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Abstract As robotics technology continues to mature, it has made people's lives more convenient. However, robot 
path planning and obstacle avoidance have become key research issues. To address these challenges, this study 
proposes a research framework for the construction and application of hybrid topological maps for robot path 
planning and obstacle avoidance in complex scenarios. Under the support of mobile robot SLAM theory, a topology-
grid hybrid map is constructed. Since the topology-grid hybrid map exists in both static and dynamic scenarios, this 
study designs a static path planning and obstacle avoidance algorithm based on an improved A* algorithm and a 
dynamic planning and obstacle avoidance algorithm based on an improved TEB algorithm, and conducts validation 
instance analysis on both algorithms. In dynamic scenarios, the navigation success rate, average path length, and 
average time consumption of the proposed algorithms are superior to those of traditional algorithms, with values of 
99.00%, 3.415m, and 16.35s, respectively. In static scenarios, similar phenomena are observed, demonstrating the 
effectiveness of the two dynamic path planning and obstacle avoidance algorithms. This research provides guiding 
value for the development of robot path planning and obstacle avoidance. 
 
Index Terms SLAM, topological-grid hybrid map, A*, TEB, path planning and obstacle avoidance 

I. Introduction 
Robots were first proposed in the 1920s and 1930s as a class of mechanical devices and systems capable of 
performing specific tasks autonomously or with minimal human intervention [1]. With the continuous advancement 
of human science and technology, various types of robots have been invented and applied to various aspects of 
social production and daily life [2], [3]. Since the 21st century, with the sustained development of artificial intelligence 
and internet technologies, robots have begun to evolve toward intelligentization. Among them, mobile robots, as the 
earliest and fastest-developing type of robot, have achieved significant progress and are now widely applied in fields 
such as logistics warehousing, smart homes, intelligent living, and scientific research [4]-[7]. 

Mobile robot technology involves multiple disciplines such as computer science, sensors, human-machine 
interaction, and bionics [8]. Among these, environmental perception, autonomous localization, and path planning 
are the three key challenges in mobile robot technology, with path planning being the core and most critical 
component [9], [10]. Path planning for mobile robots refers to finding a relatively optimal and safe path from the 
starting point to the destination in an environment with static or dynamic obstacles [11]. As the application scenarios 
for mobile robots increase, the demand for path planning algorithms will also grow. For example, when mobile robots 
are applied in complex outdoor environments such as military reconnaissance, emergency rescue, geological 
exploration, and security inspections, considerations must extend beyond path length to include safety, smoothness, 
and multi-robot coordination and scheduling. This places higher demands on the algorithm’s interference resistance, 
response speed, execution efficiency, and code structure [12]-[15]. Therefore, path planning remains a critical 
research area within the field of mobile robots and is the core task for mobile robots to perform their intended 
functions and achieve autonomous navigation. 

To meet the growing operational demands of robots, it is essential to conduct more in-depth research on path 
planning algorithms for mobile robots. Zhang, H., et al. addressed the issues of low planning efficiency and 
susceptibility to local minima in traditional Extended Random Tree (RRT) algorithms by introducing regression 
mechanisms and adaptive expansion mechanisms to improve the RRT algorithm, enabling robots to quickly plan 
paths to target points in complex environments [16]. Janis, A., and Bade, A. demonstrated that a reliable robot 
navigation system must possess localization and identification capabilities as well as the ability to generate smooth 
path trajectories. To this end, they explored a series of path planning algorithms for virtual robots in virtual complex 
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environments, providing valuable insights into navigation problems in complex environments [17]. de Almeida, J. P. 
L. S., et al. investigated path planning methods for multi-robot systems using genetic algorithms to solve multi-
traveling salesman problems, effectively enhancing the robots' path planning capabilities under uncertain 
localization conditions [18]. Ichter, B. and Pavone, M. proposed a learning sub-space motion planning (L-SBMP) 
algorithm for planning the motion paths of complex robotic systems. This algorithm enables robots to generalize to 
complex new environments by performing global exploration of the constructed learning sub-space [19]. Dang, T. 
et al. studied path planning strategies for robots in complex underground environments, proposing a local planner 
for optimization exploration in local subspaces and a global planner for exploration across the entire spatial range 
[20]. Guzzi, J. et al. designed and evaluated a long-range path planning method that utilizes partial knowledge to 
predict the local motion of robots, applying it to complex quadruped robots and simple differential robots, 
demonstrating excellent path planning and obstacle avoidance performance [21]. Feng, T. et al. integrated task 
hazard levels and road factors into a robot path planning model and employed a hybrid adaptive genetic algorithm 
(HAGA) to generate efficient path planning results that align with multi-dimensional interests, ensuring the safety 
and efficiency of robot operation under various tasks and complex road conditions [22]. 

