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Abstract With the improvement of computer performance, audio processing technology has also made tremendous 
progress. In recent years, edge AI technology has been used in audio signal separation research, becoming an 
increasingly popular topic in the field of audio signal processing and driving the development of source separation 
based on deep learning technology. After clarifying the basic theories of music source separation and the 
preprocessing workflow of audio signals, the study incorporates an attention mechanism and employs a dual-gate 
mechanism to better control the flow of feature information across different convolutional layers, filtering out 
unnecessary feature information to achieve effective audio source separation in live music performances. The 
research results indicate that the proposed algorithm achieves a performance improvement of approximately 4 dB 
to 10 dB compared to HPSS in terms of SIR values, and at least a 1 dB improvement compared to the REPET 
algorithm, thereby demonstrating that the proposed method is a more effective separation approach. 
 
Index Terms audio source separation, edge AI technology, attention mechanism, dual-gate mechanism, music 
performance 

I. Introduction 
In everyday life, almost all the sounds people hear are combinations of many different voices. For example, these 
can be human conversations, songs, or sounds from nature such as wind, or noise such as car horns. These sound 
sources are composed of relatively simple tones, and multiple sounds may coexist within the same medium [1], [2]. 
In such environments, listeners may be interested in identifying the individual sources within the existing sounds. 
Therefore, listeners face the task of separating or extracting the source of interest from the mixture. The cognitive 
capabilities of the human auditory system enable people to follow the movement of a speaker in a noisy environment 
without affecting sound quality, a capability that is highly similar to sound source separation technology [3], [4]. The 
formal definition of the sound source separation task is to identify and separate different sound sources using a 
reasonable model [5]. Although this task is natural and easy for humans, developing algorithms to automatically 
perform the same task is challenging [6], [7]. 

Music is an important form of artistic expression and plays a significant role in the entertainment industry. 
Digitalization and the internet have brought about a major transformation in music dissemination methods [8]. Audio 
source separation models are widely applied in tasks such as music lyric alignment, lyric transcription, music 
transcription, and vocal melody extraction [9], [10]. Additionally, numerous music-related multimedia applications 
have embedded music source separation functionality within their software [11], [12]. In live music performance 
recording, various applications have already achieved the ability to interact with individual audio objects, such as 
music mixing, remixing, and object equalization [13]-[15]. Most publicly available music performances are 
conducted in monaural or stereo combinations, where multiple sound objects share a single audio track [16], [17]. 
This has made the development of a high-performance, reliable music source separation system an urgent issue, 
attracting significant research attention in recent years. 

Currently, audio source separation has been extensively studied and applied in downstream tasks, and the 
various source separation methods proposed have achieved high separation accuracy. Takahashi, N, and Mitsufuji, 
Y extended the DenseNet model by introducing a sampling layer, block-jumping connections, and dedicated dense 
blocks, enabling it to handle complex and ill-posed audio source separation tasks [18]. Févotte, C., et al. 
investigated the application of spectral decomposition techniques based on non-negative matrix factorization (NMF) 
in multi-audio signal processing tasks, formulating it as an optimization problem to enable the model to achieve 
good audio decomposition capabilities in both unsupervised and supervised environments [19]. Sawada, H et al. 
developed an independent low-rank matrix analysis technique for audio blind source separation, combining 
independent vector analysis (IVA) and multi-channel non-negative matrix factorization (MNMF) to achieve high 
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performance in mixed source separation [20]. Michelsanti, D et al. explored deep learning techniques applied to 
speech enhancement and speech separation tasks, integrating multi-modal audio-visual information to reconstruct 
audiovisual speech, significantly enhancing audio separation performance in mixed signals [21]. Kavalerov, I et al. 
compared the performance of short-time Fourier transform (STFT) and time-domain enhancement networks 
(ConvTasNet) in general sound separation tasks, finding that STFTs can achieve mixed sound separation with scale-
invariant and low information distortion characteristics [22]. 

Since music itself is a combination of different frequency components at different times, how to utilize computers 
to identify these features and apply them to the analysis and recognition of music signals is a highly meaningful 
research direction. Chandna, P., et al. proposed a low-latency single-source separation framework based on 
convolutional neural networks (CNNs), which relies on CCNN to estimate time-frequency soft masks, demonstrating 
excellent separation performance and processing efficiency in mixed music audio separation tasks [23]. Luo, Y, and 
Yu, J designed a frequency-domain analysis model based on a band-splitting recurrent neural network (BSRNN), 
which achieves better instrument track separation results by segmenting and modeling mixed music signals [24]. 
Yar, G et al. introduced the application of speech conversion and audio source separation fusion technology in the 
music industry, using Demucs as the audio source separation model and a random neural network as the speech 
conversion model. The proposed fusion model enables arbitrary conversion between singers and songs [25]. Pardo, 
B et al. introduced two methods for audio source separation in music audio. The first method uses repetitive 
elements in the music scene as separation conditions, while the second method tracks the pitch of the audio stream 
to achieve melody-based audio separation [26]. Slizovskaia, O et al. demonstrated that sound sources in musical 
works share tonal characteristics, and proposed adjustment techniques at different levels in the main source 
separation network. By adding instrument information and video stream data, they improved the quality of audio 
source separation [27]. 

