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Abstract Against the backdrop of rapid development in big data and intelligent algorithms, intelligent production 
environments serve as the forefront of manufacturing enterprises. Under the guidance of artificial intelligence, these 
environments require precise control and intelligent management of production systems and processes to maximize 
corporate value. Based on this, a management approach is proposed for intelligent optimization and control in smart 
factory operations, grounded in the theory of shared value networks. Building on this, by calculating the earliest 
start time and earliest completion time for workpiece processing, a processing time matrix is derived for each product, 
thereby establishing a flexible scheduling optimization decision-making model. The simulated annealing genetic 
algorithm is employed to solve the flexible scheduling optimization decision-making model. The results indicate that 
the widespread adoption of flexible production and the enhancement of flexible expansion levels can generate a 
sustained driving effect on the intelligent upgrading of manufacturing, while improvements in technical flexibility 
levels can only promote the intelligent upgrading of manufacturing in the short term but will significantly inhibit the 
intelligent upgrading of the manufacturing sector in the medium to long term. 
 
Index Terms Flexible scheduling production; Simulated annealing genetic algorithm; Shared value network; 
Management model 

I. Introduction 
As the global consumer market and geopolitical landscape evolve, China's domestic manufacturing sector is 
undergoing multifaceted transformations [1]. To adapt to these changes, the domestic manufacturing sector is 
accelerating its transformation and upgrading efforts, driving its own development toward high-end and intelligent 
directions [2], [3]. Traditional manufacturing enterprises, in the face of the current new circumstances, should seize 
the opportunity for enterprise upgrading and prioritize technological innovation in the face of numerous risks and 
challenges [4], [5]. At the same time, when facing industrial and technological trends, it is essential to actively adapt 
and align with these changes. By leveraging scientific and technological innovation, proactive planning, and the 
power of innovation, new development engines can be built to embark on the path of upgrading and transformation, 
fostering new economic growth points [6]-[9]. Therefore, smart manufacturing, as the core of the manufacturing 
industry's transformation and upgrading, has become the key pathway to driving high-quality development in the 
manufacturing sector [10]. 

At present, the manufacturing sector has broken away from traditional development models, adopting innovation-
driven, green development, and structural optimization as its basic guidelines, thereby promoting the sector's 
development toward automation, informatization, and intelligence. By integrating advanced information technology 
and smart manufacturing technology, it has not only improved product quality and production efficiency but also 
achieved more optimal resource allocation [11], [12]. Although China's manufacturing sector has made significant 
progress in the tide of economic development, it still faces uncertainties in market demand, pressure from 
technological innovation, and challenges in cost control [13], [14]. These factors have intensified industry 
competition, necessitating an urgent upgrade in management approaches to address the current situation [15]. 
During the transition from traditional manufacturing to smart manufacturing, the integration of next-generation 
information technology with manufacturing processes will drive a transformation in smart production management 
methods. Lean production management provides robust support and assurance for the high-speed, high-quality, 
and efficient development of the manufacturing sector [16]-[19]. 

