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Abstract In the era of big data, the analysis of classroom teaching behavior in higher education institutions is 
increasingly becoming automated, informatized, and intelligent. This study investigates methods for analyzing 
teaching behavior data in higher education institutions and proposes a classroom speech emotion recognition 
model based on multi-feature fusion. Residual networks and LSTM networks are used for deep feature extraction, 
while the encoder part of the Transformer is employed for feature fusion. Through experiments on the dataset, the 
language emotion recognition accuracy of the model in different datasets was below 85%, demonstrating the 
accuracy of the proposed method for speech emotion recognition. Additionally, the recognition accuracy for each 
emotion was 6.63% to 17.17% and 16.50% to 20.44% higher than that of the comparison methods. Analysis of 
speech sentiment in real-world teaching interactions revealed that pleasant emotions in classroom interactions 
exhibit a trend of first increasing and then decreasing. The sentiment values of interaction segments are 
sequentially [-1, 1.25], [1.5, 2.0], [1.2, 2.0], [0.85, 1.3], [0.4, 1.25], and [0.8, 1.4], respectively, validating the 
rationality of the proposed method. It can serve as an intelligent analysis method for teaching behavior data in 
higher education, assisting teachers in obtaining classroom feedback and optimizing teaching quality. 
 
Index Terms teaching behavior analysis, residual network, LSTM, Transformer, language sentiment recognition 

I. Introduction 
With the increasing application of artificial intelligence in education and changes in classroom teaching 
environments, the analysis of student teaching behaviors has become a key focus of educational research, as well 
as an important means of promoting teacher professional development and educational reform [1]-[3]. Classroom 
teaching is a crucial activity in China's current basic education system, serving to promote students' 
comprehensive development from the outset of teaching activities [4]. Teaching activities are composed of a series 
of teaching behaviors, forming a behavioral system constituted by the interactions between teachers and students 
[5]. At present, the analysis of classroom teaching behaviors in higher education institutions is gradually 
transitioning from traditional classroom observation methods to the era of big data. By employing big data analysis 
techniques to conduct in-depth analyses of classroom teaching behaviors, it is possible to accurately identify 
teaching issues and establish a new data-driven educational governance model, thereby injecting new momentum 
into educational innovation [6]-[8]. 

The classroom serves as a vital base for teaching and learning research and is the primary venue for 
educational activities [9]. In classroom teaching, traditional observation and analysis methods include manual 
recording of observations and audio-visual monitoring, which are labor-intensive and prone to errors [10]-[12]. With 
the emergence of big data analysis technology, intelligent systems can automatically analyze and mine data from 
classroom videos and audio recordings using analytical indicators, replacing the cumbersome manual analysis 
with intelligent machine analysis [13]-[15]. With the application of data mining technology, intelligent technical 
means can be used to rapidly analyze classroom behavior. We will no longer be limited to the manual analysis of 
professional teachers or experts, but can conduct automatic analysis on a large scale, providing more personalized, 
targeted, and precise high-quality services for classroom teaching behavior analysis [16]-[19]. Intelligent and rapid 
analysis will promote the deep integration of data mining and teaching, enabling in-depth research into the 
application of big data analysis in optimizing teachers' classroom behaviors, and having a profound impact on 
empowering teachers' lifelong learning and development. 

Traditional classroom teaching behavior analysis is primarily based on the Flanders Interaction System (FIAS) 
for analyzing classroom teaching behavior. Sainyakit, P., and Santoso, Y. I. employed the FIACS analysis method 
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to examine teaching interaction processes in the classroom, focusing on teacher-student and student-student 
interaction processes. By combining observational data with statistical calculations, they clarified the interactive 
logic within classroom teaching [20]. Li, H., and Zeng, X. combined the iFIAS coding system to analyze 
teacher-student interaction patterns in secondary school English classrooms. The generated video observation 
matrix table clearly reflects indicators such as student engagement, providing a reference for improving classroom 
interaction effectiveness [21]. Fang, Z., et al. integrated the Online-Offline Comparative Analysis System (OOCP) 
into traditional FIAS analysis methods, incorporating internet-based presentations, chat room discussions, and 
other interactive forms to enhance the effectiveness of analysis of blended online-offline classroom interactions 
[22]. Wang, D. proposed an improved OOTIAS coding system based on the Flanders Interaction Analysis System 
(FIAS) and the Information Technology Interaction Analysis System (ITIAS), which possesses the ability to conduct 
in-depth analysis of smart classroom interaction behaviors and demonstrates excellent human-computer 
interaction effects [23]. However, with the advent of the big data era and the widespread adoption of smart 
classrooms, traditional teaching interaction behavior analysis methods have become increasingly inadequate for 
analyzing teaching behaviors in information-based teaching environments. 