From the above analysis, it can be seen that robot path planning and obstacle avoidance behavior involve the 
processing and analysis of obstacle information, which is essentially the process of establishing and analyzing 
environmental map models. To enhance the robot's understanding of environmental information during path 
planning in complex environments, topological maps can be utilized as models to represent local environmental 
obstacle maps in space, capable of expressing both metric information and positional relationship information [23]-
[26]. Topological map models employ topological graphs based on the relationships between nodes and edges 
connecting them for path planning, making them suitable for large-scale spatial environments and providing crucial 
support for robot path planning and obstacle avoidance movements [27], [28]. 

This paper employs a visual SLAM algorithm to construct a topological-grid hybrid map that meets the research 
standards. Considering that robot path planning and obstacle avoidance can be divided into static and dynamic 
scenarios, two algorithms were designed based on the topological-grid hybrid map: an improved A* static path 
planning and obstacle avoidance algorithm and a dynamic planning and obstacle avoidance algorithm based on 
improved TEB. In the case study analysis, the topological-grid hybrid map was simulated and analyzed, confirming 
that it meets the research standards. The performance of the static path planning and obstacle avoidance algorithm 
based on A* and the dynamic path planning and obstacle avoidance algorithm based on the improved TEB were 
then investigated separately. Finally, an algorithm application analysis was provided to enhance the persuasiveness 
of the research results. 

II. Robot SLAM and Hybrid Topology Map Construction 
II. A. Mobile Robot SLAM 
Robots must know their position in the working environment to perform navigation tasks, which led to the 
development of the Simultaneous Localization and Mapping (SLAM) theory. The mathematical model of SLAM is 
shown in Figure 1. SLAM technology enables robots to move in the working environment and use information 
recorded by their onboard laser radar sensors and odometers to map the working space while determining their 
position in the working space [29], [30]. In most cases, robots do not have prior knowledge of their working 
environment map, so they must use certain algorithms to establish a reasonably reliable map and determine their 
own position. 
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Figure 1: The mathematical model of SLAM 
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In the figure, ( , , )T
k k k kx x y    represents the pose of the mobile robot at time k . The position of the mobile 

robot at time k  is denoted by '
kx  and '

ky  at time k , and the pose angle at time k  is denoted by k . The pose 

of the mobile robot from time 1 to time k  is denoted by 1: 1 2( , ,..., )T
k kx x x x  represents the pose of the mobile 

robot from time 1 to k  . 1ku    represents the input control quantity at time 1k   . The i  th feature point in the 

environment is denoted by im , where 1 2( , ,..., Nm m m m  represents the environment map m , and ( )1 i
kz   and 

( )i
kz  represent the observations of feature point im  at time 1k   and time k , respectively. Through mathematical 

model transformation, the joint posterior probability of the mobile robot's pose kx  at time t  and all feature points 
m  in the environment is calculated, which can be specifically expressed as 1: 1: 1( , | , )k k tkp x m z u  . 
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II. A. 1) Vision-based SLAM 
Mobile robot SLAM can use cameras to capture the surrounding environment of the mobile robot. Monocular 
cameras, stereo cameras, and depth cameras are three commonly used types of visual cameras. Mobile robots 
equipped with cameras as visual sensors require both image information and depth information when constructing 
their working environment. However, monocular cameras cannot directly obtain depth information and must instead 
use certain methods to indirectly derive it. A stereo camera system composed of two monocular cameras can utilize 
the differences between the images captured by the two cameras to obtain depth information. Depth cameras can 
directly use their internal ranging modules to quickly obtain depth information. Due to their low cost and ability to 
collect a large amount of data from the working environment, visual SLAM has gradually become widely adopted. 
However, visual SLAM also has several issues, such as being significantly affected by ambient light, particularly 
being unable to operate in dark environments, unstable dynamic performance, and high computational requirements. 
 