The study first introduces the relevant theoretical knowledge of music source separation, including basic music 
theory knowledge such as the frequency ranges of vocal, string, and percussion instruments, as well as music 
signal processing (the necessity of short-time Fourier transform in music signal processing, homomorphic 
processing of spectrograms, and some basic features of MFCC), and briefly analyzes the time-frequency domain 
characteristics of audio. Next, a cross-channel attention mechanism is employed to enhance the encoder's ability 
to extract audio features in both the time and frequency domains, thereby improving the model's separation 
performance and enabling audio source separation in live music performances. Finally, relevant experiments are 
designed to validate the method's superior performance in separating accompaniment and vocals in music. 

II. Audio feature processing and speech separation models in music performance 
II. A. Basic Music Theory Knowledge 
Music, like the history of human civilization, has a long history and has become an integral part of people's lives. 
Different types of music, due to their distinct developmental histories and cultural backgrounds, exhibit unique 
characteristics. A complete piece of music is typically composed of various sounds and instruments. Based on the 
principle of sound production, musical instruments can be categorized into two types: string instruments and 
percussion instruments. String instruments are those that produce sound through the vibration of strings. Known 
for their warm and melodious tones, they are frequently used in modern and classical music to create captivating 
melodies. Common string instruments include the erhu, guitar, and piano, which form the traditional instrumental 
ensemble. Percussion instruments are those that produce sound through playing, shaking, rubbing, or scraping, 
such as drums, xylophones, and triangles. In the study of musical signals, overtones are often used to distinguish 
differences between various instruments. The high-frequency range audible to the human ear is 12,000 Hz to 20,000 
Hz, which is also the high-frequency range of some instruments, while the fundamental frequency range of the 
human voice is 500 Hz to 1,000 Hz. 
 
II. B. Music Signal Processing 
II. B. 1) Short-time Fourier transform 
Currently, there is limited research on source separation of speech signals, and source separation of audio signals 
is rarely performed in the time domain; therefore, mixed signals are typically processed in the frequency domain. 
This paper focuses on two signal representations: the first is provided by the short-time Fourier transform (STFT) 
[28] of the analyzed sound, which decomposes the entire time-domain process into an infinite number of equal-
length subprocesses, each of which is approximately stationary. By performing a Fourier transform on these 
subprocesses, one can determine when specific frequencies occur, i.e., the sliding window Fourier transform or the 
output from a set of equally spaced bandpass filters. The STFT analysis spectrum contains frequency and phase 
information. Due to the non-negative constraint, NMF can only analyze the STFT amplitude spectrum and cannot 
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analyze the STFT phase information. 
If the frequency of a signal does not change over time, it is called a stationary signal. However, most signals 

studied in real life are non-stationary signals, so the short-time Fourier transform is particularly important. In fact, 
most speech signals in audio signal processing are discrete. To meet the requirements of computer discreteness 
and stationarity, it is necessary to apply windowing and frame division to the signal. Windowing involves truncating 
the time-domain signal, and the processed data then exhibits short-time stationarity. The length of each speech 
frame after truncation typically ranges from 11 to 30 milliseconds. When performing STFT on speech signals, adding 
a window function can reduce spectral leakage. 

In practical applications, the principle for setting the window function is typically as follows: achieve high frequency 
resolution in spectral analysis, narrow the main lobe of the window function's spectrum as much as possible, 
concentrate energy within the main lobe, minimize side lobe gain, and ensure rapid attenuation of side lobe gain 
with frequency to reduce spectral leakage distortion during analysis. When it is difficult to find a window function 
with a very narrow main lobe width and rapid side lobe attenuation, the rectangular window is the opposite: it has 
the narrowest main lobe width but very wide side lobes. Therefore, comprehensive consideration is required when 
analyzing and processing corresponding data. Commonly used window functions are as follows: 

(1) Rectangular window: 
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(3) Hanming Window: 
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The definition of the short-time Fourier transform is shown in Equation (7), where ( )x t  is the time signal, ( )w t  
is the window function, ( , )X w t  is the spectrum at time t , and * denotes linear convolution. That is: 

 ( , ) ( )* ( )* j tX t x w t e d   






   (7) 

Taking the absolute value of equation (7) gives the amplitude spectrum of the desired signal. 
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II. B. 2) Homomorphic Signal Processing of Inverted Spectra 
Another method for time-frequency analysis is the cepstrum transform. Cepstrum involves taking the logarithm of 
the values of a signal in its frequency spectrum. The cepstrum transform represents the inverse Fourier transform 
of the logarithmic amplitude spectrum of a speech signal. This analysis method facilitates the extraction and analysis 
of periodic signals that are difficult to identify in the original frequency spectrum. 

