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Abstract Language modeling provides a resource carrier for students' English learning. In this paper, ZO-VRAGDA 
algorithm is designed to reduce the complexity of multi-task solving for English language models. By calculating the 
complexity of the model processing task, the intelligent body is guided to decompose the task into multiple subtasks. 
The efficiency and accuracy of the model in completing the task are optimized by invoking appropriate tools and 
reminding the error-prone points. The English language model is introduced in the language classroom to 
recommend personalized learning resources for students and improve teaching quality. The study shows that with 
different numbers of neurons and iterations, the training time of the model based on computational complexity 
analysis in this paper is 5.54s-7.05s, 698.53s-1213.94s and 115s and 2722s in the 2 datasets, respectively, which 
is better than the comparison model. In different complex task processing, the confusion degree is reduced to 41 
with only 99.22s, 104.21s, 97.91s. The similarity degree is improved to 27 with only 113.53s, 60.77s, 93.31s. 
 
Index Terms ZO-VRAGDA algorithm, complexity analysis, subtask decomposition, English language modeling 

I. Introduction 
Big language models are important breakthroughs in the field of natural language processing in recent years, which 
are capable of handling complex natural language tasks, such as text generation, machine translation, sentiment 
analysis and question-answer systems, by means of multilayer neural network structures and self-attention 
mechanisms trained by deep learning techniques [1]-[4]. These models typically have billions or even more 
parameters, allowing them to exhibit excellent performance and strong generalization capabilities on a wide range 
of tasks [5]. 

The evolution of large language models can be traced back to early neural network models in the 1990s, but the 
real breakthrough came with the proposal of the Tranformer model in 2017, which significantly improves the 
parallelism of the model and its ability to handle long dependencies through the self-attention mechanism [6]-[8]. 
Subsequently, pre-trained models such as BERT and GPT-3 were introduced, which further validated the superior 
performance of large language models on multiple tasks [9], [10]. Big Language Models have attracted more 
attention in the academic world, and many scholars have found that Big Language Models have facilitated the 
transformation of related disciplines towards digitalization, causing significant changes in the research objects, such 
as its bidirectional ability to generate natural language text and to be able to comprehend the input text making it a 
broad application prospect in the field of education [11]-[13]. In English language learning, the three roles played 
by the Big Language Model, i.e., language consultant, language companion, and language assessment expert, can 
significantly improve the level of interactivity and personalized learning in the smart classroom, and provide students 
with a more efficient and interesting learning experience [14]-[16]. However, the computational complexity of the 
Tranformer model grows with a certain regularity, the progress of a single operation is delayed, as well as the 
intrinsic storage of the model needs to be expanded, and the computational time-consumption increases [17], [18]. 
There is a lack of an effective breakthrough method. 

This paper proposes an optimization method for analyzing the computational complexity using the ZO-VRAGDA 
algorithm for the problem of large task volume in English language model-assisted teaching. The ZO-VRAGDA 
algorithm is introduced to analyze and categorize the historical task execution process of the intelligent body and 
mine the task processing law. Calculate the complexity of the total task and select the appropriate tool to execute 
the disassembled subtasks to reduce the processing difficulty. Meanwhile, combining with data enhancement 
scheme homogenizes the task description way and reduces the amount of semantic retrieval. The application of 
English language modeling generates discourse materials for students that meet their learning needs, breaks 
through the limitation of high repetition of teaching materials, and guides students to actively participate in classroom 
learning. 
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II. Computational complexity-based modeling of the English language 
II. A. Computational complexity analysis 
In this section, we analyze the iterative complexity of the ZO-VRAGDA algorithm for solving the problem. Before 
proceeding to the detailed complexity analysis, we make the following assumptions about stochasticity. 

Assumption 1: ( , )g x y  satisfies all assumptions. 
Assumption 2: The variance of the stochastic gradient estimator is bounded, i.e., there exists a constant 0   

such that for any x  and y , the following equation holds 
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Assumption 3: For each part of the problem ( , ; )G x y   is l -smooth, i.e., there exists a constant 0l   such 
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Proof: using Jensen's inequality and Assumption 3, 1
1 2, dx x   , 2
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Similarly it can be shown that 
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Definition 1: If ( )x ‖ ‖E ò , then x  is the ò -stabilizing point of the problem. 