II. A. 2) SLAM based on laser radar 
When using lidar for SLAM in mobile robots, there are two main mathematical models: the beam model and the 
likelihood field model. Specific descriptions are as follows: 

(1) Beam model 
The beam model measures along each beam. Since measurements are affected by four types of error, the beam 

model is a mixture of four probability densities. The first type of error, represented by the Gaussian distribution hitp , 
is noise generated during measurement due to defects in the sensor itself and the sensor's susceptibility to 
environmental influences. The second type of error, represented by the exponential distribution shortp , occurs when 
moving obstacles appear in the working environment during measurement, causing blockage and resulting in 
measured values that are smaller than the actual values. The third type of error can be represented as a point cloud 
distribution maxp   centered at the maximum measurement distance. When reflections caused by surfaces like 
mirrors appear in the working environment, obstacles may be easily overlooked, leading to detection, and thus 
resulting in measurement values that are greater than the actual values. The fourth type of error can be represented 
as a uniform distribution randp  within the sensor's measurement range, resulting from random measurement values 
caused by interference from different sensors. max, , ,hit short randz z z z  represent the proportions of the four types of 
errors, respectively. Therefore, the beam model can be expressed as formula (2): 
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(2) Likelihood field model 
The likelihood field model applies Gaussian blurring to obstacles in space, then transforms the radar coordinate 

system to the world coordinate system using coordinate transformation formulas, and finally maps the measured 
endpoints to the global coordinate system according to certain rules. During this process, three types of errors may 
occur. The first type can be represented by a Gaussian distribution hitp   to describe the measurement error 
between the projected point of the measured point in the global coordinate system and the obstacle on the map. 
The second type can be represented by a point cloud distribution maxp  to describe the absence of obstacles in the 
working environment that were not scanned during the measurement process. The third type can be represented 
by a uniform distribution randp  within the sensor range, representing random measurement errors. max, ,hit randz z z  
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represent the weights of the three types of errors, respectively, so the likelihood field model can be expressed as 
formula (3): 

 max max( | , ) g g gk k hit hit rand randp z x m z p z p z p    (3) 

II. B. Overview of Mobile Robot Environment Mapping 
II. B. 1) The Significance of Environmental Maps 
An environmental map is a simplified and abstracted description of the working environment model for mobile robots, 
recording only key details such as the boundaries of the environment and the spatial locations of obstacles. This 
simplified model has achieved good results in practical applications [31], [32]. In many cases, the working 
environment of mobile robots often has uncertainty, making the environmental map an indispensable component 
for mobile robots. The importance of the environmental map lies in two main aspects: first, the environmental map 
serves as the foundation for the mobile robot's localization and navigation. The mobile robot collects environmental 
information through its onboard sensors, matches the acquired environmental information with the pre-stored map, 
and thereby determines its position within the environmental map. Second, the mobile robot can utilize the provided 
environmental map to determine obstacle-related information, enabling it to plan a feasible path from the starting 
point to the destination. 
 
II. B. 2) Environmental map construction methods 
Common methods for constructing environmental maps include topological mapping, visual mapping, grid mapping, 
and topological-grid hybrid mapping. Given the scope of this study, this paper adopts the topological-grid hybrid 
mapping method. The construction of the topological-grid hybrid map is not only practical but also enables the robot 
to utilize the environmental features it can recognize to generate topological nodes, thereby ensuring that the robot 
can extract the corresponding features during actual localization and avoid localization failures. Hybrid localization 
based on geometric-topological maps is a combination of local geometric localization and global topological 
localization. For specific experimental environments, when the robot enters a corridor environment from a room, it 
should switch to global topological localization, as corridor environments are conducive to topological localization 
and autonomous navigation. Conversely, when the robot moves from a corridor environment into a room, it should 
switch to local geometric localization, enabling precise localization to facilitate the execution of specific tasks. 