Common methods for separating composite signals include linear filtering and nonlinear filtering. Linear filtering 
techniques are used to separate additive combined signals that influence each other; nonlinear filtering techniques 
can separate two signals synthesized by multiplication or convolution. Separating the signals involved in convolution 
from the convolution result is called deconvolution, and deconvolution algorithms are divided into two major 
categories: parametric deconvolution and nonparametric deconvolution. Homomorphic signal processing is the 
most important type of nonparametric deconvolution algorithm. Homomorphic signal processing transforms the 
product or convolution relationship between signals into a summation relationship, thereby enabling the extraction 
of musical signals such as percussion, string instruments, and vocals from mixed signals. Applying homomorphic 
signal processing to speech signals yields their spectrogram parameters, which contain more information and yield 
better results than other parameters. Since speech signal analysis is performed on a frame-by-frame basis, the 
resulting parameters are short-term spectrogram parameters. 

 
II. C. Audio Feature Analysis 
II. C. 1) Time domain characteristics of audio signals 
1. Time-domain characteristics of speech signals 

To illustrate the differences in time-domain characteristics between pure speech signals and mixed speech signals 
(with background music), the audio waveform diagram of the recitation of the “Tengwang Pavilion Sequence” is 
shown in Figure 1, and the audio waveform diagram of the mixed speech recitation of the “Tengwang Pavilion 
Sequence” (with background music) is shown in Figure 2. 

As can be seen from Figures 1 and 2, although the time-domain waveform envelopes of the pure recitation of 
the “Tengwang Pavilion Sequence” and the mixed recitation of the “Tengwang Pavilion Sequence” with background 
music are roughly the same, there are still differences in amplitude. The amplitude values of the audio recording of 
the “Tengwang Pavilion Sequence” recitation with background music are greater than those of the pure audio 
recording of the “Tengwang Pavilion Sequence” recitation. This can also be understood as the energy of the final 
output audio being the result of the superposition of the two or more audio signals. Furthermore, it can be observed 
that at the point where the waveform amplitude is approximately 50 in Figure 1, there is no voice output at a lower 
level. However, in the audio recording of the “Tengwang Pavilion Sequence” with background music, due to the 
presence of the background music's audio amplitude, there is still a waveform present at the point corresponding 
to where the waveform amplitude is approximately 0 in Figure 1 in Figure 2. This also demonstrates that the energy 
of the final output audio is the result of superposition. Furthermore, there are multiple points in Figure 1 where the 
waveform amplitude is approximately 50, and these points are very sparse, indicating that the speech signal has 
sparsity. 

 

Figure 1: Waveform of the recitation audio of Preface to the Tower of King Teng 
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Figure 2: Teng wang Pavilion Preface recitation (with background music) audio waveform diagram 

2. Time domain characteristics of musical signals 
To illustrate the different time domain characteristics of audio signals produced by different instruments, Figure 3 

shows the audio waveform of the world-famous piece “Canon” played on a violin. Figure 4 shows the audio 
waveform of “Canon” played on a piano and violin together. The onset phase of the violin is quite distinct, 
characterized by a significant increase in energy at the beginning of a note. As shown in Figure 4, the energy of the 
audio waveform from the piano and violin playing together is the result of the energy from both instruments being 
superimposed. Additionally, when comparing audio waveform diagrams of the same piece of music at multiple 
different time intervals, it can be observed that there are repeated waveform signals. This indicates that the same 
audio appears at different times, which can also be observed in the sheet music of the piece, as musical pieces are 
divided into measures, and there are often repeated measures. This demonstrates that musical signals have the 
characteristic of multiple repetitions. 

 

Figure 3: Audio waveform of the violin playing the Canon 
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Figure 4: Audio waveform of the piano and violin mixed performance of Canon 

II. C. 2) Frequency domain characteristics of audio signals 
In addition to time-domain characteristics, speech signals also exhibit certain frequency-domain characteristics. 
From a subjective perspective, the human ear perceives frequencies within the range of 20–20 kHz. Sounds within 
this frequency band evoke a particular sensory experience. For human hearing, the frequency range between 150–
250 Hz constitutes the low-frequency sensitive region for human voice; The 4-6 kHz range is the mid-high frequency 
range and the most sensitive part of the human ear; the 10 kHz range is the high-frequency sensitive part of human 
voice. In general, the higher the signal frequency, the clearer the sound; the lower the frequency, the deeper the 
sound. To illustrate how humans perceive sounds of different frequencies, Table 1 shows the impact of frequency 
bands on sound. As shown in the table, different instruments produce music with varying frequency ranges and 
differing proportions of overtone components, resulting in each instrument having its own unique audio 
characteristics. Different frequency ranges exert distinct effects on an instrument's timbre. These frequency 
differences enable the identification of certain frequency-domain feature parameters by analyzing the frequency 
composition of each instrument in a mixed audio signal. This allows for the separation of individual instrument audio 
sources within the mixed audio. 