In the intelligent era, many scholars have begun to explore the application of automated analysis technologies in 
classroom settings, conducting comprehensive automated analyses across multiple data dimensions such as 
behavior and emotion. Wang, W. investigated the performance of the YOLOv5 deep learning algorithm in analyzing 
teaching behaviors in art classrooms, automatically identifying and classifying students' classroom behavior 
patterns, thereby providing an effective approach to further enhance student learning quality [24]. Shi, S., et al. 
utilized artificial intelligence analysis tools to analyze teaching behavior data related to teacher expression and 
classroom atmosphere. The obtained teacher expression recognition results and dynamic changes in classroom 
atmosphere data provided data support for optimizing classroom teaching design [25]. Jasim, A. H., and Hoomod, 
H. K. proposed using hybrid deep learning technology to analyze video data containing student classroom behavior, 
thereby optimizing interactive patterns in teaching to create rich emotional support and learning experiences for 
students [26]. Jia, Q. and He, J. constructed a smart classroom behavior analysis model integrating YOLOv5, 
attention mechanisms, and OpenPose behavior detection, enabling accurate student behavior analysis in complex 
teaching environments and providing effective solutions for optimizing academic management [27]. Chen, G. and 
Zhou, J. established a student behavior prediction and analysis model based on convolutional neural networks 
(CNNs), which accurately predicts students' learning states and behavioral trends in classroom environments, 
providing decision support for educational administrators in designing teaching plans [28]. Zou, X. designed a 
parallel computing fruit fly optimization-based adjustable recurrent neural network (PFFO-ARNN) and applied it to 
online classroom teaching management, achieving more generalized and precise student behavior data analysis 
[29]. Gong, B. and Jing, F. explored a student intelligent classroom behavior recognition method based on the 
random forest algorithm and corrected matrix. The proposed model can promptly provide educational 
administrators with data feedback on students' perceptions of teaching and teaching activities, thereby supporting 
educational reform [30]. Integrating deep learning and artificial intelligence technologies into classroom teaching 
behavior analysis can assist teachers in intelligently analyzing and evaluating classroom teaching behavior. 

In fact, student behavior data reflecting classroom teaching quality is not limited to the classroom. Existing 
educational management platforms contain vast amounts of information, including data on student learning habits 
and course preferences. Leveraging big data technology to further uncover the potential value of student behavior 
data is a key driver for exploring and implementing reforms and transformations in higher education. 