III. Robot path planning and obstacle avoidance algorithm design 
III. A. Static path planning and obstacle avoidance algorithm based on improved A~* 
III. A. 1) Improvements to the Distance Function 
Improving the distance function can reduce this unnecessary node expansion and improve the efficiency of the 
algorithm. Euclidean distance is the most commonly used distance measurement method, defined as the straight-
line distance between two points. In two-dimensional space, the Euclidean distance formula between two points is: 

 2 2
1 1 2 2( , ) ( ) ( )d p q q p q p     (4) 

In this context, 1 2( , )p p p  and 1 2( , )q q q  are two points in two-dimensional space. 
The advantage of the Euclidean distance lies in its intuitive accuracy and isotropy; it does not depend on the 

choice of coordinates or direction, and the distance is consistent in any direction. Its formula is: 

 1 1 2 2( , ) | | | |d p q q p q p     (5) 

This method is simpler than Euclidean distance calculation, more computationally efficient, and suitable for grid 
layouts. However, in freely movable spaces, it does not reflect the shortest distance. Another common method is 
diagonal distance, also known as Chebyshev distance. Its formula is: 

 1 1 2 2( , ) max(| |,| |)d p q q p q p    (6) 

This method can reflect the greatest distance in all possible directions, which is suitable for scenarios that need 
to consider extreme conditions. The calculation formula is as follows: 
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Among them, dD  is the cost of diagonal movement, and sD  is the cost of vertical or horizontal movement. To 
avoid square root operations, this paper uses the approximate values 1.4, 1d sD D  . 
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III. A. 2) Dynamic Weighting Improvement 
The classical form of the traditional *A  algorithm is based on ( ) ( ) ( )f n g n h n  , but the improved version of *A  
adjusts the original ( )h n  to ( ) ( )w n h n , where ( )w n  is a controllable parameter that can influence the search 
strategy. In the original algorithm, when ( )w n  equals 1, the ratio of ( )g n  to ( )h n  remains consistent. When ( )w n  
is increased to 2, this ratio becomes 1:2, which may lead to an increase in the estimated path components. Although 
the search speed is significantly accelerated, it does not guarantee finding the global optimal solution, as it may 
deviate from the actual shortest path. As ( )w n  decreases, the algorithm tends to seek a more precise optimal path, 
but search efficiency decreases accordingly. For 

 ( ) ( ) ( ) ( )f n g n w n h n    (8) 

In path planning, a balance must be struck between speed and quality. Therefore, ( )w n  cannot be fixed but 
should be dynamically adjusted based on the proximity to the target node. At locations far from the target point, the 
weight of ( )w n  can be moderately increased, sacrificing some optimality to reduce exploration of distant nodes, 
thereby shortening the overall search time. Conversely, when approaching the target, ( )w n  should be reduced to 
ensure the best path is found. This dynamic adjustment aligns with the characteristics of the exponential decay 
function, which is used to set the weights, as expressed below: 

 
max( ) ( 1) 1

start

start goal

d
k

d d
w n w e

 
     (9) 

In this optimization process, max 3w    is selected as the initial parameter, K=5 is selected as the parameter 
controlling the weight decay rate, and startd  and goald  represent the distance from the starting point to the current 
node and the distance from the current node to the target point, respectively, calculated using the distance function 
method described above. This dynamic weight adjustment strategy allows the decay rate of the weights to be 
controlled by adjusting the parameter k . 

 
III. A. 3) Path reconstruction and smoothing 
Bezier curves are used to smooth out broken lines through a set of control points. This article focuses on methods 
for smoothing paths using Bezier curves. The general formula for high-order Bezier curves is as follows: 
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where t  is a parameter with a value range between [0, 1]. 
n

l
 is a combination number, representing the number 

of ways to select i  elements from n  elements. The formula means that the points on the curve are composed of 
control points 0 1 2, , ,..., nP P P P  according to the binomial coefficients. 