Table 1: The effect of frequency bands on sound 

Frequency 

band(HZ) 
Too low Plentiful Overtop 

16-20kHZ 

The loss of flavor and color 

lacks the expressiveness of 

timbre 

The human skull conducts sound to feel the 

flavor of sound, and the color is rich in timbre 

expression 

Floating and unstable feelings 

12-16kHZ 
Lose your luster, lose your 

personality 
The gold glitters It produces burrs and is grating 

10-12kHZ Boring and losing its shine The metallic sound was intense High noise, increase the background noise 

8-10kHZ Flat The s sound is obvious and transparent Sharp-pointed 

4-8kHZ Dim Transparency affects the timbre A dental sound is produced 

2-4kHZ Vague Strong penetration, bright and clear Cough volume 

1-2kHZ 
Loose, causing the timbre to be 

disjointed 
Strong transparency The jump makes the sound hard 

800kHZ Relaxation Strong and powerful The voice is heavy 

300HZ-500HZ Hollow, thin, cloudy The voice is powerful, bright and clear Voice tone of the phone 

150HZ-300HZ Soft The sound is strong, thick and solid Brusgue 

100HZ-150HZ Thin Fullness increased The muddy oil shows a "hmm" sound 

60HZ-100HZ The tone is weak The timbre is thick and mixed 
Low frequency resonance sound, with a 

rumbling feeling 



Real-time audio source separation in live music performances using edge AI technology 

2632 

20HZ-60HZ Emptiness 
Good sense of space, the fundamental 

frequency of the musical sound 

Low-frequency resonance produces a 

buzzing sound 

To illustrate the differences in the frequency domain characteristics between pure speech signals and mixed 
speech signals, the frequency spectra of the recitation of the “Tengwang Pavilion Sequence” and the mixed speech 
recitation of the “Tengwang Pavilion Sequence” (with background music) were plotted separately. The spectrum 
exhibits a segmented band-like distribution, indicating that the energy of each frequency component rapidly 
decreases from a high level to a low level within a short time, and then increases again. This is because the reciter 
of the “Tengwang Pavilion Sequence” employs a rhythmic and expressive delivery style, resulting in a segmented 
spectrum for the speech signal. This also demonstrates that audio characteristics can be represented in the 
frequency domain. 

 
II. D. Speech separation 
II. D. 1) Classification of speech separation tasks 
Speech separation refers to the technology of extracting and restoring the speech signals of individual speakers 
from overlapping speech signals of multiple speakers, also known as multi-speaker separation. Speech separation 
without prior information about the speakers is classified as blind source separation [29]. 

Based on the degree of dependence on prior information about the sound source signals, speech separation 
tasks can be divided into three types: speaker-dependent, target-dependent, and speaker-independent. In speaker-
dependent speech separation tasks, all speakers present in the mixed speech signals in the test set must also be 
present in the training set. This means the speech separation model can only separate mixed speech from specific 
speakers, and the output order of the separated signals is fixed, with each output stream corresponding to a single 
speaker. To address speech separation for other speaker combinations, a new separation model must be trained 
using corresponding data, so it lacks generalization capability beyond the training set. In target-related speech 
separation tasks, the target speaker to be separated remains consistent across the training and test sets, while 
there are no constraints on other interfering speakers. Target-related speech separation is similar to speech 
denoising, as both models have only one output stream—the target speaker's speech signal—while the speech of 
other interfering speakers is treated as noise signals. 

 
II. D. 2) Speech Separation Signal Model 
Speech signals are time-varying, non-stationary, and discrete. However, the characteristics of speech signals 
remain essentially unchanged over small time scales, a phenomenon known as the short-term stationarity of speech. 
Short-term analysis techniques are integral to the entire process of speech signal processing. Typically, time-domain 
waveform signals captured by microphones require framing and windowing processing, with frame lengths generally 
ranging from 10 to 30 ms. All speech separation methods discussed in this paper are based on this short-term 
stationarity assumption. 