This paper explores data-driven intelligent analysis of teaching behavior in higher education institutions. It 
selects MFCC and LPC features for speech feature extraction in classroom settings and employs statistical 
features and similarity matrices to supplement and optimize these features. Subsequently, the obtained MFCC 
spectrograms and time-series LPC features are subjected to deep feature extraction using ResNt50 and 
bidirectional long short-term memory networks. A Transformer encoder is then utilized to fuse multiple features, 
thereby constructing a classroom speech emotion recognition model. Model experiments are conducted on the 
CASIA and Emo-DB datasets to compare the recognition accuracy of the proposed method with other speech 
emotion recognition methods, as well as the recognition performance of different methods for various emotions. 
Based on this, a speech emotion dataset for actual classrooms is constructed. After completing data processing 
and emotion data annotation, multiple interaction segments from a specific classroom are used as examples to 
analyze the emotional trend changes in that classroom and the emotional changes in classrooms with different 
ratings, thereby achieving the practical exploration of the speech emotion recognition method proposed in this 
paper in real classroom scenarios. 
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II. Intelligent analysis of teaching behavior data in higher education institutions 
The actual learning process is often complex and multifaceted. The instructional behavior data generated in the 
classroom encompasses not only teacher behavior, student behavior, and teacher-student interaction behavior, but 
also involves classroom instructional content, classroom instructional context, and changes in teacher-student 
emotional dynamics. Artificial intelligence technology is increasingly integrating into everyday real-world teaching, 
making the acquisition of classroom instructional behavior analysis data more convenient, automated, and 
multi-sourced, thereby highlighting the value and significance of classroom instructional behavior analysis research. 
For large-scale, multimodal classroom behavior data, researchers can employ appropriate machine learning 
algorithms to mine the data, convert behavioral information into data, and explore underlying behavioral patterns, 
trends, and habits. This facilitates researchers' analysis of the learning process, understanding of learning 
outcomes, and optimization of the learning environment. The deep integration of artificial intelligence technology 
and education has driven the progress of educational intelligence and achieved significant results. For example, 
intelligent teaching systems utilizing natural language can process and analyze learners' non-verbal 
communication patterns, enhancing human-machine interaction. Adaptive learning systems employing artificial 
intelligence, multi-modal big data, and other technologies can track learners' learning status and content in real 
time, intelligently adjust learning methods, and implement precise teaching to promote their personalized 
development. Thanks to 5G-enabled smart virtual reality, real-time VR/AR/MR and remote learning are better 
supported, enabling personalized and contextualized education. New smart classrooms built using technologies 
such as the Internet of Things, cloud computing, wearable devices, and artificial intelligence enable more 
automated and intelligent collection and analysis of classroom teaching behavior data. An artificial 
intelligence-supported classroom teaching analysis framework can also be constructed, aiming to utilize artificial 
intelligence technology to standardize, streamline, quantify, and scale classroom teaching behavior analysis. 

As AI technology penetrates the education sector, various intelligent technologies are being integrated into 
classroom teaching, facilitating the acquisition, processing, and analysis of classroom teaching behavior data, 
enhancing researchers' efficiency, and making it possible to achieve automated, scalable, and routine classroom 
teaching behavior analysis. This provides strong support for optimizing teaching quality and strategies. 

III. Intelligent analysis methods for teaching behavior data 
By analyzing teaching behavior data in higher education institutions using artificial intelligence technology, precise 
data references can be provided for teachers' teaching reflection and professional development. Based on this, this 
chapter primarily explores intelligent analysis methods for teaching behavior data in higher education institutions, 
proposes a classroom speech emotion recognition model based on multi-feature fusion, and conducts 
experimental evaluations of it. 

 
III. A. Feature Selection 
III. A. 1) MFCC Features 
The Mel spectrum is a representation of the short-term energy spectrum of sound, based on a linear transformation 
of the logarithmic power spectrum of nonlinear Mel frequencies. Mel frequency cepstral coefficients (MFCC) utilize 
the Mel scale, which aligns with the response of the human auditory system. Currently, MFCC is widely used in 
speech recognition systems. In MFCC feature extraction, the same processing steps are shared with LPC, such as 
preprocessing, framing, and windowing. After windowing, a fast Fourier transform (FFT) is performed, followed by 
Mel-space filtering to obtain the Mel spectrum. The FFT primarily transforms the audio signal from the time domain 
to the frequency domain. The application of the Mel scale is primarily because human perception of sound 
frequency is not linear. This discovery necessitates that acoustic feature extraction undergo a set of non-uniformly 
spaced Mel scale filters. The Mel scale exhibits exponential growth beyond 1 kHz but is nearly linear below 1 kHz. 
Formula (1) defines the Mel scale: 

    2595*log10 1 / 700Mel f f   (1) 

Convert the signal to the spectrogram domain using natural logarithm operations, perform feature decorrelation 
using DCT transformation, and rank them in descending order according to the amount of speech signal 
information they contain. 