High-order Bézier curves may exhibit poor stability when handling complex paths, causing the path to cross 
obstacles and resulting in suboptimal curve effects. To address this issue, multiple sets of third-order Bézier curves 
are used to optimize the path. The third-order Bézier curve formula is: 

 3 2 2 3
0 1 2 3( ) (1 ) 3 (1 ) 3 (1 )B t t P t t P t t P t P                (11) 

III. A. 4) Static path planning and obstacle avoidance implementation process 
The algorithm's specific steps are as follows: Initialization phase: Set the starting node (G) and target node (E) of 
the graph. Initialize two dynamic sets: an open list (OPEN) to store nodes to be evaluated, and a closed list 
(CLOSED) to store nodes that have been evaluated. Add the starting node (G) to the open list and set it as the 
current node, while the closed list is initially empty. Node expansion process: Add all reachable child nodes of the 
current node to the open list and move the current node itself to the closed list. Search feasibility determination: 
Check whether the open list is empty to determine if there are any unevaluated feasible child nodes. If it is empty, 
it indicates that the search has no solution, and the algorithm terminates. Evaluation function application: Apply 
evaluation function ( ) ( ) ( )f n g n h n    to calculate the evaluation values of each node in the open list. Goal 
Achievement Evaluation: If the current node is the goal node (E), proceed to the final stage; if not, return to the node 
expansion process. Path Confirmation: The current node, i.e., the goal node, is added to the closed list. Path 
Reconstruction and Output: Reconstruct the nodes in the closed list to reveal the complete path from the starting 
point to the goal point, and output it. At this point, the algorithm has achieved its search goal and terminates 



Hybrid Topological Map Construction and Application for Robot Path Planning and Obstacle Avoidance in Complex Local Spaces 

2176 

immediately. 
 
III. B. Dynamic Planning and Obstacle Avoidance Algorithm Based on Improved TEB 
III. B. 1) Homotopy Path Optimization 
(1) Constructing a topology-grid hybrid map: As the core of real-time path planning, the method focuses on the local 
environment of the mobile robot's current position and the target point. A concise local map is constructed by 
selecting key points, both sides of obstacles, and straight lines connecting these points as edges. The specific 
operations include: 
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(2) Filtering of homotopy paths 
The formula for calculating the H-signature is as follows, where kp  represents the vertices of the candidate path, 

lo  represents the obstacles in the local topology graph R, and l loò . For 
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In the formula, 1arg( )k lp  ò  represents the angle difference between adjacent sides. To minimize 1arg( ),k lp  ò  
the   in the formula is typically set to a constant close to zero. 

(3) Selection of the optimal path 
The optimizer is fed into the parallel TEB, yielding M optimized candidate trajectory clusters * *

1 ,..., MB B . Finally, 
the total cost of each optimized trajectory is calculated based on the cost function, and the one with the lowest cost 
is selected as the optimized trajectory. The formula is: 
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Among these, T  is the time cost, kh  is the kinematic cost, kv  is the velocity cost, k  is the acceleration 
cost, and kj  is the cost of jerk, k  is the cost of yaw angular velocity, k  is the cost of yaw angular acceleration, 

ko  is the cost term for proximity to an obstacle, kp  is the cost of path length, and all   are the normalized 
weighting coefficients for each cost. 

 
III. B. 2) Shortest Distance Constraint Improvement 
To solve the problem of local detours when turning during TEB path planning, a shortest distance constraint 
improvement is introduced. For: 
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 2 2( ) ( ) ( )G n G nh n x x y y     (19) 

Inspired by the above equation, in terms of calculation, a distance function is used to measure the shortest 
distance between adjacent pose points is  and i ns  , which is used as a constraint condition and incorporated into 
the hypergraph construction. The shortest distance penalty function disf  forms a new hypergraph structure by 
connecting these constraint edges. The form of the shortest distance constraint function is as follows: 
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III. B. 3) Algorithm Flow 
The static planning and obstacle avoidance algorithm based on the improved TEB follows the steps below to ensure 
that ground unmanned vehicles operate efficiently and safely in complex environments. The process of the static 
planning and obstacle avoidance algorithm based on the improved TEB is shown in Figure 2. 

Start

Establish a hybrid topological map based 
on the known environmental information

Global path planning based on 
the improved A* algorithm

Select local targets by using the 
principle of the rolling window

Determine the current 
local target point

Local path planning based on 
the improved TEB algorithm

Has the global 
target point been 

reached?