Single-channel speech separation typically uses a linear instantaneous mixing model, which is expressed 
mathematically as shown in formula (8). The mixed signal  0 1, , Ly y y    collected by the microphone is a linear 

mixture of the speech signals     ,0 , 1, , 0, , 1i i i Ls s s i C       of C   speakers and background noise 

 0 1, , Ln n n    in the time domain, where L  represents the number of signal sampling points: 

 0, , 1i
i

y s n i C      (8) 

Among these, y , is , and n  all belong to time-domain signals. The problem can be defined as the task of 
extracting and reconstructing the waveform signals of all sound sources given the time-series waveform signal of a 
mixed speech signal. The time-domain waveform of a speech signal contains all information, including the content 
of the speech and the characteristics of the speaker. Directly processing the waveform sampling points is quite 
challenging. Time-domain feature analysis methods include pre-emphasis, short-time energy analysis, short-time 
zero-crossing analysis, and short-time correlation analysis, which are typically used for initial parameter feature 
extraction and speech preprocessing. Traditional time-domain speech separation methods are generally designed 
for speech enhancement tasks, where the interfering signal is non-speech noise, and primarily include parameter-
based and filtering methods, as well as signal subspace methods. 

The most important perceptual characteristics of speech are embedded in the spectrum and power spectrum, so 
speech time-domain waveforms are typically transformed into the frequency domain for analysis. The Fourier 
transform, which is suitable for periodic signals or stationary random signals, cannot directly represent non-
stationary speech signals. Combining short-time analysis of speech signals with the Fourier transform yields the 
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commonly used short-time Fourier transform (STFT). After STFT, the mixed signal can also be represented as the 
linear superposition of corresponding signal components in the time-frequency domain, yielding the time-frequency 
domain form of the instantaneous mixture model: 

 ( , ) ( , ) ( , ) 0, , 1i
i

Y t f S t f N t f i C      (9) 

In this context, Y , iS , and T FN  , where T  and F  represent the number of frames in the time dimension 
and the number of frequency points in the frequency dimension, respectively. The problem can be defined as 
extracting the STFT time-frequency spectrum of a given mixed speech signal and reconstructing the STFT time-
frequency spectrum of all sound sources. | |Y   is called the amplitude spectrum, commonly referred to as the 
spectrogram. 2

Y   is called the power spectrum, and Y   is called the phase spectrum. The spectrogram 
combines the advantages of the frequency spectrum and the time-domain waveform, reflecting the dynamic 
changes in the spectral characteristics of speech over time. Therefore, the STFT is a joint time-domain and 
frequency-domain analysis method, and once the window function is determined, the time-frequency resolution is 
also determined. 

III. Audio separation model based on edge AI 
III. A. Attention Mechanism 
III. A. 1) Channel Attention 
The process of adding channel attention to a network typically involves three steps. First, each feature map is 
compressed using global pooling, which compresses each feature map on each channel into a real number, as 
shown in the following formula: 

 
1 1

1
( , )

H W

c c
i j

Z u i j
H W  


   (10) 

where H   and W   are the height and width of the feature map, respectively, and Z   is the feature vector 
containing the global attention information corresponding to the feature map. 

Then, the squeezed vector containing the global attention information of different feature layers is passed through 
a fully connected layer and an activation layer, as shown in the following formula: 

   2 1 (4 2)c cs W W Z    (11) 

  denotes the ReLU activation function,   denotes the sigmoid activation function, and 1w  and 2w  denote 
two different fully connected layers. The vector cs  obtained from equation (11) can represent the importance of 
different channels. Finally, cs   is applied to the features u   extracted by convolution in a weighted manner, as 
shown in the following formula: 

 *c c cx s u  (12) 

cx   represents the weighted features on the channel. Compared with the features cu   obtained after direct 
convolution, it can enhance the importance of useful channel features while reducing the importance of useless 
channel features. The importance of different feature layers is achieved through an adaptive method. 

 
III. A. 2) Spatial Attention 
The spatial attention mechanism is implemented as shown in Figure 5. First, the feature map is passed through a 
max pooling operation and a mean pooling operation. The results of the pooling operations are then concatenated 
along the channel dimension to obtain a feature map with 2 channels. A convolution operation is then applied to 
reduce the number of channels to 1. The result is passed through a sigmoid activation function to obtain the spatial 
attention weight feature. Finally, the feature map is multiplied by the obtained spatial attention weights to obtain the 
spatial attention feature map. The implementation formula is as follows: 

 max

max

( )

( )

([ , ])

avg

avg

u AvgPool u

u MaxPool u

u concat u u





  

 (13) 

where u   represents the input feature map, AvgPool   and MaxPool   represent the average pooling and max 
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pooling operations, respectively, and u  represents the concatenated features: 

   cu f u   (14) 

f  denotes the convolution operation, which primarily serves to reduce the dimensionality, while   represents 
the activation function. 

