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Abstract With the deepening of electricity market reform, the diversity of users' electricity demand and the 
complexity of electricity retail packages have put forward higher requirements for package design and 
recommendation technology. In this paper, we propose a three-stage collaborative approach that integrates the 
modeling of users' electricity consumption behavior, the global optimization of differential evolution (DE) algorithm 
and the intelligent recommendation of attention factor decomposition machine (AFM), aiming at achieving the 
dynamic design and accurate recommendation of electricity retail packages. An extensible package product family 
GBOM is constructed based on the quintuple information expression model and modular design rules, and the 
differential evolution (DE) algorithm is used to efficiently search for the optimal bidding strategy in the high-
dimensional solution space, combined with the constraint rules to adaptively deal with the complex coupling 
relationship between modules. An intelligent recommendation algorithm based on AFM is further proposed to 
enhance the model's sensitivity to the key features of users' electricity behavior by introducing an attention 
mechanism to dynamically assign feature cross weights. The experimental results show that the differentiated 
pricing strategy has a significant effect in peak and valley time regulation, and the peak time price is 45.4% higher 
than the fixed price (e.g., the peak time price of user 1 is 453.28 yuan/MWh), and the valley time price is reduced 
by 47.3% (the valley time price of user 1 is 164.23 yuan/MWh).The AFM recommendation algorithm combines the 
user's load characteristics with the monthly electricity consumption grading, and the recommendation accuracy rate 
is reaches 94.09% (when the number of historical purchases Te=7), which is a significant improvement over 
traditional methods (e.g., 89.41% accuracy rate of the mean weight method). Through comparative analysis, the 
DE-AFM method performs optimally in terms of balancing error and practicality (RMSE=0.0144, accuracy rate 
94.09%), which verifies its stability and accuracy in complex scenarios. 
 
Index Terms differential evolutionary algorithm, electricity retail packages, attention factor decomposer, differential 
pricing 

I. Introduction 
In the context of building a unified power market and promoting the market operation of the new power system, the 
construction and operation of the power retail market constitutes the basic guarantee of power supply [1], [2]. The 
new type of power system is characterized by security and efficiency, cleanness and low carbon, flexibility and 
wisdom integration, and the multi-level unified system of the power market is the key to achieving the goal of “double 
carbon”, and the power retail market, as a part of the provincial power market, should play a fundamental role in 
ensuring the optimal allocation of power resources [3]-[5]. Currently, the design of energy retail packages for the 
diversified needs of multiple user groups is a key issue, and factors such as the sharp increase in the number of 
marketized electricity users, the risk of wholesale tariff fluctuations, and the multiplication of demand for accurate 
electricity retail packages have posed a great challenge to the design of retail packages [6]-[9]. 

Retail tariffs occupy a central position in the development of the electricity retail market. Retail tariffs are mostly 
determined by electricity selling companies and electricity retail users based on bilateral negotiation, and when retail 
tariffs are too high, the relevant government departments will set retail tariff ceilings, and at the initial stage of the 
liberalization of the electricity sales side, the electricity selling companies will develop and formulate a variety of 
flexible and convenient electric power retail package plans to enhance the attractiveness by optimizing their services 
[10]-[13]. However, the current electricity retail package design objective is single, to protect the electricity sales 
company to obtain profits as the main goal, less consideration for retail customers' electricity feelings and 
satisfaction [14], [15]. Retail tariffs are arbitrary and simple, mostly negotiated between the electricity sales company 
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and retail customers, and are not able to effectively transmit the price signals from the wholesale side of the medium- 
and long-term market and the spot market to the retail side [16], [17]. 

Electricity retail package price form solidification, it is difficult to guide the flexibility of users to participate in peak 
shaving and valley filling, resulting in a waste of power resources, but also increase the cost of electricity for retail 
users [18], [19]. In addition, the application of smart meters expands relevant electricity data, and intelligent 
algorithms for electricity sales to different users contribute to user classification and retail package recommendation, 
but traditional clustering algorithms are difficult to guarantee the accuracy of classification and push [20], [21]. In 
summary, the existing packages are still deficient in meeting the diversified needs of users and enhancing the 
revenue of the power seller, so it is urgent and necessary to carry out retail package design optimization. 

