 
comparison was conducted between the DPPO-CMA algorithm and the RRT*, Bi-RRT*, and P-RRT* algorithms in 
a predefined sampling space with multiple spherical obstacles. The maximum number of experimental iterations 
was set to 2000, and the target bias threshold was set to 0.5. The map range is set to [200,200], the starting point 
coordinates are [10,10,0], the target point is [180,180,180], the step size and threshold are 6 and 12, respectively, 
and each experiment is executed 20 times. The search path results are shown in Figure 4, where Figures 4(a) to 
(d) represent the path planning results of each algorithm. The distances between the nodes obtained during the 
iteration process and the target point for the four algorithms are shown in Figure 5. 

In the path planning for the robotic arm task, it can be observed that the RRT* algorithm exhibits randomness in 
its path planning sampling, with the search path dominated by predefined sampling spaces, resulting in low search 
efficiency. The Bi-RRT* algorithm generates random trees at the start and end points for bidirectional search. 
Although the search path exhibits divergence, the final path shows high path cost and high path curvature. The P-
RRT* algorithm partially addresses the sampling blindness of the RRT* algorithm, causing the search path to be 
biased toward the target point. However, the final path of this algorithm also exhibits path non-smoothness. The 
DPPO-CMA algorithm in this paper builds upon the DPPO algorithm by introducing the CMA-ES mechanism to 
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adaptively adjust the step size coefficient and accelerate the search. This reduces the number of path iterations 
required to converge to a local minimum from 172 in the P-RRT* algorithm to approximately 86, resulting in faster 
path generation. 

  

(a) RRT* (b) Bi-RRT* 

  

(c) P-RRT* (d) DPPO-CMA 

Figure 4: The path planning results of various algorithms 

 

Figure 5: The relationship between the number of iterations and distance 
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IV. B. Effectiveness of the task execution path optimization algorithm 
IV. B. 1) Dynamic Response and Planning Stability 
To further validate the effectiveness of the DPPO-CMA algorithm designed in this paper, we analyze the reward 
values obtained during the training cycles. During the algorithm iteration process, we statistically analyze the reward 
values obtained in each cycle, with the specific results shown in Figure 6. The horizontal axis and vertical axis 
represent the number of cycles in a single training session and the reward values obtained in each cycle, 
respectively. A small reward value indicates that the algorithm made an incorrect path planning decision in that cycle, 
while a large reward value indicates that the algorithm made a correct path planning decision in that cycle. Since 
the DPPO-CMA algorithm uses offline training, it can effectively shorten the data accumulation phase and quickly 
enter the learning phase after training begins. As shown in the figure, as training progresses, the reward value 
obtained in each cycle gradually increases, indicating that the neural network correctly modifies its parameters 
through interaction with the environment, gradually making correct control decisions, and ultimately stabilizing the 
reward value. This indicates that the neural network's parameters have converged, achieving stable control 
performance. During the training process, reward values may fluctuate. This is primarily due to the DPPO algorithm 
generating outputs based on the probabilities of different actions after receiving state variables, resulting in a small 
probability of outputting incorrect actions, thereby causing fluctuations in reward values. Since the DPPO algorithm 
uses a neural network to generate probabilities for different control decisions, it may not always select the optimal 
decision within a single cycle. Therefore, the curve is not smooth and may exhibit step-like changes in reward values. 

 

Figure 6: Dynamic response of sudden plus load 

Additionally, after training was completed, the path planning stability of the DDPG algorithm and the DPPO-CMA 
algorithm proposed in this paper was compared when the neural network parameters were stable. The relative 
distance between the robotic arm gripper and a specific position below the object was measured for 50 path 
optimization commands, and the comparison results are shown in Figure 7. As shown in the figure, the relative 
distance between the path of the robotic arm task execution planning based on the DPPO-CMA algorithm and a 
specific position below the object has a smaller fluctuation range, indicating that after training, the algorithm in this 
paper can achieve more stable control performance. Due to the refinement of the reward function, the algorithm 
effectively suppresses the jitter phenomenon in control, achieving precise alignment between the robotic arm and 
the object. 

 

Figure 7: Task execution path planning stability 
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IV. B. 2) Positioning Accuracy and Loss Function Value 
(1) Positioning accuracy of the robotic arm's task execution path 

Based on the analysis of simulation results, it can be seen that the motion path of the cutting claw at the end of 
the robotic arm can be iteratively planned as the number of reinforcement training sessions increases. To verify the 
reliability of the motion path, the effectiveness of the DPPO-CMA algorithm proposed in this paper can be judged 
by analyzing the relationship between the distance changes between the cutting point at the end of the robotic arm 
and the object below. Figure 8 shows the curve relationship of positional error changes. 

This paper primarily compares and analyzes the changes in position error during training sessions ranging from 
100 to 500 times. As the number of training sessions increases, the rate of change in position error accelerates. At 
100 training sessions, the change in prediction time is relatively slow between 1 and 4 seconds, but accelerates 
between 4 and 10 seconds. However, the stable prediction time at 100 training iterations is 10.2 seconds, while the 
time for the trend to stabilize at 500 training iterations is approximately 9.8 seconds. The training results show that 
the positional accuracy error of the cutting point stabilizes within the range of 4 × 10⁻³ cm at 500 training iterations. 

 

Figure 8: The relationship of the curve of position error variation 

In addition, during the dynamic change process, this paper analyzes the errors in relative position, relative attitude, 
relative linear velocity, and relative angular velocity. The study found that the relative velocity error exhibits three 
stages as the velocity gain matrix is dynamically adjusted: smooth startup, rapid approach, and near-capture stages. 
During the smooth startup stage, the error increases smoothly from the initial value. In the rapid approach stage, it 
maintains a large value, enabling the robotic arm to approach the target at a faster speed. In the near-capture stage, 
it rapidly converges to zero, avoiding excessive residual velocity. The relative pose error is continuously smooth 
and converges synchronously with the relative velocity error in the near-capture stage. At the end of the capture, all 
relative errors converge to the specified precision, meeting the capture task requirements. 

(2) Changes in loss function values 
By analyzing the convergence and volatility of the loss function values, the effectiveness of the algorithm proposed 

in this paper can be assessed. Figure 9 shows the comparison results of the loss functions. As shown in the figure, 
the loss function of the DPPO-CMA algorithm designed in this paper exhibits significant volatility before 150 training 
iterations, but the volatility gradually decreases between 150 and 200 iterations and approaches stability after 250 
iterations. The volatility of the traditional DDPG algorithm does not stabilize before 200 iterations, but it gradually 
converges and stabilizes after 200 iterations. Through comparison, it can also be seen that the DPPO-CMA 
algorithm designed in this paper converges faster, making it more feasible for application in path planning for robotic 
arm tasks. 

 

Figure 9: The comparison result of the loss function 
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V. Conclusion 
The paper constructs a path planning model for robotic arm task execution under dynamic spatial constraints based 
on the kinematic model of the robotic arm and Cartesian space trajectories, and designs a path optimization 
algorithm for robotic arm task execution based on the adaptive DPPO-CMA algorithm. From the simulation results, 
the DPPO-CMA algorithm designed in this paper demonstrates strong adaptability, with its task execution path 
planning results aligning with the kinematic requirements of the robotic arm. Additionally, the task execution planning 
results exhibit high stability and significant reward values, resulting in lower error margins in robotic arm motion and 
object grasping outcomes. This better meets the precision requirements for task execution path planning under 
dynamic Cartesian space constraints. 
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