MaxPoll

AvgPoll

Conv Sigmoid

Input 
features

Spatial attention 
weights

 

Figure 5: Spatial attention mechanism 

III. A. 3) Time Attention 
First, time attention was introduced into the RNN model, known as LSTM, which improved the RNN cell unit by 
adding a forget gate, a memory gate, and an output gate. These gates control the machine's actions, selectively 
remembering and forgetting long sequences, enabling it to process long sequence data while avoiding the problem 
of gradient disappearance during model training. 

Another approach involves applying weighting to the time series. The neural network used in translation tasks 
shares a similar overall structure with audio signal separation networks, typically adopting an Encoder-Decoder 
architecture. The key challenge in translation tasks is how to enable the encoder to effectively aggregate information 
from long sequence inputs. By employing temporal attention mechanisms, the model can focus on relevant 
information in long sequences while ignoring less important details, thereby enhancing its performance. Specifically, 
this is achieved by applying a weight to the encoder's output state feature h , as shown in the following formula: 

 
1

l

i ij j
j

c h


  (15) 

ij  denotes the weight matrix corresponding to the encoder output state feature h , ic  denotes the feature that 
aggregates all the information of the encoder output state through attention, and l  denotes the length of the input 
sequence. 

ij  attention weights are determined based on the previous state of the decoder output, as shown in the following 
formula: 

 

1

exp( )

( )

ij
ij l

ik
k

e

exp e







  (16) 

  1,ij i je f s h  (17) 

where 1is   represents the previous state output by the decoder, and f  represents a function that calculates the 
correlation between 1is   and jh . 

The final hidden state output by the decoder is given by the following formula: 

  1 1, ,i i i is g s y c   (18) 

It can be seen that the output of the next state of the final decoder is determined jointly by its previous output 
state and ic , which contains all the information of the encoder. 

 
III. A. 4) Self-attention 
The fully connected self-attention calculation process can be implemented in the following steps. First, the input 
sequence is passed through an embedding layer to obtain the corresponding feature vector sequence. Then, three 
matrices Qw , Kw , and Vw  are multiplied by the feature vectors. This yields three vectors: the query vector q , 
the key vector k , and the value vector v . The formulas are as follows: 
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 (19) 

Then, calculate the score corresponding to each feature vector by performing an inner product operation between 
the query vector q  at the corresponding position and the key-value feature vector v  at other positions. This score 
reflects the degree of relevance between the input at that position and other positions, as well as the degree of 
attention paid to other positions. After that, all scores are normalized and subjected to a softmax operation to ensure 
that the sum of the weights is one. When using multi-head attention, the normalization operation also ensures that 
the scores obtained from different attention heads are on the same scale. The formula for this process is as follows: 

 max
T

k

Q K
score soft

d

 
   

 
 (20) 

Here, Q  and K  represent the query matrix and key matrix, respectively, and kd  represents the dimension of 
the key vector. Finally, the obtained scores are weighted and summed with the corresponding value matrix V . The 
sum of the results is the self-attention result corresponding to the current input. 

 
1

l

i j j
j

z score v


  (21) 

III. B. Model Design Based on Attention Mechanisms 
III. B. 1) Channel Attention Module 
Additionally, channel attention can be added to the separation module, as shown in Figure 6. The SK (Selective 
Kernel Networks) [30] channel attention module is added to the output layer of each submodule in the separation 
module, primarily considering that features obtained from different convolution kernel sizes should have different 
weights. The entire module consists of three parts. First is feature separation, which primarily obtains two features 

1U  and 2U  from the input features through two convolution kernels of different sizes. 
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Figure 6: Channel attention module in the separation module 
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III. B. 2) Spatial Attention Module 
CBAM is a simple and effective lightweight attention module that incorporates spatial attention, as shown in Figure 
7. This module mainly consists of a channel attention module and a spatial attention module, each of which maps 
the attention mechanism from the channel and spatial dimensions, respectively. The advantage of this approach is 
that the output features are more concentrated on the channels that contribute more to the model through channel 
attention in the dilated convolution layer. 
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Figure 7: The CBAM in the separation module 

III. B. 3) Time Attention Module 
For the DPRNN model with a recurrent network structure, a windowing and framing approach similar to that used 
in the STFT transform is employed. The one-dimensional audio signal is sliced and then reassembled to obtain two 
new dimensions: one representing the temporal signal in each frame, and the other representing the relationship 
between frames. This approach decomposes an audio signal of length L  into two sequences of approximately 
L  each in the two dimensions. This avoids the issues of gradient vanishing and information loss during training 

caused by overly long sequences while ensuring that the RNN model retains the ability to process the input 
sequence with an approximate global receptive field. 
 
