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Abstract This paper proposes a noise suppression method based on an improved LMS adaptive filtering algorithm. 
Signal processing system software is designed to utilize the LMS adaptive filtering algorithm in a digital signal 
processor (DSP) to filter the acquired voltage signals. After noise reduction, the signals are converted into digital 
signals and then output as corresponding graphics or waveforms. The genetic algorithm is used to optimize the 
LMS variable step size parameters, addressing the contradiction between the convergence speed and steady-state 
error of traditional fixed step size algorithms, thereby enhancing signal processing capabilities. Research indicates 
that the signal level ranges for the low-frequency and high-frequency channels after LMS adaptive filtering 
decomposition are [-6.516, 6.731] and [-2.991, 1.925], respectively. When the step size factor is set to 1/500, the 
signal denoising accuracy is higher. When the threshold function is set to a soft function and the number of filtering 
decomposition layers is set to 4, only one singular value occurs, and the denoising effect is better. 
 
Index Terms DSP, LMS adaptive filtering, genetic algorithm, variable step size parameter optimization, signal 
denoising 

I. Introduction 
With the rapid development of the sensor industry, an increasing number of people are using high-precision sensors 
to collect data. Through the use of high-performance sensors and signal processing technology, accurate and 
reliable information can be obtained from detected signals [1]-[3]. A sensor is a measurement component or device 
that converts a measured quantity (such as position, force, acceleration, etc.) into a physical quantity (such as 
electrical quantity) with a definite correspondence, which is easy to process and measure with a certain degree of 
precision [4]. Sensors play a crucial role in detection systems, as their performance directly impacts the overall 
measurement accuracy and sensitivity of the system. If the sensor has significant errors, even if subsequent 
measurement components (such as circuits, human bodies, plants, materials, natural phenomena, etc.) and 
amplifiers have high precision, it will be difficult to improve the overall system accuracy [5]-[8]. As the frontline 
sentinel of an automatic control system, a sensor functions like an electronic eye, receiving and converting 
measured information into effective electrical signals. However, some useless signals are also mixed in, collectively 
referred to as noise [9]-[11]. The output impedance of sensors is generally very high, causing significant attenuation 
of the output signal, and sensors are easily overwhelmed by noise signals [12], [13]. Therefore, the presence of 
noise inevitably affects the accuracy and resolution of sensors, and since sensors are the first step in detecting 
automatic control systems, this inevitably impacts the performance of the entire automatic control system. Thus, 
noise research is an essential consideration in sensor design. Only by effectively suppressing and reducing the 
impact of noise can sensors be utilized effectively, thereby improving the resolution and accuracy of the application 
system [14]-[16]. 

However, noise comes in various types with complex causes, and its interference capabilities vary significantly, 
leading to different noise suppression methods. Literature [17] developed a probabilistic undirected graph model 
and applied it to noise reduction in the output of dynamic visual sensors under the optimization of an iterative 
conditional mode algorithm. This method not only eliminates noise but also improves the recognition accuracy of 
address-event representation data. Reference [18] proposes a multi-modal wearable biosensor noise reduction 
method for respiratory and external noise, guided by noise reference signals from photoplethysmography and 
combined with machine learning models, achieving higher performance and reliability compared to the baseline 
model. Reference [19] establishes a two-stage convolutional neural network model based on multiple multi-
directional feature extraction blocks, which removes sensor noise from phase-locked thermal imaging by extracting 
local features in different directions and removes background interference from imaging by extracting global features. 
Reference [20] designed a pulse interval compensation algorithm to separate high-frequency noise from the pulse 
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intervals of high-speed pulsed image sensors and compensate for it in the corresponding pulse intervals. By 
comparing the compensated data with the original data, noise in the image sensor can be effectively removed. 
Reference [21] addresses multi-modal joint pulse eddy current signal sensors. Based on the induction interference 
mechanism, it constructs an improved noise reduction method combining whale optimization, variational modal 
decomposition, singular value decomposition, and wavelet threshold denoising hierarchical processing, which aids 
in signal feature extraction and improves the detection accuracy of pulse eddy current signals. Reference [22] 
decomposed the signal from an impact-type sunflower yield sensor using complementary set empirical mode 
decomposition with adaptive decomposition capabilities, and introduced wavelet threshold denoising to process 
high-frequency noise, obtaining denoised sensor signals in the reconstruction process. Reference [23] integrates 
full set empirical mode decomposition, adaptive noise, multi-scale arrangement entropy structure, and interval 
thresholding to establish a distributed acoustic sensor signal denoising method, which has been proven to be 
effective and reliable in practice. 