End

Yes

No

 

Figure 2: Algorithm flowchart 

IV. Robot Path Planning and Obstacle Avoidance Case Study Analysis 
IV. A. Mobile Robots and Hybrid Topology Map Construction 
IV. A. 1) Mobile Robots 
The subject of this study is the Rocky One mobile robot, with an operational efficiency of 600 cycles per hour*1 in 
a 90° layout for palletizing and depalletizing. The pallet height is 2m, and the applicable vehicle dimensions are an 
inner height of 2.3–2.7m, an inner width greater than 2.3m, and unlimited length. The material specifications are a 
weight of 25kg*3 and side lengths of 200–600mm*4. The material feeding conveyor belt is a telescopic roller 
conveyor or folding belt conveyor, with a weight of 1,300 kg to 2,000 kg, dimensions of 1.4 m × 1 m or 1.83 m × 
1.35 m, a maximum speed of 1 m/s to 2 m/s, omnidirectional mobility, and a charging voltage of three-phase 380 
VAC. Battery runtime is 8 hours under maximum load and full-speed typical tasks, with a standard charging time of 
2.5 hours (optional fast charging). The power supply voltage is three-phase 220VAC*6, and the operating 
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temperature is 0–50°C. 
 
IV. A. 2) Mixed Topology Map Construction Analysis 
This section uses the SLAM algorithm to create a topology-grid hybrid map of the simulation environment. During 
the map creation process, no adjustments were made to the topology nodes, and no subsequent dilation-erosion 
processing was performed on the grid map. The topology-grid hybrid map is shown in Figure 3. 
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Figure 3: Unprocessed topology-raster hybrid map 

As shown in Figure 3, before adjusting the topology node positions, some topology nodes were located on the 
walls of the grid map or on block-shaped obstacles. These topology node positions were inaccessible, preventing 
the robot from planning a global path in subsequent path planning tasks. Thin walls and walls with significant 
thickness differences reduced the robot's actual safety distance, thereby increasing the risk of the robot colliding 
with walls. The final map established after adjustment is shown in Figures 4–6. 
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Figure 4: A 10* 10-square-meter topology-raster hybrid map 
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Figure 5: A 20* 10-square-meter topology-raster hybrid map 
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Figure 6: A 16* 16-square-meter topology-raster hybrid map 

As shown in Figures 4–6, the location of each topological node in the map is near an obstacle, which represents 
equipment, furniture, appliances, etc. in the environment. This study believes that the more obstacles there are in 
the map, the more complex the environment is, and the greater the probability of uncertainty. From the simulation 
experiment results, it can be seen that all key areas in the map contain one or more topological nodes. These 
topological nodes provide the robot with an initial target point for navigation tasks. When the robot approaches a 
topological node, if a leak occurs in that area, the robot will promptly detect the fault and make reasonable path 
planning. Therefore, the topological-grid hybrid map established using the SLAM algorithm can meet the 
requirements of subsequent tasks. 

After the topological-grid hybrid map is created, each topological node is assigned an initial position danger 
coefficient, which represents the danger level of the environment surrounding the topological node. In this section, 
the danger level of a topological node is determined by the area of obstacles surrounding it. The formula for the 
initial position danger coefficient is given in Equation (21): 

    in ,score i obstaclae iit p s p r  (21) 

In the equation, ip  represents a topological node, and ( , )obstacle iS p r  denotes the area of the circular region 
centered at the topological node ip  with radius r  that is occupied by obstacles. In a topology-grid hybrid map, 
each topological node has a fixed initial position score, which does not change over time and is inherent to each 
topological node. When an initial position score is relatively high, it indicates that the environment surrounding the 
topological node is relatively complex, and the robot should first move to the vicinity of this topological node to 
explore whether there are any obstacles and eliminate the danger associated with this topological node. 

In addition to calculating the initial position score of topological nodes to determine which topological node to 
move toward, the robot must also consider time factors. The unexplored time danger coefficient is used to account 
for the impact of time on topological node scores, indicating that the score of each topological node increases as 
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time progresses during the exploration process. This algorithm uses two functions to calculate the unexplored time 
score, as shown in Formula (22): 

 
1

2
2

2t
score

score

time

time t

 



 (22) 

In the formula, 𝑡 represents time. The exponential function is used because if a topological node is not traversed 
for a long time, the score for the time not traversed for that topological node will increase rapidly, and at this point, 
the initial position score will no longer dominate the robot's traversal target. This avoids the problem of not being 
able to reach a topological node with a relatively small initial position score for a long time. 