 
III. A. 2) LPC Features 
Based on the process of speech formation, phonemes can be regarded as the result of the source excitation signal 
being influenced by different shapes of the vocal tract. Generally, this is based on the assumption that the source 
model and the vocal tract model are independent of each other. Linear prediction techniques derive filter 
coefficients (corresponding to the vocal tract) by minimizing the mean squared error between the input and 
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estimated samples. The specific calculation methods for these coefficients involve autocorrelation or covariance 
methods, as shown in Formula (2), which represents the full pole form of the vocal tract transfer function: 

  1 2
1 2

( )
( ) 1 p

p

G G
H z

A z a z a z a z  
 

   
 (2) 

The value of 
ia  is the LPC coefficient, and G  represents the gain or amplitude associated with the vocal tract 

excitation. 
In the extraction of LPC and MFCC features, preprocessing, framing, and windowing are all performed in the 

same manner. Normalization, average difference, and subsequent pre-emphasis are the primary steps in purifying 
the speech signal. Pre-emphasis processing is applied to the digitized signal, with the pre-emphasis filter used to 
smooth the spectrum and mitigate the effects of limited precision. Due to mismatched training and testing 
conditions, portions of the data that do not carry important information can be directly filtered out. For example, 
volume differences between different recording devices are irrelevant to recognition. To reduce the impact of such 
irrelevant factors, normalization is required. During normalization, each sample value of the speech signal is 
divided by the highest amplitude value in the sample. The DC offset is removed by subtracting the average value of 
the speech signal from the signal. Pre-emphasis processing involves dividing the speech samples into overlapping 
frames to minimize discontinuities at the beginning and end of each frame. The Hamming window is smoother than 
other window functions, as shown in Formula (3), which is the Hamming window function: 

 2
( ) 0.54 0.46*cos

1

n
W n

N

     
 (3) 

Among them, 0 1n N   . After windowing, the signal undergoes autocorrelation processing, and the highest 
autocorrelation value p  is the order of the LPC analysis. Typically, p  is set between 8 and 16. The LPC analysis 
outputs the 1p   autocorrelation coefficients of each frame to the LPC coefficient set. 

 
III. A. 3) Supplementation and optimization of features 
(1) Statistical features 

Although MFCC and LPC features each have their own advantages and can effectively characterize emotions, 
However, since the distribution of emotional information in speech signals is not uniform or continuous, statistical 
features that reflect changes in the signal waveform can serve as a useful supplement. A set of statistical features 
effective for speech emotion recognition tasks was selected: duration, maximum value, minimum value, mean, 
standard deviation, root mean square, peak-to-peak value, skewness, kurtosis, waveform factor, peak factor, 
margin factor, pulse factor, zero-crossing rate, and short-term energy. 

(2) Similarity matrix 
The extracted LPC feature vectors are processed using the principal component analysis algorithm to extract 

and retain the parts that have a greater impact on the emotion recognition results. 
Among them, principal component analysis (PCA) is an unsupervised dimension reduction algorithm. The 

algorithm steps are as follows, assuming that there are m  lines of n -dimensional original data: 
1) Organize the original data into an n -row, m -column matrix, denoted as X . 
2) Perform zero mean calculation on each row of X . 

3) Obtain the covariance matrix 1 TC XX
m

 . 

4) Calculate the eigenvalues and eigenvectors of the covariance matrix. 
5) Arrange the eigenvectors by row according to the size of the eigenvalues, and take the first k  rows as the 

matrix P . 
6) The final reduced-dimension data is Y PX . 
The reduction in dimension results in only k  dimensions being retained, and the remaining eigenvectors 

corresponding to the eigenvalues are discarded. Since the new feature vectors cannot be determined before the 
new feature matrix is generated, and the new feature matrix is not readable after generation, it is impossible to 
determine which features from the original data the new feature matrix is composed of. Although the new features 
still contain information from the original data, their meaning is different from the original. Therefore, dimension 
reduction algorithms such as PCA are also a form of feature extraction. 