III. B. 4) Self-attention module 
In the field of natural language processing (NLP), models based on self-attention have garnered widespread 
attention due to their outstanding performance in various NLP tasks, such as translation, question answering, entity 
recognition, and text classification. Their core idea is to perform pre-training through self-supervised learning, 
enabling larger and deeper network models to learn more profound feature representations of individual characters 
or words. These pre-trained models are then applied as feature extraction components in downstream tasks, often 
requiring only minor adjustments to the overall model to achieve good results. The attention module in these models 
is illustrated in Figure 8. 
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Figure 8: To the attention module 

III. C. Dual-door control mechanism module design 
The use of different attention mechanisms is equivalent to weighting audio features in a separated network in 
different ways. When the attention mechanism acts on each feature point, it functions as a gating mechanism to 
determine which feature information should be retained and which should be discarded. Non-linear gating 
mechanisms have been proven in previous sequence models to control information flow and may assist the network 
in modeling more complex interactive information. Therefore, in the original TCN network structure, two gates were 
added to each one-dimensional convolution module. One corresponds to the first 1 1  convolution layer in the one-
dimensional convolution module, generating a control gate for the input by adding a convolution layer. The other is 
the output gate for the TCN convolution module, generating the gate weights through self-attention. The network 
structure is shown in Figure 9. Through the dual gate mechanism, the flow of feature information across different 
convolutional layers is better controlled, filtering out unnecessary feature information to achieve better separation 
effects. 
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Figure 9: Use the TCN convolution layer with a double door mechanism 
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IV. Experimental Results and Analysis 
IV. A. Experimental Data and Evaluation Indicators 
The separation method uses the MIR-1K dataset, which contains 1,000 music clips sung by amateur singers. The 
music clips have a sampling frequency of 16 kHz and durations ranging from 4 to 13 seconds. The vocals and 
background music are recorded separately in the left and right channels. The evaluation metrics use the BSS_EVAL 
toolbox to calculate the SIR, SDR, and SAR values after separation. 
 
IV. B. Experimental Results 
A random music segment was selected from the MIR-1K database and separated using the method described in 
this paper. Taking amy_11_01.wav as an example, the spectrograms before and after separation are shown in 
Figure 10. As can be seen from Figure 10(a), the original mixed music spectrogram contains horizontal ridges 
representing background music and vertical ridges representing vocals. After separation, as shown in Figure 10(b), 
only the horizontal ridge representing background music is clearly visible, while the vertical ridge is not prominent, 
indicating that only the background music has been separated. In Figure 10(c), the vertical ridge is more prominent, 
indicating that the vocal information has been retained after separation. 

   

(a) Original mixed song spectrum (b) Separate the background music 
score diagram 

(c) Separate song spectrum 
diagram 

Figure 10: Amy 1101.wav Comparison of spectrograms before and after separation  

Figure 11 shows a comparison of the waveforms of each component before and after separation. As can be seen 
from the figure, the waveforms of both the background music and vocals are basically consistent with the original 
waveforms after separation. The spectrogram and waveform comparison diagram show that the separation 
algorithm described in this paper can effectively separate the background music and vocals in a song. 

  

(a)Original background music waveform (b)The waveform of the background music 



Real-time audio source separation in live music performances using edge AI technology 

2639 

  

(c) Original voice waveform (d) The waveform of the separated song 

Figure 11: Amy 11 01.wav Comparison chart of waveform before and after separation 

After verifying that the separation method in this paper can effectively separate songs, the advantages of the 
proposed method over the REPET algorithm and HPSS separation algorithm will be explained. For the 1000 music 
clips of MIR-1K, 10 pieces were randomly selected for separation and their SDR and SIR values were calculated 
(the extracted music clips were: "annar_5_07.wav", "bobon_5_06.wav", "bug_2_07.wav", "fdps_1_03.wav", 
"geniusturtle_1_01.wav", "any_1_07.wav", "ariel_3_ 01.wav", "bobon_2_06.wav", "fdps_1_06.wav", 
"leon_2_03.wav", the results are shown in Figure 12, and the subjective auditory perception test is performed on 
the results after separation. 

As shown in the figure, regardless of whether it is background music or vocals, the algorithm proposed in this 
paper outperforms the HPSS and REPET algorithms in terms of separation metrics such as SDR and SIR. As shown 
in Figure 12(b), when separating background music, the algorithm proposed in this paper achieves an improvement 
of approximately 4 dB to 10 dB in SIR values compared to the HPSS algorithm, and at least a 1 dB improvement in 
performance compared to the REPET algorithm. Figure 12(d) shows that when separating vocals, the proposed 
algorithm achieves a certain improvement in separation performance compared to both the REPET and HPSS 
algorithms. 