In the manufacturing industry, promoting the establishment of production management models is of critical 
importance, as it not only identifies shortcomings and bottlenecks in the production environment but also facilitates 
the achievement of corporate production objectives. Literature [20] indicates that production control in intelligent 
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production environments is inherently decentralized, necessitating the establishment of a manufacturing execution 
system to facilitate the transformation of traditional enterprise management models. Literature [21] identifies and 
validates the impact of relevant management behaviors on operational practices in intelligent production 
environments, thereby measuring and proposing a comprehensive set of management behaviors to help 
manufacturing enterprises develop management models aligned with their maturity stages. Literature [22] indicates 
that the integration of information and communication technology with physical production systems is key to 
achieving more agile production systems in the future. To this end, an Industry 4.0 production system based on the 
Internet of Things and service environments has been established to support manufacturing enterprises' production 
processes. Literature [23] designed an intelligent production model for small textile enterprises, effectively 
addressing order fulfillment issues for SMEs through the establishment of practical tools incorporating intelligent 
manufacturing and change management methods, thereby enhancing their production service quality. Literature 
[24] proposed a production management model based on lean principles to enhance manufacturing enterprises' 
dynamic response capabilities to market changes, maximizing resource utilization and reducing production losses 
to support intelligent production. Literature [25] emphasizes that intelligent lean production management is an 
important method for improving production performance and innovation capabilities. By customizing project 
management models, it ensures business continuity and risk control levels to achieve the effectiveness of enterprise 
business process management. Literature [26] integrates production management systems with Industry 4.0 
technological innovation methods to formulate enterprise intelligent production strategies. By rapidly and flexibly 
restructuring intelligent production processes, it enhances enterprise operational efficiency and performance levels. 
Literature [27] investigates the utility of production management systems based on artificial intelligence technology 
in the intelligent production processes of manufacturing enterprises. This management model leverages the efficient 
judgment capabilities of artificial intelligence to not only improve the efficiency and productivity of maintenance 
operations but also enhance crisis awareness in production manufacturing. Literature [28] introduces intelligent 
production management and control methods based on digital twin technology, which assist enterprises in real-time 
data collection, organization, and management of manufacturing processes in complex assembly workshops. 
Literature [29] also points out that digital twin technology applicable to intelligent manufacturing systems has the 
ability to monitor production status in real time and predict system failures. Its application in enterprise production 
management has achieved the sustainable development of intelligent manufacturing systems. Therefore, with the 
support of production management systems, manufacturing enterprises can deeply understand the influencing 
factors and interrelationships in the quality management process, construct a comprehensive quality control model, 
and thereby improve production efficiency in intelligent production environments. 

Based on the theory of shared value network, this paper proposes a management method for optimization and 
control in the operation and management of smart factories. On this basis, the optimization decision of flexible 
operation plan is further proposed, and the processing time matrix of each product is determined by calculating the 
earliest start time and the earliest completion time of the workpiece. The simulated annealing genetic algorithm is 
used to solve the flexible operation plan optimization decision model. Then, the mechanism and effect of modern 
flexible production on the management mode of manufacturing industry are analyzed from three levels: the 
popularization of flexible production, the level of extended flexibility and the level of technological flexibility. Finally, 
the actual simulation analysis is carried out on the Matlab software, and a certain simulation diagram and time value 
are obtained. Through the simulation comparison of the two algorithms and the comparative analysis of machine 
tool idleness, the excellent scheduling value of the simulated annealing genetic algorithm is obtained. 

II. Collaborative business processes for smart factory production and operations 
management 

Smart factories represent the forefront of artificial intelligence development, responding to global supply chain 
competition and new productivity requirements. They achieve pervasive intelligent IoT through the intelligentization 
of basic equipment and facilities and human-machine intelligent collaboration, and establish a real-time production 
network with high-speed connectivity among people, machines, and objects through high-speed networks, thereby 
constructing manufacturing factories with intelligent, flexible, and agile capabilities. At its core, it is supported by a 
complex cyber-physical system (CPS) that is fully perceptive, effectively regulated, vertically and horizontally 
integrated, and fully collaborative. At the CPS action layer, leveraging the entire lifecycle of smart factory business 
processes, it provides lean product design, production, and services guided by overall demand, fully leveraging the 
technological advantages of big data and industrial internet, such as cloud computing and blockchain. Furthermore, 
by analyzing the actual smart factory construction pathways of enterprises, this research delves into the 
management theories and methods for smart factory product design and production, intelligent resource 
management, and knowledge discovery and service management. Under the guidance of shared value network 
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theory, it achieves the latest research findings in smart factory management theories and methods under the 
backdrop of smart manufacturing, addressing management bottlenecks in smart factories and facilitating the 
efficient application of foundational research outcomes in the smart factory domain. 