 
III. B. Speech Emotion Recognition Model 
The speech emotion recognition model architecture proposed in this paper is shown in Figure 1. Residual networks 
and bidirectional long short-term memory networks are used to perform deep extraction on MFCC spectrograms 
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and time-series LPC features, respectively, and the Transformer encoder is used for feature fusion. The classifier 
at the rear is used to predict the probability of emotion categories. 

Transformer 
Encoder × N

Fully 
Connected 

Layer
Softmax

Angry

Sad

Happy

Neutral
Statistical Characteristics 

& Similarity Matrix

MFCC ResNet

LPC BiLSTM

 

Figure 1: The structure of the speech emotion recognition model 

III. B. 1) Residual Network 
Residual networks are used to solve image recognition problems. The deeper the network, the more convolutional 
layers and parameters it has, and the more computational resources and time are required during training and 
inference. 

Assuming that the l th residual unit inputs image features 
lx  and outputs features 

1lx 
, the residual unit is: 

 ( ) ( , )l l l ly h x F x    (4) 

 
1 Re ( )l lx LU y   (5) 

When 
ly  and 

lx  have the same dimension, ( )lh x  is the identity mapping, i.e., ( )l lh x x . When 
ly  and 

lx  

have different dimensions, ( )lh x  is a linear mapping of 
lx , i.e., ( )l lh x x  , to match the dimension, ( , )l lF x   

is the residual function: 
 ( , ) ReLU( )l l l l lF x x b     (6) 

In the equation: 
l  is the weight and bias of the l th residual unit,  , |1l l kw k K     where K  is the 

number of layers in the residual unit network, and 
lb  is the bias of that layer. The activation function is the rectified 

linear unit (ReLU): 
 Re (0, )LU MAX x  (7) 

Assuming the loss function is  , and the input feature of the L th residual unit in any deeper layer is 
Lx , then 

the gradient of the residual unit is: 

 1

1
1 ( , )

LL
i ii

l L l L l

x
F x
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   


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  (8) 

In the equation, the gradient 
lx




 can be decomposed into two parts. 
Lx




 indicates that information does not 

propagate directly through the weight layer, allowing the loss function information to be propagated backward to 
any shallower unit. At the same time, it ensures that even if the weights are arbitrarily small, the vanishing gradient 
phenomenon can be avoided. 

Among these, ResNet50 has relatively low computational cost, so this structure was selected in the experiment 
for deep extraction of MFCC spectrograms. The 50-layer convolutional neural network of ResNet50 enables it to 
learn more complex features, thereby improving accuracy. Additionally, ResNet50 employs residual blocks. Each 
residual block consists of two convolutional layers and one skip connection. The skip connection directly transmits 
the input to the output, effectively addressing the vanishing gradient problem. The residual block structure is shown 
in Figure 2. 

weight layer

weight layer

ReLU

x

X
identity

ReLU
F(x) + x

 

Figure 2: Residual block structure 
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In the figure, x  represents the input, the weight layer region is the convolution layer, and the residual mapping 
part is represented by ( )F x . The activation function used is ReLU. Additionally, ResN50e employs a global 
average pooling layer, which effectively reduces the number of model parameters, thereby mitigating the risk of 
overfitting. 

 
III. B. 2) Bidirectional Long Short-Term Memory Network 
The LSTM network recurrent unit structure consists of three gates: the forget gate 

tf , the input gate 
ti , and the 

output gate 
to . The forget gate operates as follows: 

  1t xf hf t ff w x w h b       (9) 

In the equation: 
xfw  and 

hfw  are the weight coefficients of the forget gate, and 
fb  is the bias term of the 

forget gate. The output 
tf  of the forget gate is an n -dimensional output, with each value between  0,1 . 

Information with values close to 0 is forgotten, while information with values close to 1 is retained. 
Therefore, through the forget gate, LSTM can remember important information for a long time, and the memory 

can be dynamically adjusted according to the input. 
The input gate operation logic is: 
  1tanht xc t hc t cc w x w h b      (10) 

  1t xi t hi t ii w x w h b       (11) 

In the equation: tanh  is the hyperbolic tangent activation function, 
xcw  and 

hcw  are the weight coefficients of 

tc , 
cb  is the bias term of 

tc , 
xiw  and 

hiw  are the weight coefficients of the input gate, 
ib  is the bias vector of 

the input gate. 
The input gate integrates the information from the previous time step and the current time step as new input, 

selectively retaining it in the current state. Therefore, through the input gate, LSTM can remember important 
information in the short term and continuously update the current state. 