Filtering is an important means of removing noise and plays a significant role in sensor signal noise removal. 
Reference [24] employs a method supported by rate distribution spatial filtering to reduce battery consumption and 
noise in wireless acoustic sensor networks. Reference [25] investigates an inverse kernel non-local mean denoising 
algorithm for high-resolution displacement sensor image signals. This algorithm not only reduces image noise and 
improves sensor accuracy but also enables nanometer-level positioning measurements. Reference [26] utilized a 
complementary filter to address noise issues in tilt sensors within the balance system of humanoid robots. 
Experimental tests validated the filter's effectiveness, and its output data aided the robot in executing balance 
maneuvers. Reference [27] shared a nonlinear filter-based CycleGAN framework for sensor signal denoising, which 
achieved a better signal-to-noise ratio compared to wavelet thresholding and improved the accuracy of tool wear 
detection. Reference [28] employs the Kalman filter algorithm to effectively suppress vibration noise in displacement 
sensors, and this algorithm can accurately establish the correlation between resistance changes and sensor 
displacement. Reference [29] designs a Kalman filter equation that effectively reduces noise in inertial measurement 
unit sensor readings, particularly in scenarios with extreme data and noise frequencies that interfere with useful 
signals. Reference [30] applies the least squares method to fit temperature sensor data and remove nonlinear 
factors, tracks noise evolution in real time and calculates noise variance under the wavelet transform method, and 
combines wavelet transform and Kalman smoothing filtering for sensor noise reduction, achieving better accuracy 
and stability than single Kalman filtering. 

Adaptive filtering utilizes the filter parameters and error signals obtained from the previous time step to 
automatically adjust the current filter parameters according to a “criterion” to adapt to the unknown or time-varying 
statistical characteristics of the signal and noise, thereby achieving optimal filtering. It plays an extremely important 
role in fields such as radar, sonar, image processing, computer vision, seismic exploration, biomedicine, and 
communications [31]-[34]. Since Widrow, B proposed the theory of adaptive filtering in 1967, this filtering method 
has gained widespread attention because it can automatically adjust parameters through self-learning to adapt to 
changes in the external environment and achieve optimal performance [35]. It combines the optimal filtering 
performance of Wiener filtering and Kalman filtering but does not require any prior statistical knowledge about the 
signal and noise, enabling effective noise removal [36], [37]. Reference [38] developed an adaptive wavelet filter 
for image denoising, applying variable stripe denoising to remote sensing image data under a representation of 
weights and variance parameters based on digital value probabilities. Combined with an edge compensation 
method, it reduces the adaptability of stripe noise, achieving denoising of remote sensing images for different 
observation targets. Reference [39] constructed an adaptive weighted distributed filtering algorithm based on 
adaptive filtering algorithms, which can effectively reduce signal noise interference in wireless sensor networks 
within a certain range, enhance network signals, and improve accuracy. 

This paper utilizes the integrated development environment Code Composer Studio to develop signal processing 
system software, establish the software architecture and specific operational procedures, and achieve real-time 
monitoring. The LMS adaptive filtering algorithm is applied in the DSP to minimize the mean square error between 
the filter output signal and the desired signal, thereby enhancing the quality of the output signal. Addressing the 
limitation of the fixed-step LMS adaptive filtering algorithm, which struggles to balance convergence speed and 
steady-state accuracy, a genetic algorithm is introduced for global search optimization of variable-step parameters. 
This enables dynamic updating of variable-step parameters, thereby improving the noise cancellation level of sensor 
signals. 
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II. Signal processing method based on improved adaptive filtering algorithm 
II. A. Signal Processing System Software Design 
The software for the signal processing system uses the integrated development environment Code Composer 
Studio, with version CCS 9.0 selected. This software offers features such as code editing, code compilation, code 
debugging, and variable monitoring, greatly facilitating the software design of the signal processing system for 
experiments. Before use, the actual chip model and simulator model must be set up in the simulator interface. After 
completing the function code, click the Build option to compile the program. This process not only checks for errors 
in the program but also converts the code into machine language. Once compilation is complete and it is confirmed 
that the digital signal processor (DSP) is successfully connected to the computer via the simulator, run the program. 
This method allows for simulation and debugging of the program using the DSP without the need for program 
burning. After setting the variable addresses and types in the Graph image display function, the changes in variables 
can be displayed in real-time during program execution. Variable values in registers can be displayed as graphs or 
waveforms, facilitating data analysis and observation. 