III. Shared value network structure and operating mechanism 
Against the backdrop of the new round of technological revolution and global industrial chain optimization, the 
boundaries of enterprise development have been greatly expanded. Intelligent factory production and operation 
management are deeply integrated with data and information resources, forming a dynamic value network 
characterized by collaboration among multiple stakeholders across all stages of the product lifecycle, as well as the 
sharing and integration of resources, information, and knowledge. Therefore, it is necessary to conduct in-depth 
research on the shared value network structure and operational mechanisms of intelligent factory production and 
operation management under the new manufacturing paradigm. 

IV. Manage business model innovation and organizational restructuring 
Organizational resilience is particularly important for economic stability. Through business model innovation, 
organizational resilience can be enhanced, helping enterprises gain a competitive edge in a dynamic and ever-
changing business environment. Smart factory business models exhibit characteristics such as diversified 
stakeholders and coordinated value activities. Traditional management teams are no longer suited to current needs, 
necessitating the establishment of adaptive organizational structures capable of addressing diverse environmental 
and functional requirements. These structures should leverage flat, virtualized manufacturing platforms as 
connectors to aggregate resources across the supply chain, fostering new network-based collaborative 
manufacturing models such as remote customization and off-site production. Therefore, it is essential to focus on 
exploring management business model innovations based on shared value networks and redefine organizational 
structures under new business models. 
 
IV. A. Integrated model of product design and production in smart factories 
Systematically analyze typical enterprises to identify the common characteristics of product design and production 
in smart factories for large-scale customization, as well as the differences and challenges in classification and 
knowledge extraction methods compared to general personalized customization products. Specifically, this can be 
achieved by analyzing data from different channels—such as external internet users, internal enterprise users, and 
third parties—in scenarios like product co-creation, to explore matching methods between various types of data 
(e.g., user behavior, user-generated content, user complaints) and design solutions, thereby establishing a flexible 
design model for large-scale customization scenarios. Based on theories such as flexible manufacturing, analyze 
the applicability of delayed manufacturing in the context of large-scale customization in smart factories, as well as 
the timing and extent of delayed standardization and modularization of components in the design and manufacturing 
processes, to construct the optimal structure for flexible layout and dynamic response in the large-scale 
customization production system of smart factories. Drawing on traditional integration theories and models, this 
study constructs a theoretical framework for an integrated model of product personalization design and production 
in smart factories from two perspectives—R&D design and manufacturing—and three dimensions—subject, 
process, and resources. It designs mechanistic models for the key constituent elements and their interrelationships 
across different dimensions, thereby establishing an integrated model for product design and production in smart 
factories. 
 
IV. B. Adaptive online design and production network coordination mechanisms for smart factories 
Based on different types of manufactured products, identify and construct the attributes, behaviors, interaction rules, 
and related constraints of the online design and production entities in smart factories. Analyze the forms of interest 
and demands expressed by customers and upstream and downstream entities in the smart supply chain. Combine 
blockchain technology with organizational behavior theory, adaptive theory, and other research to design adaptive 
models and internal and external transaction mechanisms for organizations at various stages of design and 
production. Construct a static organizational network topology model through social network analysis, and use 
dynamic network analysis to obtain the complex dynamic relationships between different factors and their impact 
on organizational structure. Analyze the effectiveness and potential risks of organizational models under different 
scenarios through computational experiments and other methods, and provide corresponding countermeasures. 
Construct an enterprise data network space based on the data chain of smart factory products, manufacturing, 
services, and resources, and analyze the collaborative characteristics of the production and manufacturing network 
and its role in the co-creation value chain. 
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V. Intelligent factory production intelligent scheduling and dynamic optimization model 
V. A. Enterprise Material Production Management in a Smartly Connected Environment 
(1) Relationship between material management and manufacturing Material management mainly involves the digital 
management of material specifications, types, inputs, and waste generation. Process monitoring and statistics on 
materials provide a basis for material procurement. 