The output gate operation logic is: 
  1t xo t ho t oo w x w h b       (12) 

In the equation: 
xow  and 

how  are the weight coefficients of the output gate, and 
ob  is the bias vector of the 

output gate. 
The output gate generates the output at the current moment. The output gate determines the output 

th  at the 

current moment t  based on the current moment t  input 
tx , the hidden layer state 

1th 
 at the previous moment 

1t  , and the latest state 
tc . 

The state 
tc  at the current time t  is: 

 
1t t t t tc f c i c      (13) 

The output 
th  at the current time t  is: 

 tanh( )t t th o c   (14) 

  is the sigmoid activation function, with a value range of  0,1 : 

 1
( )

1 x
Sigmoid x

e
  


 (15) 

The range of values for the tanh  function is  1,1 : 

 tanh( )
x x

x x

e e
x

e e









 (16) 

The Bidirectional Long Short-Term Memory Network (BiLSTM) is a Long Short-Term Memory Network with 
forward and backward connections. Bi LSTM utilizes two independent Long Short-Term Memory Network layers, 
one processing input in chronological order and the other processing input in reverse chronological order, capturing 
features of the input sequence from both forward and backward directions, making it suitable for processing 
time-series data. 

 
III. B. 3) Transformer Encoder 
Since this paper only deals with recognition and classification tasks, it uses only the Transformer's encoder 
structure for feature fusion. The most distinctive feature of the Transformer is its attention mechanism. 
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III. C. Experimental Results and Analysis 
III. C. 1) Data collection and sources 
To validate the effectiveness of the model, it was tested on two datasets. One dataset was CASIA, which included 
six emotions: anger, fear, happiness, sadness, neutrality, and surprise, with a total of 1,200 voice recordings. The 
other was Emo-DB, which included seven emotions: anger, sadness, happiness, fear, neutrality, disgust, and 
boredom, with a total of 534 voice recordings. 

 
III. C. 2) Analysis of experimental results 
To validate the effectiveness of the multi-feature fusion-based classroom speech emotion recognition model 
proposed in this paper, several comparative experiments were conducted on the CASIA and Emo-DB datasets. 
The results of the comparative experiments between different models are shown in Figure 3. The classroom 
speech emotion recognition model proposed in this paper achieves the highest accuracy rates compared to SEnet, 
CBAM, and ECAnet on both publicly available datasets. On the CASIA dataset (Figure (a)), the proposed model 
converges around 45 iterations, achieving a final accuracy rate of 86.26%. In the Emo-DB dataset (Figure (b)), the 
proposed model converges after approximately 80 iterations, achieving a final accuracy rate of 85.38%. These 
comparisons validate the effectiveness of the proposed classroom speech emotion recognition model based on 
multi-feature fusion. 

  

(a)CASIA dataset (b)Emo-DB dataset 

Figure 3: Comparison of experimental results of different models 

The comparison of different models on the CASIA dataset for each emotion is shown in Figure 4, and the 
comparison on the Emo-DB dataset is shown in Figure 5. In the CASIA dataset, the model proposed in this paper 
achieves higher recognition accuracy than other models for the six emotions: Angry, Fear, Happy, Neutral, Sad, 
and Surprise. The average recognition accuracy for the six emotions is 0.861, which is 17.17%, 6.63%, and 7.76% 
higher than the SEnet, CBAM, and ECAnet algorithms, respectively. In the Emo-DB dataset, the average 
recognition accuracy of the proposed model for the seven speech emotions reached 0.921, outperforming the 
comparison algorithms by 19.21%, 20.44%, and 16.50%, respectively, thereby validating the effectiveness of the 
classroom speech emotion recognition model based on multi-feature fusion. 