 
II. A. 1) Signal Processing Flow 
Based on the working principle of the MSMA sensor and its external circuitry, the signal processing flow of the 
MSMA sensor is determined. After the MSMA sensor begins operation, the induced voltage signal output by the 
sensing coil is sampled by the AD7606 and converted from analog to digital. The DSP reads the signal acquired by 
the AD7606 and performs mathematical operations on it using a filtering algorithm to obtain the filtered signal. The 
filtered signal is then processed by the AD5344, converted from digital to analog, and finally produces a pure 
induced voltage signal that can be observed on an oscilloscope. Figure 1 shows the signal processing flow of the 
MSMA sensor. 

Based on the signal processing flow of the MSMA sensor, the software design of the sensor signal processing 
system primarily consists of three parts: signal acquisition, DSP filtering, and analog-to-digital conversion. 

Start

Sensor output sensing voltage

Data sampling

DSP filtering

Digital-to-analogue conversion

Oscilloscope

End

 

Figure 1: Signal processing flow chart 
II. A. 2) Signal Acquisition Design 
The AD7606 must first be initialized. When the RESET pin receives a high-level reset signal, the ADC stops the 
analog-to-digital conversion and performs a reset operation. After the reset is complete, the DSP sets the RESET 
pin to low, indicating the end of the reset process. When the level of the CONVST pin rises, a BUSY signal with a 
pulse width of approximately 4.0 s  is generated, indicating the start of data acquisition. The sample-and-hold 
amplifier converts the sensed voltage signal from analog to digital using binary encoding. When the BUSY signal 
automatically goes low, it indicates the end of the conversion. Then, control CS and RD to be low levels to begin 
reading data. Before the read operation, the data lines DB0-DB15 are in a high-impedance state. Only when CS 
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and RD are both low levels will the data lines DB0-DB15 no longer be in a high-impedance state. After data reading 
is complete, the CONVST signal is pulled low again to prepare for the next conversion. 

 
II. B. Analysis and Application of LMS Adaptive Filtering Algorithm 
II. B. 1) Principle of the Least Mean Squares (LMS) Algorithm 
The minimum mean square error (MMSE) algorithm simplifies the calculation of gradient vectors by appropriately 
adjusting the objective function. It is characterized by simplicity, efficiency, low computational complexity, good 
convergence in stable environments, unbiased convergence to the Wiener solution, ease of implementation, and 
excellent performance under various operating conditions, making it widely applied in practical designs. 

The minimum mean square error algorithm based on the least descending method is the most basic algorithm. It 
is a recursive algorithm that does not require knowledge of the prior statistical characteristics of the signal but only 
uses their instantaneous estimated values. Its objective is to minimize the mean square error (MSE) between the 
expected output value and the actual output value of the filter. 

Figure 2 shows a horizontal adaptive filter. 
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Figure 2: Horizontal adaptive filter 
For the filter in Figure 2, the input vector is 
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Its weighted vector (i.e., the filter's parameter vector) is 
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The output of the filter is 
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The error of ( )y n  relative to the expected signal is 
 ( ) ( ) ( ) ( ) ( )Te n d n y n d n w x n     (4) 

According to the minimum mean square error criterion, the optimal filter parameter vector 
optw  should minimize 

the performance function—mean square error 2( ) { ( )}f w E e n . 

This problem can be viewed as estimating ( )d n  based on a linear combination of ( )x n  and its past values 

( 1), , ( 1)x n x n M    , etc. The optimal value of w  should minimize the mean square error of the estimate. 

Assume that ( )x n  and ( )d n  are stationary processes, and let the autocorrelation function of ( )x n  be 

{ ( ) ( )}T
xxR E x n x n , the cross-correlation function of ( )d n  and ( )x n  is { ( ) ( )}xdR E x n d n , and the mean squared 
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( ) ( ) ( )Tf w E d n w x n   is defined. To minimize the mean square error, 
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
 must be satisfied, because the partial derivative 
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( ) 2 2 ( )xd xxf w R R w n
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
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
, the optimal FIR mode filter weight vector 

optw  under minimum mean square error 

should satisfy: 
 

xx opt xdR w R  (5) 

When 
xxR  is full rank, the equation has a unique solution. 