This study proposes a three-stage collaborative approach that integrates user electricity behavior modeling, 
differential evolution algorithm (DE) global optimization and attention factor decomposition machine (AFM) 
intelligent recommendation, aiming to achieve dynamic design and accurate recommendation of electricity retail 
packages. Firstly, the design method of electricity package system based on user's electricity consumption behavior 
is proposed as a five-element information expression model with modular design rules. By defining the versions, 
constraint rules and attribute variables of configuration modules, a scalable package product family GBOM is 
constructed, and the mutual exclusion, association and numerical constraints between modules are combined to 
ensure the rationality and flexibility of package design. Then for the global optimization problem of dynamic pricing, 
differential evolution (DE) algorithm is introduced for strategy optimization. By initializing the population, mutation, 
crossover and selection operations, DE can efficiently search for the optimal bidding strategies in the high-
dimensional solution space, and adaptively handle the complex coupling relationship between modules through the 
constraint rules. The differential evolution algorithm performs better in convergence speed and avoiding premature 
phenomenon, and provides high-quality inputs for subsequent recommendation algorithms. The article further 
proposes an AFM package recommendation algorithm based on electricity prediction, which enhances the 
differential representation of feature interactions by introducing an attention mechanism.AFM uses an attention 
network to dynamically distribute feature interaction weights on the basis of the factor decomposition machine (FM), 
which significantly improves the model's sensitivity to key features of the user's electricity consumption behavior. 

II. Differential Evolutionary Algorithm Based Electricity Retail Package Optimization and 
AFM Intelligent Recommendation Approach 

II. A. Design method of tariff package system based on users' electricity consumption behavior 
II. A. 1) Five-element information representation model for the tariff package design module 
In order to facilitate computer processing of the tariff package configuration model, this paper proposes a five-
element information expression to describe the various information in the configuration module. The five-element 
information model is of the form: 

  , , , ,cr ijMod M id M Version M Type M M     (1) 

where, Mod  denotes the module, M id  denotes the specific token of the module, M Version  denotes the 
module version of the configurable product, the system default recommends the latest modified version, M Type  
denotes the configurable module, when the value of M Type  is 0, it means that the selected module is a basic 
module; when the value of M Type  is 1, it means that the selected module is a mandatory module; when the 
value of M Type  is 2, it means that the selected module is an optional module, 

crM  denotes the set of constraint 
rules for configuration modules, which creates constraints on the relationship between configuration modules. 

crM  
consists of two attributes: constraints plus configuration results,  , RecrM Cond sult  corresponds to the 
constraints and the configuration results, respectively, ijM  denotes the set of attribute variables in a configuration 
module that can take values, denoted by  11 12( , , ) 1, 2, ; 1, 2,ijM M M M i j     , with ijM  representing the 
value of the j th variable of the i th module. 

 
II. A. 2) Rules for modular design of tariff packages 
Based on the electricity demand, the constituent modules of the electricity demand package are selected and 
combined based on the configuration rules, so as to ensure the correctness and effectiveness of the demand 
package design results. There are mutual constraints between modules in the design model, and the constraints of 
modules are shown in Figure 1. 

(1) Constraints arising between modules. A constraint relationship between modules is given as a global 
constraint as in Figure 1, 1. Such constraints have appeared in the model library stored by the company, but do not 
appear internally in the configuration module. This type of relationship includes association and mutual exclusion 
relationships. The association relationship that arises between modules is a mandatory association, i.e., at the time 
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of configuration, module 1 and module 2 must exist at the same time. For example, in a tariff package configuration, 
the kWh tariff must be present at the same time as the basic tariff module. The mutually exclusive relationship 
between modules is a mutual exclusion, i.e., when configuring, module 1 and module 2 cannot coexist at the same 
time. For example, when configuring a tariff package product, time-of-day tariffs and time-of-abundance tariffs 
cannot coexist at the same time. 

Module 1

Attribute 1

Attribute 2

…

Attribute N

Module 2

Attribute 1

Attribute 2

…

Attribute N

2

3

1

3

 

Figure 1: Constraint relation of module 

(2) Numerical relationships between different attributes of a module and other modules. Such a relationship 
between module 2 and attribute 1 in module 1 is shown in Figure 1 in 2. For example, the load factor electricity price 
package apportions the transmission and distribution price among the basic electricity price and the kWh price 
according to a certain percentage. 