Lemma 2: If Assumption 3 is satisfied, then 
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Proof: first, by Lemmas 1 and (3), there are 
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where the second equation follows from 2 221 1 1
, , ,

2 2 2
a b a b a b a b       . Similarly, by Lemma 1, one obtains 

 

   

 

 

   

 

 

1

2

1 1

22

2 2

2 22

2

2 2

, ,

, ,
2

, ,
2

, ,
2 2

2 2

,
2

( , ) 1
2 2

t t t t

x t t t t t t

x t t t t

x t t t x t t

t t

x t t t

x t t t

g x y g x y

l
g x y x x x x

l
g x y m m

g x y m g x y

l
m m

g x y m

g x y l m

 

 

 



  



 



    

   

    

 

  

   

E E

E E

E E

E E

E E

E

E E

 (6) 

Add (5) and (6) together and cite the reasoning. 
 

II. B. Utilization process 
The historical case-driven task planning approach is able to summarize three types of task planning experiences 
by analyzing the execution history: sub-task decomposition, task execution scheme, and error-prone point 
reminders, respectively. Among them, the first two originate from the successful cases in the execution history of 
the intelligentsia, and the last one originates from the summarization of the error-prone cases. Meanwhile, this study 
also designed the English language model data enhancement scheme to mitigate the effect of different task 
description styles on semantic retrieval. 

1) Subtask decomposition experience for guiding the intelligentsia to split the task. For simple tasks, one or more 
steps can be accomplished, but the overall execution is linear and sequential; for complex tasks, the intelligent body 
needs to perform task decomposition first, and then solve the subtasks sequentially, and may even need to 
decompose the subtasks again, and finally solve them in a tree-like manner. 

2) Task execution scheme experience, used to guide the intelligent body how to efficiently complete the current 
task. For example, to solve task A, tool 1, tool 2, and tool 3 can be invoked sequentially. 

3) Error-prone point reminder experience, which is used to guide the intelligent body to make as few mistakes as 
possible. For example some tools are invoked with parameters that require extra attention, or some execution 
sequences have specific pre-steps. 

Figure 1 shows how the present approach optimizes the original task planning for the intelligentsia. Task 1 and 
Task 2 in the example are similar tasks, and HAOK's role in the whole task planning is as follows: 1) It is suggested 
that the intelligent body should not complete subtask 1 directly, but split it into subtasks 1.2, 1.2. Because when the 
intelligent body executes the task for the first time, it finds that subtask 1 is too large to complete directly. 2) It is 
suggested that the intelligent body, when completing subtask 2, invoke tools 1 and 3 in turn, and Skipping the wrong, 
invalid attempts to tool 2. 
II. C. Teaching methods 
Large-scale pre-training language models can contribute to the development of a student-centered English 
discourse classroom. In a student-centered discourse classroom, students no longer just listen to the teacher's 
explanations and sit at their desks copying and reciting grammar notes, but really participate in the English discourse 
classroom. Before that, how to make every student really participate in the classroom has been a difficult problem, 
and teachers could not take care of every student in the process of teaching. After using the large-scale pre-training 
language model to generate pragmatic materials, students have the right to choose the pragmatic materials they 
need to learn, and teachers can judge whether students have mastered a certain pragmatic usage with the aid of 
the large-scale pre-training language model, and provide students with suitable pragmatic learning materials. 

For example, if students' dialogues or compositions are put into the model for processing, the model will find out 
the students' linguistic errors and generate personalized materials that are more suitable for the students. The 
teacher plays the role of a facilitator and is no longer in charge of the whole classroom, nor does he or she use the 
same language teaching method for different students. For the students, the materials generated by the large-scale 
pre-training language model are carefully selected from a vast amount of information and can be personalized and 
assimilated by the students. 
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Figure 1: The optimization process of agent task planning 

III. Analysis of the optimization effect of English language model based on computational 
complexity analysis 

III. A. Model training time overhead comparison 
III. A. 1) Comparison of model training time overhead for different number of neurons 
In order to verify the effectiveness of the model in task processing in English language teaching after the introduction 
of the ZO-VRAGDA algorithm to calculate the task complexity, the study conducts semantic analysis experiments 
with the COIN dataset and Charades dataset, and compares the training time overhead of different language models 
with different numbers of neurons, to judge the efficiency of the model's task processing after the subtask 
decomposition. The study selected 350 video messages from the C0IN dataset and 5500 video messages from the 
Charades dataset for model validation. Among them, 263 videos from COIN dataset and 4125 videos from 
Charades dataset were used in the training set. The test set COIN dataset 87 articles and Charades dataset 1375 
articles. Meanwhile, the study takes Spark as the framework of the model validation system, uses the distributed 
computing system based on remote direct data access protocol for validation, and sets the model learning efficiency 
to 0.05. Firstly, the model time overhead validation is carried out in terms of the number of neurons of the model 
and the number of selected generations, and LSTM, RNN, I-LSTM and the model of this paper are introduced for 
the comparison of the results. Figure 2 shows the training overhead of different models with varying number of 
neurons. The training time of this paper's model, which introduces the ZO-VRAGDA algorithm to reduce the 
computational complexity of the task, is always the shortest as the number of neurons varies between 0 and 600. 
In the training set COIN dataset, the training time of this paper's model varies between 5.54s-7.05s; in the training 
set Charades dataset, the training time of this paper's model varies between 698.53s-1213.94s, which are all less 
than the training time of the other three comparison models. It indicates that the task processing speed of this 
paper's model is faster under different numbers of neurons. 
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(a) Training time cost of the COIN dataset (b) Training time cost of the Charades dataset 