 

Figure 4: Different models of different emotions in the CASIA data set 
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Figure 5: Different models of different emotions in the Emo-DB data set 

IV. Practical exploration of intelligent analysis methods for teaching behavior data 
IV. A. Construction of Classroom Speech Emotion Dataset 
IV. A. 1) Selection of Materials 
In order to comprehensively evaluate the proposed intelligent analysis method for teaching behavior data, teaching 
course materials were obtained from public media platforms. After manual review, classroom videos with relatively 
clear audio were selected, and finally, 22 classroom materials were manually selected as the data source for this 
dataset. 

 
IV. A. 2) Data processing 
(1) Audio noise reduction 

Since the video data was recorded in a real classroom, there may be various types of noise interference in the 
classroom environment. Therefore, it is necessary to perform noise reduction processing on the original speech 
segments to extract the purest speech signal possible through preprocessing. This paper uses spectral subtraction 
for audio noise reduction processing. 

(2) Speech Slicing 
By using the iFlytek speech recognition API to identify speech segments with timestamps, batch speech data 

slicing is achieved. 
 

IV. A. 3) Emotional Data Annotation 
This paper uses the P value in the PAD three-dimensional emotional space model to represent classroom 
emotional pleasure, which is used to assess the positive or negative state of an individual's speech emotions. 
Therefore, we selected a self-annotation format to score the pleasantness of speech P within the range of [-3,3]: 
the higher the pleasantness, the closer the annotation is to 3 points; the lower the pleasantness, the closer the 
annotation is to -3 points. 

Three members of the project team were invited to annotate the speech data for emotional sentiment, with a 
pleasantness threshold of [-3,3]. To ensure consistency in the project team members' understanding and 
recognition of speech emotional categories, 150 speech segments were randomly selected from 1,500 segments 
for individual annotation. After annotation, the scores from the three annotators were summarized and subjected to 
consistency testing, yielding a variance of approximately 0.2241, indicating high consistency. Therefore, the three 
annotators had consistent cognition of classroom speech, and based on this, all classroom audio files were 
annotated. 

 
IV. B. Interactive Voice Emotion Analysis in Teaching 
IV. B. 1) Analysis of emotional change trends 
Select a specific classroom level, remove ineffective speech segments such as classroom discussions, exercises, 
and experiments, and retain six effective interactive speech segments. Analyze these segments using the 
proposed classroom speech emotion recognition model. 
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The emotional change curve of the interactive segments is shown in Figure 6. Classroom interactive segment 
one represents the beginning of the class, primarily consisting of teacher instruction. Before 150 seconds, the 
teacher's instruction dominates, with the emotional value P primarily ranging from 0 to 1.5, indicating that the 
teacher's emotions have not yet been fully activated at the start of the class and are in a state of low positive 
emotion. From 150 to 360 seconds, the overall emotional fluctuations were significant, varying within the range of 
[-1, 1.25], indicating that during classroom questioning and answering, there were significant fluctuations in 
emotional assessment values. 

The second classroom interaction segment primarily involves students explaining exam questions, with 
emotional values P primarily distributed between [1.5, 2.0], indicating a positive and active emotional state, and the 
classroom is fully activated. 

The third interactive voice segment is a practice question-and-answer segment, with overall emotional values P 
distributed between [1.2, 2.0], indicating that during the question-and-answer phase, the classroom remains active, 
and students' emotions are positively stimulated. 

Classroom interaction segment four is a discussion segment, with overall classroom emotional value P 
distributed within the range [0.85, 1.3]. At 75 seconds, the teacher rewards outstanding students, causing the 
speech emotional value to rise. At 135 seconds, the teacher asks students a question in a questioning tone, 
causing the speech pleasantness to drop to around 0.85, indicating the model's effectiveness. 

Classroom interaction segment five primarily involves in-class exercise Q&A, with the emotional value P 
distributed between [0.4, 1.25], showing a significant decrease in pleasant emotions compared to earlier segments, 
indicating that students' classroom engagement declines in the latter part of the class. 