When the robot first enters a pre-existing map, it first calculates the initial position score for each topological node 
using formula (21), To prevent the robot from determining the first topological node to reach based solely on the 
initial position score, which could result in prematurely heading to a distant area, the robot first obtains its current 
position upon starting operation, then calculates the Euclidean distance to each topological node using formula (23). 
After obtaining all distances, they are sorted from largest to smallest. For: 

    22
in incos i itx ix ity iyt robot p robot p     (23) 

In the equation, in itxrobot  and in ityrobot  are the initial position coordinates x y、  of the robot, respectively, and 
ixp  and iyp  are the x y、 coordinates of the i th topological node. 
After sorting the robots, the distance score for each topological node is calculated using formula (24), and then 

the distance score and initial position score are added together to obtain the danger level of the topological node. 
It is: 

  cos *ini score i
number

i
tcore it p

topo
  (24) 

In the formula, i  is the order of topological nodes after sorting from smallest to largest, numbertopo  is the total 
number of topological nodes, scorenit  calculates icostcore  and then uses formula (25) to calculate the danger level 
of the topological node. It is: 

    int in cosscore score i itopo i it p tcore   (25) 

After calculating the danger level, the coordinates of the top node with the highest danger level are sent to the 
robot. The robot then uses the algorithm described in this paper to plan a global path and moves toward this top 
node. During movement, the robot continuously calculates the distance between its current position and each 
topological node. The algorithm specifies that if, while the robot is moving toward a topological node, another 
topological node is less than 0.5m away from the robot, the robot will first reach that topological node. After reaching 
that topological node, the robot continues to move toward the original highest-risk topological node. After numbering 
the map, the danger level of each topological node is calculated using formulas (21) to (25). The results of the 
topological node danger levels are shown in Table 1. From Table 1, it can be seen that the initial position score of 
topological node 6 is the highest, indicating that the complexity of the environment surrounding this topological node 
and the combined score of the distance between the robot and the topological node are the highest. This topological 
node is the first navigation target point for the robot. 

Table 1: Topological node risk 

Topological node Topological node risk Topological node Topological node risk 

1 153.29 7 0 

2 157.25 8 152.12 

3 217.25 9 126.33 

4 155.25 10 157.08 

5 167.51 11 91.54 

6 230.33 12 49.42 

 
IV. B. Robot path planning and obstacle avoidance algorithm verification analysis 
As can be seen from the above analysis, this paper uses visual SLAM algorithms to construct a topology-grid hybrid 
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map that meets the research requirements. On this basis, this section will verify and analyze the static path planning 
and obstacle avoidance algorithm based on the improved A* algorithm and the dynamic planning and obstacle 
avoidance algorithm based on the improved TEB algorithm. The details are as follows: 
 
IV. B. 1) Static path planning and obstacle avoidance 
Based on the topology-grid hybrid map constructed in Section 4.1.1, the mobile robot is placed at the starting 
position. Using the “2D Pose Estimate” function in the Rviz visualization interface, the initial coordinates and initial 
heading angle of the mobile robot are set. Then, using the “2D Nav Goal” function, the terminal coordinates and 
terminal heading angle of the mobile robot are set, and the mobile robot will perform path planning. To ensure the 
accuracy of the experimental data, 100 experiments were conducted. The static path planning experimental data 
are shown in Table 2. Based on the data size in the table, it can be seen that in the same static environment, the 
improved algorithm proposed in this paper (success rate: 99.00%, average path length: 3.415 m, average time: 
16.35 s) outperforms the traditional algorithm (success rate: 87.00%, average path length: 3.735 m, average time: 
20.05 s) in terms of navigation success rate, average path length, and average time, demonstrating the 
effectiveness of the improved A* static path planning and obstacle avoidance algorithm. 