(3) Local constraint relationship between a module attribute and other module attributes. For example, the 
relationship between attribute 2 in module 1 and attribute 2 in module 2 as demonstrated in Figure 1, 3. For example, 
the peak and valley tariff levels corresponding to the high and low load rate attributes in the load rate peak and 
valley tariff package are different, and there is a certain constraint relationship between them. 

(4) Logical relationships between different attributes within the same module. For example, the constraint 
relationship between attribute 1 and attribute N  in module 2 is shown in Figure 1, 4. For example, the peak hourly 
tariffs, the usual period tariffs and the valley tariffs set in the Peak and Valley Tariff Package produce user electricity 
costs that are lower than the user's current tariffs, therefore, the level of the tariffs for each period of time should be 
considered as a whole when setting the peak and valley tariffs. 

Based on the above description of the attributes of the design module, each variable, and the configuration rules, 
we obtain the product family GBOM that can be used to configure the tariff package. 

 
II. B. Heuristic Global Optimization Method Differential Evolutionary Algorithm 
In this section, differential evolutionary algorithms (DEs) are introduced to achieve efficient search of optimal bidding 
strategies under complex constraints through adaptive mutation and crossover mechanisms. 

Differential evolutionary algorithm (DE) is used to solve real number optimization problems. Differential 
evolutionary algorithms are used in constrained optimization computation, clustering optimization computation, and 
nonlinear optimization control. Differential Evolutionary Algorithm like Genetic Algorithm is also an optimization 
algorithm based on modern intelligence theory. The core of the differential evolutionary algorithm is to randomly 
generate an initial population and use appropriate mutation strategies to generate a mutant population, calculate 
the fitness value and then compare the new individuals with the corresponding individuals in the original population, 
select the better individuals to be retained, and then guide the search results to the optimal solution vector through 
iterations. 

Steps of Differential Evolutionary Algorithm 
(1) Initialization. Generate NP population individuals randomly and uniformly in the solution space. The dimension 

D  of each individual needs to be determined. 
LowX  and HighX  denote the vectors of upper and lower bounds on 

the upper values of the D  dimensions, respectively. The i th individual of the generated population is as follows: 
0 (0,1)* ( )i Low High Lowx X random X X   , where [1,2, , ]i NP  . 
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An initial population of NP individuals 0 0 0 0
1 2[ , , , ]NPX x x x   is obtained, the variation factor F  and crossover 

factor CR are determined, and the maximum number of generations 
maxG  is determined. The number of individuals 

NP is generally greater than 4. 
(2) For the individuals  1, 2, ,G

ix i Np   in the G th generation, compute the fitness value ( )G
iPE x  for each 

individual and retain the optimal individual G
bestx  with the best fitness. 

(3) Variation. For the i th individual G
ix  in generation G , randomly select 3 different individuals 

1
G
rx , 

2
G
rx , 

3
G
rx  

in generation G  besides G
ix , i.e., 

1r , 
2r , 

3r , [0, ]i NP  and 
1 2 3r r r i   , generating new variant individuals 

1
1 2 3( )G G G G

i r r rv x F x x    , generating variant populations 1 1 1 1
1 2[ , , , ]G G G G

NPV v v v     . [0,2]F  . 

(4) Crossover. Crossover the original individual G
ix  with the variant individual 1G

iv
  to obtain the crossover 

individual 1G
iu
 , [0,1]CR  is the crossover probability, and (0,1)r random  is the distribution obeying the mean 

on 0 to 1. The crossover operation maintains the diversity of the population. 

 
1

1 ,

, else

G
ij ijG

ij G
ij

v r CR
u

x


   


 (2) 

where [0, ]j D , denotes one dimension for each individual. Generally speaking, the larger the value of CR, the 
faster the convergence speed will be, but beyond a certain value the convergence speed will be decreased instead, 
and the phenomenon of precocity occurs when the value of CR is biased. 

(5) Selection. To decide whether the mutant individual 1G
iu
  becomes a new individual in the next generation. 

According to the greedy strategy, the better adaptation of G
ix  and 1G

iu
  is selected as the individual 1G

ix
  in the 

1G   generation. 