Figure 2: Training time cost under different numbers of neurons 

III. A. 2) Comparison of model training time overhead for different number of iterations 
Fig. 3 shows the training time overhead of different models with different number of iterations. The training time 
overhead of this paper's model is the least during 450 training iterations. The model in this paper is basically 
stabilized at 115s training time after 219 iterations on COIN training dataset. On the Charades training dataset, after 
171 iterations, it is basically stabilized at more than 2722s, with smoother fluctuations. Compared with the other 
three comparative models, the model in this paper reaches a smooth state after fewer iterations, and the training 
time is much less than the other models. This again verifies that the improved model in this paper has a faster task 
processing speed. 

  

(a) Training time cost of the COIN dataset (b) Training time cost of the Charades dataset 

Figure 3: Training time cost under different iterations 

III. B. Model Task Processing Performance Comparison 
III. B. 1) Confusion Level (PPL) Comparison 
The language model based on computational complexity analysis is compared with the language model based on 
simultaneous optimization to determine the performance advantage of this paper's language model in the 
processing of tasks such as student proficiency analysis and discourse material recommendation. Figure 4 shows 
the training convergence curves of HMA, SA-HMA, Horovod model and this paper's model under different task sizes. 
Whether processing 1 complex task, 3 complex tasks or 5 complex tasks simultaneously, the model based on 
computational complexity analysis in this paper takes the shortest iteration time when reducing the perplexity to the 
level of 41. It takes only 99.22s for 1 complex task, 104.21s for 3 complex tasks, and 97.91s for 5 complex 
tasks.Compared with other models based on simultaneous optimization algorithms, this paper's model has a faster 
speed in processing complex tasks. The reason is that the model in this paper applies the ZO-VRAGDA algorithm 
to quickly calculate the actual complexity of the complex tasks and decompose them into multiple sub-tasks with 
low computational effort, which reduces the task processing perplexity of the model. 
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(a) One task (b) Three tasks 

 

(c) Five tasks 

Figure 4: Comparison of training convergence curves 

III. B. 2) Similarity (BLEU) Comparison 
The comparison of the BLEU performance of the 4 models is continued. Figure 5 shows the comparison results. 
Processing 1, 3, and 5 complex tasks at the same time, the iteration times of this paper's model to reach a BLEU 
value of 27 are 113.53s, 60.77s, and 93.31s, respectively, which are all faster than the comparison models. The 
reason is similar to the one analyzed in the previous paper, because the complex task is decomposed into multiple 
subtasks, and accordingly the similarity between recommended materials can be detected more quickly, and the 
high-quality material recommendation task can be accomplished. 
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(a) One task (b) Three tasks 

 

(c) Five tasks 

Figure 5: BLEU comparison result 

IV. Conclusion 
In this paper, the ZO-VRAGDA algorithm is used to calculate the complexity of the English language teaching task 
and guide the intelligences to decompose the task to improve the task processing efficiency and effectiveness of 
the model. In 0-600 number of neurons, the highest training time of this paper's model is only 7.05s and 1213.94s 
on 2 datasets, which is better than the comparison model. Among 0-450 iterations, this paper's model reaches a 
stable training time of 115s for 219 iterations and a smooth training time of 2722s after 171 iterations on the 2 
datasets. When dealing with 1, 3 and 5 complex tasks and reducing the perplexity to 41, the iteration time is only 
99.22s, 104.21s and 97.91s.When the BLEU value is increased to 27, the iteration time is 113.53s, 60.77s and 
93.31s, respectively.In the future, the English language model can be applied to actual English teaching, and the 
model parameters can be further adjusted according to the practice results to improve its English teaching aid effect. 
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