 1
opt xx xdw R R  (6) 

Therefore, the optimal weight vector of the FIR lateral filter under minimum mean square error is 1
opt xx xdw R R , 

which is called the Wiener solution. This is the classic Wiener filter. It can be seen that the solution of this filter is 
continuously updated as the signal and interference environment change, and it only exhibits optimal behavior in 
terms of mean square error for stationary processes with corresponding statistical properties. It is not applicable to 
non-stationary signals. The advantage of this method is its speed, but its drawback is the significant computational 
complexity required. Especially when the number of weighting coefficients is large, the computational complexity 
becomes even greater, limiting its practical application. A recursive approach can be used to implement the 
aforementioned filter. This involves assuming that the recursive process starts from any initial value of the weight 
vector and continuously adjusts the weight vector values according to an “adaptive algorithm” driven by a certain 
measure or estimate of the mean square error, ultimately converging to the optimal value, i.e., the Wiener value. 
This filter can adjust itself to optimal weights without requiring any prior statistical knowledge of the input process, 
indicating that it possesses a certain degree of tracking capability for changes in input signal characteristics. 
Regardless of how the input signal characteristics change, it always attempts to adjust its own parameters to 
minimize the output mean square error. Specifically, for non-stationary input signals, the ability of this adaptive filter 
to track changes in input characteristics depends on the performance of the adaptive algorithm. 

 
II. B. 2) Application of Adaptive Filters in Noise Cancellation 
Adaptive filters have been widely used in noise cancellation. Figure 3 shows the noise cancellation model of an 
adaptive filter. 
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Figure 3: Adaptive filter noise cancellation model 
Adaptive filters exhibit excellent filtering performance for linearly correlated noise but are somewhat inadequate 

for filtering out nonlinearly correlated noise. Below, we conduct a simulation experiment to investigate whether 
adaptive filters meet the requirements for filtering non-linearly correlated noise. In the noise elimination simulation 
experiment, when the input signal is a sine wave *sin(0.05* * )s a pi t  and the noise signal is a Gaussian noise 
signal with a mean of 0.0 and an amplitude of 4.0 dB, the input signal and noise signal are non-linearly correlated. 
The filtering performance of the adaptive filter for nonlinear noise is sufficient to meet the requirements. 

 
II. C. LMS parameter optimization based on genetic algorithms 
II. C. 1) Variable Step Size Parameter Optimization of Genetic Algorithms 
Genetic algorithms are global optimization algorithms that are widely used in machine learning, signal processing, 
adaptive control, and other fields. When used in combination with LMS adaptive filtering algorithms, genetic 
algorithms can improve the convergence performance and stability of adaptive filters. 

The fitness function (7) can be obtained based on the factors of the genetic algorithm. 



A method for noise reduction and accuracy improvement of sensor signals based on adaptive filtering 

2212 

 
1

0 0

: [ , , ( )],

min : ( ) ( [ ( ) / ( 1)] ( 1)) ( 1) /n

find x n x

fitness x u u n

  
   

 
       

 (7) 

When designing core genetic operators using genetic algorithms, operators for mutation, crossover, and selection 
can be used. The general steps are as follows: 

1) Operators in the form of crossover are mainly used to provide more opportunities for recombination during 
gene exchange. Suppose that two individuals are, and perform arithmetic crossover between these two individuals. 
After the crossover is complete, the two new individuals can be represented as (8): 

 1 1 2

2 2 1

(1 )

(1 )

x x x

x x x

 
 

  
   

 (8) 

According to genetic algorithms, when the fitness value obtained from the calculation is smaller, it is closer to the 
optimal solution in the calculation process, and the possibility of optimal individuals existing in the vicinity is greater. 
Therefore, we may define the formal parameter (9): 

 1

1 2

( )

( ) ( )

fitness x

fitness x fitness x
 


 (9) 

As can be seen, when the form parameters are small, the new individuals are very similar to the original individuals. 
This allows for searching around individuals with smaller fitness values, thereby increasing the probability of 
obtaining the optimal individual. 

2) When using mutation operators, the primary goal is to prevent the population from getting stuck in local optima 
during genetic optimization, thereby failing to achieve global optimization. To make mutations more efficient, multiple 
individuals are randomly selected over a wide range to replace the mutated individuals in the genetic algorithm 
process. This not only effectively preserves the optimal values of the previous generation but also helps ensure 
global search in the genetic algorithm through mutation operators. 