 
1 1

1 , ( ) ( )

, else

G G G
G i i i
i G

i

u P u P x
x

x

 
   


 (3) 

Generate the 1G  th generation population 1 1 1 1
1 2, , ,G G G G

NPX x x x       . 

(6) Repeat steps (2)-(5) until the termination condition of the iteration is reached. 
Figure 2 shows the flow of the cross-variance algorithm. 

Start

Initialise population individuals 
and algorithm parameters

Calculate adaptation values for 
population individuals

Whether the
 termination condition
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N

Saving the approximate 
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End
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Figure 2: The process of the cross-mutation algorithm 
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II. C. AFM package recommendation algorithm based on power prediction 
Although the package strategy optimized by the differential evolution algorithm can improve market revenue, its 
application needs to match the personalized needs of users. Therefore, this section proposes an intelligent 
recommendation algorithm based on AFM, which dynamically captures the potential correlation between the user's 
electricity consumption behavior and the package characteristics through the attention mechanism to realize the 
accurate recommendation of “thousands of people with thousands of faces”. 

The AFM algorithm introduces the attention mechanism into the FM algorithm, so that the AFM can express the 
contribution of each pair of feature intersection to the result in a more detailed way on the basis of the original FM 
algorithm. 

To add the attention mechanism, AFM adopts a neural network structure reconstruction algorithm, and the 
network structure of the AFM algorithm is shown in Fig. 3. It can be seen that the AFM algorithm consists of a 
sparse input layer (SIL), an embedding layer (EL), a pairwise interaction layer (PIL), an attention pooling layer (APL), 
and an output layer, which passes through the attention network between the pairwise interaction layer and the 
attention pooling layer. 
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Figure 3: AFM network structure 

The AFM algorithm is the same as the FM algorithm, for each feature 
ix , there exists a corresponding hidden 

vector 
iv . Only in the AFM algorithm, the function of mapping feature 

ix  to the corresponding hidden vector 
iv  is 

accomplished by the sparse input layer together with the embedding layer. 
The function realized by the pairwise interaction layer of the AFM algorithm is the feature crossing function of the 

FM algorithm. After the pairwise interaction layer, the output of the network is a set of vectors: 

     
( , ) s

PI i j i j
i j

f v v x x


 
R

 (4) 

For a set of vectors output by pairs of interaction layers, if defined: 

 
( , )

ˆ ( )
s

T
i j i j

i j

y p v v x x b


  
R

 (5) 

where p  is the parameter column vector with the same dimension as v  and b  is the bias parameter, it is clear 
that if both p  and b  are set to 1, Eq. (5) will be completely equivalent to the second term on the right side of the 
middle sign in Eq. (5), i.e., it is completely equivalent to the FM algorithm. 

The difference between the AFM algorithm and the FM algorithm lies in the introduction of the attention pooling 
layer in the AFM algorithm, and the output of the pairwise interaction layer after the attention pooling layer is: 

   
( , )

( )
s

at PI ij i j i j
i j

f f a v v x x


  
R

 (6) 

where, ija  represents the weight of the feature crossover generated by the i th feature and the j th feature in the 
output, in the FM algorithm, ija  is all 1, i.e., each pair of feature crossover has the same weight in the output, but 
in practice, some feature crossover contributes a lot to the prediction result, some feature crossover contributes a 



Optimization Research on Electricity Retail Package Design and Intelligent Recommendation Model Based on Differential Evolutionary Algorithm 

247 

small amount, and it may not be reasonable for FM to treat each pair of feature crossover equally may be 
unreasonable, and if it is for useless feature crossings, it may even reduce the prediction ability of the algorithm. 
Instead, the AFM algorithm utilizes the attention mechanism to calculate the weight of each pair of feature crossings 
in the final result: 

 

 
 

 
( , )

Re ( )

exp

exp
s

T
ij i j i j

ij

ij

ij
i j

a h LU W v v x x b

a
a

a


  








R

 (7) 

where h , W , b  are the parameters to be trained and ReLU is the activation function: 

 
0

Re ( )
0 0

z z
LU z

z


  

 (8) 

Finally, the output of the AFM algorithm used for the regression problem can be written Eq: 