  

(a)Background music separation index SDR 
comparison chart 

(b)Background music separation index SIR 
comparison chart 
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(c)Comparison chart of voice separation index SDR (d)Singing separation index SIR comparison chart 

Figure 12: Random 10 music fragment separation performance index comparison chart 

A subjective auditory perception test was conducted with 10 participants, divided into two groups of 5 males and 
5 females, to evaluate the separation results using the MOS metric. The results are shown in Table 2. From a 
subjective auditory perspective, the background music and vocals separated by the algorithm in this paper can be 
clearly distinguished, with good quality. However, there is still minor noise interference in the separated vocals. The 
background music separated by the HPSS algorithm has poor quality, while the separated vocals have slightly 
better quality but still exhibit noticeable system noise interference. The REPET algorithm achieves good separation 
of background music, but the separated vocals still contain noticeable background music. 

Table 2: Random 10 music MOS test results 

 Background music Singing 

Algorithm Male Female Mean value Male Female Mean value 

HPSS 2.1 2.3 2.2 3.4 2.9 3.2 

REPET 3.5 3.8 3.7 2.5 2.2 2.4 

OUR 4.2 3.7 4.0 3.9 3.8 3.9 

 
Processing 1,000 music clips from the MIR-1K database, we calculated the average values of SDR, SIR, and 

SAR. We compared the proposed method with the HPSS algorithm, REPET, and its improved algorithms, with the 
results shown in Tables 3 and 4. As shown in Table 3, when separating background music, the proposed algorithm 
achieves an improvement of approximately 3–6 dB in SIR compared to the HPSS and REPET algorithms and their 
improved versions, indicating that the proposed algorithm outperforms the HPSS and REPET algorithms and their 
improved versions in terms of separation quality when separating background music. As shown in Table 4, when 
separating vocals from music, the proposed algorithm achieves an improvement of approximately 2–8 dB in SIR 
compared to the HPSS and REPET algorithms and their improved versions. Combining the two tables, it can be 
seen that while the SAR metric remains unchanged, the SDR improves by approximately 2 dB. 

Table 3: Comparison of background music separation performance (average results) 

Algorithm 
Background music 

SDR(dB) SIR(dB) SAR(dB) 

HPSS 1.927 4.157 8.211 

REPET 2.151 8.307 4.622 

REPET-SIM 1.542 4.619 6.563 

REPET-MFCC 2.293 7.381 5.255 

OUR 4.211 11.762 8.359 
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Table 4: Comparison of background music separation performance (average results) 

Algorithm 
Background music 

SDR(dB) SIR(dB) SAR(dB) 

HPSS -0.683 11.853 0.502 

REPET 2.5582 6.481 6.943 

REPET-SIM 1.247 6.073 5.002 

REPET-MFCC 2.874 6.382 7.574 

OUR 4.236 14.228 6.511 

V. Conclusion 
After preprocessing the audio signals in musical performances, this study proposes a source separation model 
based on deep neural networks to achieve audio source separation in live musical performances. Experimental 
simulations demonstrate that, for the 1,000 music segments in the MIR-1K database, the proposed attention-based 
music separation method effectively improves the performance of vocal separation and background music 
separation compared to the existing REPET algorithm and its improved versions, as well as the HPSS algorithm, 
particularly in segments with distinct rhythmic patterns. Specifically, compared to existing single-source separation 
algorithms, the proposed method can significantly improve SIR and SDR while maintaining SAR at a similar level, 
indicating that the method can effectively separate music while maintaining robustness. 

In future research, it may be appropriate to incorporate some musical attributes, such as fundamental frequency, 
rhythm, and meter. Additionally, further research could be conducted in data-driven approaches to explore deep 
learning-based vocal separation algorithms. However, to apply it to practical applications, further research is needed, 
and the following issues deserve attention: 

1. Using deep neural networks to optimize separation 
In recent years, deep learning methods based on deep learning theory have received increasing attention. In the 

field of music, deep learning methods are used to separate vocals from accompaniment. With sufficient data and 
an appropriate network structure, the corresponding neural network can be trained. Through discriminative training, 
the model can achieve strong fault tolerance, thereby improving separation performance. However, this method 
requires a large number of samples and significant hardware support. Therefore, how to effectively simplify 
experiments, reduce experimental time, and minimize hardware resource requirements has become a key issue to 
address in the next phase. 

2. Incorporating musical characteristics to assist analysis 
Music contains various features, such as fundamental frequency and pitch. These properties can be used for 

matrix decomposition, particularly by incorporating them into the cost function of matrix decomposition or as an 
auxiliary factor within the cost function. Additionally, by combining spectrogram analysis with matrix decomposition 
algorithms, they can be performed in parallel or sequentially to maximize the effectiveness of vocal separation. 
However, how to integrate these methods remains a technical challenge requiring further research. 
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