3) When using genetic operators, the primary goal is to ensure that superior parent generations are inherited 
while inferior offspring are eliminated. During the search process, a random paired search similar to a football league 
is employed to inherit individuals with lower fitness into the next generation's new population, with particular attention 
given to preserving the least fit individuals, ultimately achieving optimal selection. 

 
II. C. 2) Parameter optimization of the cosine function variable step size algorithm 
Using a genetic algorithm to optimize the parameters of the variable stride length adaptive algorithm based on the 
cosine function, the formula can be transformed as follows: 
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After transformation, we obtain: 
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Further, we can obtain: 
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Using formula (12) as the fitness formula, develop a suitable algorithm: 
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Next, design the core operator of the genetic algorithm to perform parameter optimization. 
Similarly, to perform parameter optimization for the COS2LMS algorithm, first perform the transformation to obtain: 
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The fitness function is (15): 
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II. C. 3) Comparison of algorithms after parameter optimization 
Whether there exists an optimal step size iteration method that maximizes the convergence performance of the 
variable step size KMS algorithm has always been an important research goal for experts and scholars in the field 
of LMS algorithms. After making some assumptions and approximations in the theory, various approximate optimal 
variable step size LMS algorithms have emerged based on different optimal rules. Among them, the Shin algorithm 
is a representative approximate optimal step size algorithm. 

The step size factor formula for the Shin algorithm is: 
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Among them, ( )g n  is obtained by taking a smooth approximation of the gradient vector. 
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The step size factor ranges from: 
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The weight coefficient update formula for the Shin algorithm is: 
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
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A comparative simulation experiment was conducted in the MATLAB environment between the approximate 
optimal step size algorithm (Shin algorithm) and the parameter-optimized cosine function improved algorithm. The 
comparison revealed that the COSLMS algorithm had the fastest convergence speed, followed by the COS2LMS 
algorithm, while the approximate optimal step size Shin algorithm had the slowest convergence speed. However, 
the steady-state error of COSLMS is the smallest, followed by the steady-state error of the Shin algorithm, with the 
steady-state error of COS2LMS being the largest. This indicates that parameter optimization can enhance the 
convergence performance of the improved LMS algorithm. However, it also suggests that parameter optimization is 
merely an important factor influencing the algorithm's convergence performance, with the decisive factor being the 
algorithm's inherent structure. 

III. Signal processing practices based on improved LMS adaptive filtering 
III. A. Preprocessing of sensor signals 
III. A. 1) Raw Data and Its Spectrum 
The following analysis focuses on the voltage signal data collected by a specific MSMA sensor in an experiment 
involving noise reduction of simulated inductive voltage signals. Figure 4 shows the raw signal data and its spectrum. 
The voltage signals collected by the sensor at 3,000 sampling points ranged between 120 mV and 150 mV, with a 
minimum of 124.65 mV and a maximum of 146.44 mV. The signal frequency ranges from 0 to 300 Hz, with higher 
signal levels between 0 and 125 Hz and lower signal levels between 125 and 300 Hz, where there may be a 
significant amount of noise. 
III. A. 2) Sensor signal preprocessing based on traditional filter methods 
To validate the signal processing performance of the LMS adaptive filter used in this paper, this section first employs 
a low-pass filter as a signal preprocessing comparison to determine whether traditional filtering preprocessing 
methods can achieve the desired signal preprocessing results. Figure 5 shows the signal and spectrum after low-
pass filtering. As shown in Figure 5, the waveform after low-pass filtering loses the oscillation characteristics of the 
original signal in the initial segment from 0 to 300 sampling points, resulting in time delay and phase shift, with 
significant waveform distortion and severe distortion. Additionally, the spectrum shows that the filtered signal in the 
0-50 Hz frequency range contains frequency components not present in the original signal, indicating that the 
separation and extraction process did not achieve the desired results. Therefore, traditional filtering methods are 
insufficient for preprocessing sensor signals, and further consideration should be given to the LMS adaptive filtering 
algorithm with variable step size parameter optimization. 
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(a) Original signal (b) Frequency /Hz 

Figure 4: The collected raw signal data and its spectrum 

 

  