 
1 1

ˆ ( ) ( )
d d

T T
AFM ij i j i j

i j i

y x x p a v v x x
  

      (9) 

And the output of the AFM algorithm used for the classification problem can be written Eq: 

 
1 1

ˆ ( ) ( )
d d

T T
AFM ij i j i j

i j i

y x sigmoid x p a v v x x
  

 
  

 
    (10) 

In this case, the sigmoid function is also a type of activation function and can also be used as an output function 
for the binary classification problem, which is given by: 

 1
( )

1 z
sigmoid z

e



 (11) 

Similarly, the AFM algorithm can be used for both classification and regression problems. 
For regression problems, MSE is commonly used as the loss function. And for classification problems, cross-

entropy loss (CE) is commonly used as the loss function, and the formula for cross-entropy loss is: 

  ( ) ( ) ( ) ( )

1

1
ˆ ˆlog( ) (1 ) log(1 )

N
i i i i

i

CE y y y y
N 

      (12) 

After selecting a suitable loss function, the backpropagation algorithm can be utilized to solve the parameters. 
Compared with the FM algorithm, the AFM algorithm introduces the attention mechanism to calculate the weight 

of each feature interaction on the prediction, which is a more delicate treatment, and can enhance the contribution 
of beneficial feature interactions in the output and prevent useless feature interactions from damaging the model, 
and does not increase too many parameters and computational complexity, and achieves useful results on various 
datasets. 

III. Empirical Analysis and Recommendation Accuracy Verification of Electricity Retail 
Packages Based on DE-AFM Optimization 

The three-stage synergistic approach based on user behavior modeling, differential evolutionary algorithm (DE) 
global optimization and AFM intelligent recommendation proposed in Chapter 2 provides a theoretical framework 
for the dynamic design and accurate recommendation of electricity retail packages. In order to verify the practical 
effectiveness of the framework, Chapter 3 analyzes a typical customer example, combines real load data and market 
scenarios, and explores the economy of the differential pricing model, the personalized adaptability of the 
recommendation algorithm, and the multi-dimensional impact of user behavioral characteristics on the 
recommendation accuracy, so as to comprehensively evaluate the practical value of the method. 
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III. A. Arithmetic validation of user-differentiated package pricing model and dynamic pricing effect 
analysis 

Taking three typical electricity retail customers as the research objects, this chapter develops an example analysis 
of the differentiated package pricing model constructed in the previous section based on customers' electricity 
consumption behaviors. The differentiated package pricing results are calculated and analyzed by the pricing model. 

 
III. A. 1) Initial load of retail electricity consumers 
In this paper, three typical electricity retail customers in a Chinese city are taken as research objects, and their load 
characteristic data are combined to verify the feasibility of a differentiated electricity retail package pricing model 
based on the users' electricity consumption behavior. To make the results more representative, it is assumed that 
when the electricity sales company acts as an agent for electricity retail users 1, 2 and 3 to purchase electricity, 80% 
of the electricity consumption of the electricity retail users is purchased in the medium- and long-term wholesale 
market, 15% of the electricity consumption is purchased in the day-ahead market, while 5% of the electricity 
consumption is purchased in the spot market. In order to comprehensively consider multiple scenarios and reduce 
the amount of calculation, the scenarios are reduced to some extent, and the data from different seasons and 
weekday scenarios are processed in a weighted average manner, and the load profiles of electricity consumption 
of the three typical retail electricity users after processing are shown in Figure 4 below. 

 

Figure 4: Initial load curve for retail electricity users 

Typical daily average load of retail electricity user 1 is 9,912 MW, with a stable load throughout the day, a more 
even load distribution in different hours, small load volatility, and short-time medium peaks during the day, which is 
typical of a smooth-type user; typical daily average load of retail electricity user 2 is 7,371 MW, with a large load 
during the daytime and a small load during the rest of the day, and two peaks during the day, which is typical of a 
daily peak-type user; typical daily average load of retail electricity user 3 is 6,345 MW, with a large load at night, 
large load fluctuations during the day, and long-time peaks, which is typical of a night peak-type user. users; Retail 
Electricity User 3, with a typical daily average load of 6,345 MW, has a large nighttime load, large load fluctuations 
during the day, and two peaks during the day, which is a typical nighttime-peak type of user. 