Classroom Interaction Segment Six is the classroom summary section, where the teacher asks students to 
reflect on their learning gains from the lesson. The classroom emotional tone shows an upward trend, with P values 
distributed between [0.8, 1.4], indicating that students' emotions are highly elevated during free discussion. 

  

(a)Interaction section 1 (b)Interaction section 2 
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(c)Interaction section 3 (d)Interaction section 4 

  

(e)Interaction section 5 (f)Interaction section 6 

Figure 6: The curve of emotion in the interaction sections 

IV. B. 2) Analysis of classrooms with different ratings 
To assess the correlation between classroom emotions and classroom evaluations, classrooms with high page 
views and comments were selected from the national, provincial, and municipal levels of teaching excellence, and 
a visualization analysis of classroom emotions was conducted for classrooms with different ratings. 

The emotional change curve for national-level outstanding classrooms is shown in Figure 7. The overall 
emotional fluctuation value of the classroom falls within the [0.5, 1.3] threshold range, with relatively small 
fluctuations in the emotional value P and a generally high overall emotional atmosphere. The emotional change 
curve for provincial-level outstanding classrooms is shown in Figure 8, with the overall emotional fluctuation range 
of the classroom falling within [0.2, 0.95], and multiple points of emotional decline observed within the classroom. 
The emotional change curve for city-level outstanding classrooms is shown in Figure 9. The overall emotional 
fluctuations in the classroom were within the range of [-1.25, 1], and the overall emotional state of the classroom 
was relatively low. Combined with the analysis of classroom speech behavior, there was relatively little 
teacher-student interaction and student participation in the classroom, and the P value was only high when 
students spoke, indicating that the emotional state of students' speech was slightly higher than that of teachers' 
speech. 

Based on the above analysis, the overall emotional atmosphere of the Ministry-level, Provincial-level, and 
Municipal-level model classrooms differs, and the emotional pleasure levels are ranked as follows: Ministry-level > 
Provincial-level > Municipal-level. This indicates that classroom emotions can to some extent influence classroom 
effectiveness, thereby affecting viewers' evaluations of the classroom. 

 

Figure 7: The curve of emotion on ministerial level class 
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Figure 8: The curve of emotion on provincial level class 

 

Figure 9: The curve of emotion on urban level class 

V. Conclusion 
With the continuous upgrading and improvement of intelligent technology, the education industry has also 
introduced this tool to establish an intelligent teaching environment. This paper uses intelligent models to analyze 
classroom teaching behavior data and proposes a classroom speech emotion recognition model based on 
multi-feature fusion. By analyzing speech emotions, it obtains feedback on classroom teaching effectiveness. The 
performance of this model is analyzed through experiments, and practical explorations of specific teaching 
behavior analysis are conducted. 

(1) The recognition accuracy rate of the constructed classroom speech emotion recognition model exceeds 85% 
across different datasets, outperforming comparison methods. Additionally, in the recognition of different emotion 
types, the proposed method achieves recognition accuracy rate improvements of 6.63% to 17.17% on the CASIA 
dataset and 16.50% to 20.44% on the Emo-DB dataset. This demonstrates the superiority of the proposed method 
based on multi-feature fusion for classroom speech emotion recognition. 

(2) Through emotion recognition of sample classroom interaction segments, the speech emotion values of the 
six interaction segments were [-1,1.25], [1.5,2.0], [1.2,2.0], [0.85,1.3], [0.4,1.25], and [0.8,1.4], respectively. The 
emotional trend of classroom interaction shows an initial rise followed by a decline, aligning with the overall 
progression of the classroom session. The thematic emotional values for national, provincial, and municipal model 
classrooms are [0.5, 1.3], [0.2, 0.95], and [-1.25, 1], respectively, indicating a certain correlation between 
classroom emotion and classroom effectiveness. 

This paper explores intelligent analysis methods for higher education teaching behavior data and applies speech 
emotion recognition models in higher education classroom settings. The use of intelligent analysis methods for 
teaching behavior data can support the harmonious development of higher education teaching, enhance teachers' 
ability to grasp classroom dynamics, and thereby promote high-quality development in higher education teaching. 
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