(a) Filtered signal (b) Signal spectrum 

Figure 5: The signal and spectrum after low-pass filtering 

III. A. 3) Signals from different frequency channels after LMS adaptive filter decomposition 
Set the signal-to-noise ratio (SNR) of the input signal to SNR=15. Perform filter simulation on the sensor-acquired 
signals using a DSP. Figure 6 shows the signals from different frequency channels after LMS adaptive filter 
decomposition. After LMS adaptive filtering decomposition, the energy level of the low-frequency channel signal is 
between [-6.516, 6.731], and the basic characteristics of the signal are retained to the greatest extent. However, the 
energy level of the high-frequency channel signal is between [-2.991, 1.925], and the noise characteristics are 
stronger. Further parameter optimization of the variable step size is required to improve the noise reduction 
capability of the high-frequency channel signal. 
III. B. Algorithm simulation and result analysis under different variable step sizes 
III. B. 1) Algorithm processing results when the step size factor is 1/250 
Figure 7 shows the signal processing results of the LMS adaptive filter algorithm when the step factor is set to 1/250. 
When the step factor is set to 1/250, the signal level after processing by the LMS adaptive filter algorithm ranges 
from -4.597 to 4.452. As can be seen from the signal waveform, the signal still exhibits certain noise characteristics 
at this point. 
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(a) Low-frequency scale channel (b) High-frequency scale channel 

Figure 6: The signal decomposed by LMS adaptive filtering 

 

Figure 7: The processing result of the algorithm of 1/250 step factor 

III. B. 2) Algorithm processing results when the step size factor is 1/500 
Figure 8 shows the signal processing results of the LMS adaptive filtering algorithm when the step size factor is 
1/500. When the step size factor is set to 1/500, the signal level range after processing by the LMS adaptive filtering 
algorithm is [-3.098, 3.217]. At this point, the signal waveform is relatively smooth and does not exhibit noise 
characteristics. Therefore, a step size factor of 1/500 can effectively reduce noise in the signal. It can also be 
concluded that the smaller the step size factor, the better the signal processing effect. 
III. C. Selection of threshold functions 
III. C. 1) Comparison of different threshold functions 
Whether filtering can achieve good results for noisy signals depends not only on optimizing the variable step size 
parameter but also on the selection of the threshold function. Commonly used threshold functions include soft and 
hard threshold functions. Each of these threshold functions has its own characteristics. For noisy signals, using a 
hard threshold function sets a threshold based on the magnitude of the signal, where coefficients below the 
threshold are removed and those above the threshold are retained. This ignores the differences in the retained 
coefficients, which can easily cause local signal jitter. In contrast, soft thresholding produces smoother denoising 
results but reduces the clarity of the output. In this section, we apply soft and hard threshold functions to denoise 
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high-frequency signals, with a decomposition layer count of 2. Figure 9 shows the high-frequency voltage signals 
after denoising using the two threshold functions. The hard function exhibits singular values at 24.22s, 110.72s, 
112.64s, and 115.10s; the soft function only exhibits a singular value at 14.44s. Therefore, this paper selects the 
soft function as the threshold function for signal processing. 
 

 

Figure 8: The processing result of the algorithm of 1/500 step factor 

 

Figure 9: The signals after noise reduction by two threshold functions 

III. C. 2) Selection of the number of filter decomposition layers 
Since the number of filter decomposition layers was set to only 2 layers in the experiment where the threshold 
function was selected, this section sets up a comparison experiment to determine the optimal number of filter 
decomposition layers, testing the noise reduction effects (soft function) corresponding to 2, 3, 4, and 5 layers of 
filter layers. Figure 10 shows the filtering processing effects for different decomposition layer numbers. When the 
filtering decomposition layer number is set to 2 or 4 layers, only one singular value appears. Since the signal 
waveform is smoother and contains less noise when the decomposition layer number is set to 4 layers, it is 
determined that the signal processing effect is better when the filtering decomposition layer number is set to 4. 
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Figure 10: The filtering processing effects of different layers 

IV. Conclusion 
This paper proposes a sensor signal denoising method based on the LMS adaptive filtering algorithm and genetic 
algorithm to improve the noise suppression accuracy of the signal. The proposed algorithm achieves better signal 
processing performance than traditional filtering methods in both low-frequency and high-frequency channels. When 
the step size factor is set to 1/500, the signal processing performance is better than when it is set to 1/250. When 
the threshold function is set to a soft function, the signal denoising effect is better, and when the number of filtering 
decomposition layers is 4, only one singular value appears, resulting in less waveform noise. Future research can 
validate the robustness of the algorithm in multi-channel sensors and improve its sensor signal denoising capability. 
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