 
III. A. 2) Differentiated Package Pricing Results and Analysis 
After the calculation of the pricing model based on differential evolutionary algorithm, the package prices of the 
differentiated packages based on users' electricity consumption behavior are finally obtained. The comparison of 
fixed price packages for retail electricity users 1, 2 and 3 with the package prices of differentiated packages based 
on users' electricity consumption behavior is shown in Fig. 5. 

Figure 5 illustrates the comparison of the electricity prices of the fixed price package and the differentiated 
package for three typical retail electricity users (steady 1, daily peak 2, and night peak 3) at different time periods. 
The fixed-price package is unified at 311.65 yuan/MWh, while the differentiated package dynamically adjusts the 
price according to the user's electricity consumption behavior. 
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Figure 5: Comparison of user fixed price and differentiated price packages 

During peak hours (8:00-12:00, 17:00-21:00): The electricity price of the differentiated package is significantly 
higher than that of the fixed-price package, and the electricity price of the user's 1 peak hour is 453.28 yuan/MWh, 
which is 45.4% higher than the 311.65 yuan/MWh of the fixed-price package, reflecting the regulating effect of 
dynamic pricing on peak electricity consumption. 

Weektime (13:00-17:00, 22:00-24:00): The electricity price of the differentiated package is between peak and 
valley, and the electricity price of user 1 during the normal period is 315.72 yuan/MWh, which is slightly higher than 
the fixed-price package, but much lower than the price during peak hours, reflecting the reasonable pricing of the 
intermediate load period. The electricity price of night peak users3 is 345.18 yuan/MWh from 22:00 to 24:00, and 
the contradiction between supply and demand needs to be balanced. 

Valley Hour (0:00-8:00): The electricity price of the differentiated package is significantly lower than that of the 
fixed-price package, and the electricity price of users during the valley period is only 164.23 yuan/MWh, a decrease 
of 47.3%, encouraging users to use electricity during low-load hours. 

 
III. B. Typical user package recommendation results based on AFM package recommendation algorithm 
Through the validation of the differentiated package pricing model for typical users in Section 3.1, it is clear that the 
dynamic pricing strategy has significant advantages in peak and valley time adjustment and user type adaptation. 
However, the optimized package strategy needs to further match the user's individualized demand to achieve 
accurate landing. To this end, this section proposes a staggered package recommendation scheme based on the 
AFM recommendation algorithm, combining the user load profile and monthly electricity consumption characteristics, 
and the results of the user's power package recommendation are shown in Table 1. 

Table 1: The recommended results of the user's electricity package 

Electric 

power user 
Type 

Monthly electricity 

consumption /MW 

Recommended 

package 

Peak price/ 

yuan 

Regular period 

price/ yuan 

Off-peak 

price/ yuan 

User1 Stationarity 9912 FT7500 453.28 315.72 164.23 

User2 Sunrise peak 7371 FU7500 434.23 284.38 140.27 

User3 
Night rush hour 

type 
6345 FT5000 410.37 345.18 188.39 

User4 Sunrise peak 13842 FU12500 427.37 276.39 133.81 

User5 Sunrise peak 5935 FU5000 437.01 288.53 142.02 

User6 Sunrise peak 10274 FU10000 432.77 282.05 138.54 

User7 
Night rush hour 

type 
8374 FT7500 407.44 343.19 184.95 

User8 Stationarity 11356 FT10000 449.7 313.24 160.52 

 
Table 1 shows the personalized package recommendation results of the AFM algorithm for different user types 

and monthly electricity consumption. The recommended packages are categorized into fixed-rate packages (FU) 
and time-sharing tariff packages (FT), and are graded by combining user load characteristics. 
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Matching of user types and packages: Day-peak users (e.g., User2, User4) are recommended fixed-rate 
packages (FU series), whose peak-time tariffs (434.23 yuan/MWh) and normal-time tariffs (284.38 yuan/MWh) are 
lower than peak-time pricing of the differentiated packages but higher than the valley-time tariffs (140.27 yuan/MWh), 
which are suitable for daytime high-load users. Night-peak type users (e.g., User3, User7) are recommended for 
time-sharing tariff packages (FT series), which have significantly lower valley-time tariffs (e.g., 188.39 yuan/MWh in 
the valley time for User3), which are suitable for night-time electricity demand. 