Table 2: Static path planning experimental data 

Experimental environment Number of experiments Number of successes 
Success 

rate 
Average path length/m Average time consumption/s 

Traditional algorithm 100 87 87.00% 3.735 20.05 

Ours algorithm 100 99 99.00% 3.415 16.35 

 
IV. B. 2) Dynamic path planning and obstacle avoidance 
To validate the feasibility of the improved TEB dynamic planning and obstacle avoidance algorithm proposed in 
Section 3.2 of this paper, the improved algorithm was tested in a static environment with moving pedestrians. During 
the mobile robot's movement toward the target point, moving obstacles appear at a certain speed along the pre-
planned path. The mobile robot uses its onboard laser radar sensors to obtain information about the moving 
obstacles and re-performs local path planning to avoid them. To ensure the accuracy of the experimental data, 100 
experiments were conducted. The results of the dynamic path planning and obstacle avoidance analysis are shown 
in Table 3. Based on the data in Table 3, it can be concluded that the improved TEB dynamic planning and obstacle 
avoidance algorithm achieves a 14% higher navigation success rate and shorter execution time when handling 
dynamic obstacles compared to traditional algorithms, thereby demonstrating the effectiveness of the improved TEB 
dynamic planning and obstacle avoidance algorithm. 

Table 3: Experimental data of dynamic path planning 

Experimental environment Number of experiments Number of successes 
Success 

rate 
Average path length/m Average time consumption/s 

Traditional algorithm 100 82 82.00% 4.305 30.22 

Ours algorithm 100 96 96.00% 4.005 21.15 

 
IV. B. 3) Application Analysis 
As analyzed earlier, the static path planning and obstacle avoidance algorithm based on the improved A* algorithm 
and the dynamic path planning and obstacle avoidance algorithm based on the improved TEB algorithm 
demonstrate excellent performance. To validate the practical application effectiveness of the static path planning 
and obstacle avoidance algorithm based on the improved A* algorithm and the dynamic path planning and obstacle 
avoidance algorithm based on the improved TEB algorithm, a map containing a narrow channel was selected for 
testing. The dimensions of the narrow channel environment are 2000m × 1000m × 600m, with the starting and 
ending coordinates set to (100, 300, 100) and (1900, 560, 520), respectively. The average data obtained from 100 
path planning runs in the narrow environment using the algorithms in this paper are shown in Table 4. The results 
indicate that the static path planning and obstacle avoidance algorithm based on the improved A* and the dynamic 
path planning and obstacle avoidance algorithm based on the improved TEB are comparable in terms of navigation 
success rate, average path length, and average time, and both meet the experimental standards, confirming the 
practical effectiveness of the two algorithms in this paper. 
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Table 4: Apply the test analysis results 

Experimental environment 
Number of 

experiments 

Number of 

successes 

Success 

rate 

Average path 

length/m 

Average time 

consumption /s 

Improve the static path planning and obstacle 

avoidance algorithm of A~* 
100 97 97.00% 100.21 232.41 

Improve the dynamic programming and obstacle 

avoidance algorithm of TEB 
100 98 98.00% 110.33 236.54 

V. Conclusion 
Robot path planning and obstacle avoidance ensure that mobile robots can operate safely and smoothly while 
improving their efficiency. This paper addresses the path planning and obstacle avoidance issues of mobile robots 
by proposing a study on the construction and application of hybrid topological maps for robot path planning and 
obstacle avoidance. First, a hybrid topological-grid map is constructed using visual SLAM algorithms. Based on this, 
two scenarios—static and dynamic—are considered. Accordingly, two algorithms are designed: a static path 
planning and obstacle avoidance algorithm based on an improved A* algorithm and a dynamic path planning and 
obstacle avoidance algorithm based on an improved TEB algorithm. Under the support of research equipment and 
data, both algorithms are validated and analyzed. In static scenarios, compared to traditional algorithms (success 
rate: 87.00%, average path length: 3.735m, average time: 20.05s), the proposed algorithm demonstrates higher 
performance (success rate: 99.00%, average path length: 3.415m, average time: 16.35s). Additionally, in dynamic 
scenarios, similar results were observed, fully validating the practical application effectiveness of the two path 
planning and obstacle avoidance algorithms. 
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