Electricity Consumption and Package Segmentation: Among them, the fixed-rate flat tariff (FU) packages are 
divided into eight segments from FU-base to FU-12500 according to the amount of electricity consumed, which are 
applicable to customers with monthly electricity consumption ranging from 0 to 10,000 MWh to 10,000 MWh and 
above; in addition to the F-base packages, there is one additional segment for every 2,500 MWh of electricity 
consumed. Monthly electricity consumption directly affects the selection of packages; User1 (smooth type, monthly 
electricity consumption of 9912MWh) recommends FT7500 package, which covers the range of 7500-10000MWh; 
while User4 (daily peak type, monthly electricity consumption of 13842MWh) recommends FU12500 package, 
which applies to users of more than 10,000MWh, reflecting the accurate adaptation of the algorithm to the scale of 
electricity consumption. This reflects the accurate adaptation of the algorithm to the scale of electricity consumption. 

Price gradient design: the price of electricity in the package gradient changes. Taking the FU series as an example, 
the peak hour tariff for the FU5000 package is 437.01 yuan/MWh, while the FU10000 package is reduced to 432.77 
yuan/MWh, indicating that users with large power consumption can enjoy marginal price concessions and enhance 
the attractiveness of the package. 

Overall, the AFM algorithm captures the correlation between users' electricity consumption behavior and package 
characteristics through the attention mechanism, and realizes the recommendation effect of “thousands of people, 
thousands of faces”. 

 
III. C. Research on the multi-dimensional influence of user behavioral characteristics and recommendation 

parameters on package recommendation accuracy 
Although the AFM algorithm shows significant advantages in personalized recommendation, its recommendation 
accuracy is still affected by the complexity of user behavioral characteristics (e.g., the number of historical purchases) 
and algorithmic parameters (e.g., the number of nearest-neighbor users). In this section, we further quantitatively 
analyze the mechanism of these factors on the recommendation results from a multi-dimensional perspective, and 
reveal the change rule of accuracy under different parameter configurations through comparative experiments. 

 
III. C. 1) Influence of the number of times a user purchases a package and the number of nearest neighbor users on 

the accuracy of package recommendation 
The power package recommendation system realizes the most economical package recommendation for the target 
user based on the user's power forecast and the package history purchase information with the load information of 
the sample users. Table 2 compares the changes in package recommendation accuracy of the proposed method 
for different number of package purchases Te and number of near-neighbor users k. Among them, with more 
historical package purchase information provided by users, the user profile based on implicit scoring of packages 
can more accurately reflect their consumption preferences, thus improving the package recommendation accuracy. 
When the number of package purchase records available from the target user increases, the root mean square 
error indicator IR of the economy score of the recommended Top-N most economical package decreases from 
0.076 (Te=1) to 0.013 (Te=6), and the package recommendation accuracy indicator increases from 65.6% to 90.1%. 

Table 2: Comparison of recommendation accuracy under different k and Te 

The number of purchases for different packages RMSE 
Accuracy/% 

K=1 K=3 K=5 K=7 K=9 

Te=1 0.077 61.28 62.12 63.09 63.47 64.58 

Te=2 0.034 75.53 79.47 79.04 78.31 78.37 

Te=3 0.027 81.86 81.34 83.31 81.31 85.59 

Te=4 0.023 84.67 84.19 85.18 86.26 87.03 

Te=5 0.019 87.93 86.49 88.08 89.08 89.18 

Te=6 0.015 90.39 90.23 92.93 88.23 91.52 

Te=7 0.010 92.72 93.69 93.11 92.28 94.09 

 
The significant effect of the number of historical purchases, Te, is that as Te increases from 1 to 7, the root mean 

square error (RMSE) decreases from 0.077 to 0.010, and the recommendation accuracy increases from 61.28% to 
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94.09%. When Te=6, the RMSE is 0.015 with an accuracy of 90.39%, while when Te=7, the RMSE further decreases 
to 0.010 with an accuracy of 94.09%. This indicates that the more purchase records provided by users, the more 
accurate the algorithm is in modeling user preferences and the more reliable the recommendation results are. 

The marginal effect of the number of near-neighbor users (k) is reflected in the fluctuating upward trend of the 
accuracy rate when k increases from 1 to 9. Taking Te=6 as an example, the accuracy rate is 90.39% at k=1, peaks 
at 92.93% at k=5, and falls back to 91.52% at k=9. This suggests that a moderate k value may enhance the 
recommendation effect by balancing local and global information, while too large k may introduce noise. 

 
III. C. 2) Comparison of Recommendation Accuracy of Different Package Recommendation Methods 
In order to verify the effectiveness of the proposed package recommendation method based on package implicit 
scoring and user profiling, Figure 6 compares the power package recommendation accuracy under different 
recommendation methods. Among them, the proposed package recommendation method based on dual-scale 
similarity load clustering with profile coefficients (DSM); in terms of the package label assignment method, the 
entropy weight method (EWM) determines the label weights according to the information entropy of the labels within 
the user clusters, and the larger the information entropy of the labels is, the smaller the degree of dispersion of 
corresponding labels' scores within the user clusters, and the larger the degree of correlation of package labels with 
the user loads are; the uniform weight method ( UWM) uses a uniform weight ω = 0.150 for package labels. In 
addition, under the proposed profile coefficient-based package label weight model, the sample user load profiles 
can also be clustered using Euclidean Distance (EDC) and Cosine Distance (CDC), respectively, to obtain 
differentiated package label weights for package recommendation; and the Content-Based Recommendation (CBR) 
method matches power packages with similar label scores by user profile labels for recommendation. 

 

Figure 6: Comparison of electricity recommendation accuracy under different methods 

The method DE-AFM in this paper has the highest accuracy of 94.09%, but the RMSE is slightly higher than 
some of the methods (0.0144.) The CBR method has the lowest RMSE of 0.0106, but the accuracy is only 63.28%, 
which suggests that it may ignore the dynamic nature of the user's behavior due to its over-reliance on label 
matching. In contrast, DE-AFM is more stable in complex scenarios by fusing differential evolutionary algorithms 
with attention mechanisms. The entropy weight method (EWM)-based method has an RMSE of 0.0121 and an 
accuracy of 88.49%, which is better than the uniform weight method UWM with RMSE=0.0131 and an accuracy of 
89.41%, which verifies that the information entropy assignment is effective in distinguishing the importance of labels. 
Meanwhile, the 91.84% accuracy of the clustering method based on cosine distance (CDC) is higher than the 90.58% 
of the Euclidean distance EDC, indicating that the cosine distance is more suitable for capturing the similarity pattern 
of the user load profile. 

Comprehensive performance ranking: DE-AFM > CDC > EDC > DSM > UWM > EWM > CBR Although the RMSE 
of DE-AFM is slightly higher, its accuracy is significantly ahead of that of EDC, reflecting its superiority in balancing 
error and practicality. 

IV. Conclusion 
In this paper, the dynamic design and accurate recommendation of electricity retail packages are realized through 
a three-stage synergistic approach, and the effectiveness of the fusion model based on differential evolution 
algorithm (DE) and attention factor decomposition machine (AFM) is verified. The differentiated pricing strategy 
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significantly optimizes the adjustment effect of peak and valley electricity price, and the peak hour electricity price 
is enhanced by 45.4% (e.g., the peak hour electricity price of user 1 is 453.28 yuan/MWh) and the valley hour 
electricity price is reduced by 47.3% (the valley hour electricity price of user 1 is 164.23 yuan/MWh) compared with 
that of fixed-price packages, which effectively balances the contradiction between supply and demand. 

The AFM recommendation algorithm dynamically captures user behavioral characteristics through the attention 
mechanism, with a recommendation accuracy of 94.09%, significantly better than the 89.41% of the uniform weight 
method and the 63.28% of the content-based recommendation method, and the root mean square error 
(RMSE=0.0144) is stable in complex scenarios. 

The DE algorithm converges fast and avoids premature phenomenon in global optimization, and its optimized 
package strategy provides high-quality inputs for AFM recommendation, and the two synergistically significantly 
improve the recommendation accuracy and economy. In addition, the accurate adaptation of the user's electricity 
consumption scale and package slotting further validates the practicality of the model. 
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