(a) Different products require different specifications of raw materials, and the cutting and usage of raw materials 
must be calculated. Here, k  is the length/weight ratio coefficient. 
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  (1) 

(b) Based on data collected on production materials, it is possible to calculate the production material data for 
each unit of production. 
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(c) During the production task cycle, statistics on the actual weight of products produced and the weight of scrap 
are collected to provide data for estimating the weight of scrap. Estimated scrap weight = total weight (sum of the 
weights of raw materials of various specifications) - product weight (raw material specifications * proportion 
coefficient), where i  is the ratio of consumption per unit product to the length of raw materials of different 
specifications. 
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(2) The compositional framework of information-based material management 
In next-generation information technology, the Internet of Things (IoT) is an important component of information 

technology. While it differs from the concept of the Internet, it can be viewed as an external extension of the Internet 
in form. The IoT primarily connects devices to the internet through information sensors, chips, infrared sensors, 
laser scanners, and wireless modules. Through these technologies and devices, it can transmit information about 
any connected object, enabling dynamic sensing, intelligent identification, and effective management of production 
processes. Based on IoT technology support, digital management of production materials can be achieved. The 
bronze-level material management module is primarily composed of two parts: the PC end and the mobile end. The 
mobile end refers to the collection and statistics of production process data at the production site through IoT, with 
the data displayed in various modules on the mobile end. The PC end receives data processed on the mobile end 
and manages material specifications, inventory, and real-time weighing information. The main functions of material 
management include specification settings, inventory management, material cutting management, real-time 
weighing, daily scrap management, and project information management. The module structure diagram of material 
management is shown in Figure 1. 
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Figure 1: The modular structure of material management 
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V. B. Construction of a flexible work schedule optimization decision-making model 
V. B. 1) Earliest start time for machining workpieces 
Based on the principle of dividing decision-making periods, production resource constraints, and minimum batch 
size restrictions for each period, constraints are established with the objective of minimizing inventory product 
quantities. This allows for the determination of production batch sizes for various product types within each period. 
The total production quantity of all product batches within period l  is represented as ( 1, 2,..., )jix j n m u   . 

Without loss of generality, if all components, parts, raw materials, etc., in the product production process structure 
are collectively referred to as intermediate workpieces, combined with the workshop allocation for workpiece 
processing and the general product process structure diagram, the simplified product processing hierarchy division 
is shown in Figure 2. 
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Figure 2: Classification of product processing levels 

Workpieces at different levels are processed in different workshops and on different equipment. In this paper, a 
workpiece at a certain level is assigned to be processed in a corresponding workshop. For example, the workshop 
corresponding to the d th-level workpiece is workshop w , the 1d  th level is the previous level, corresponding to 
processing in workshop 1w , and the 1d  th level is the next level, corresponding to processing in workshop 

1w . dN  is the number of workpiece types at level d , and each type of workpiece unit is composed of 1dN   
types of workpieces from level 1d  . dk  is the number of processing equipment types in the processing workshop 
at level d , and the capacity of the same type of equipment can be composed of multiple units. If d dN K , it 
indicates that there will be ( )d dN K  types of workpieces in workshop w  without suitable processing equipment. 
In this case, corresponding equipment can be added to workshop w . If d dN K , it indicates that there will be 
( )d dK N  types of equipment in workshop w  that may not be suitable for processing these dN  sets of 
workpieces, but can be used for processing other workpieces. Therefore, assuming that after appropriate 
classification and adjustment, d dN K . 

The calculation basis for the completion time of the d th layer of workpieces required for the l th batch of the j

th product in workshop w  is the time required to process the 1dn   sets of workpieces from the 1dN   types of 
workpieces in the 1d  th layer among the dN  types of workpieces in that layer in workshop 1w  [w-1]. Under 
the assumption that 1 1d dN K  , the time sequence for the completion of these 1dn   sets of workpieces in 
workshop 1w  is: 
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The completion time for the 1dn   sets of workpiece assemblies processed in Workshop 1w  to meet the 

processing requirements of the d st-layer workpiece units is 
1, , , 1,1,1 , 1,2,1 , 1, ,1( , , , )

dj d n j d j d j d Kt Max t t t
    . Assuming 

that the d th-layer dn th-type workpiece requires ,d nN  sets for the production of batch product ,j lx  units, the total 

demand for this workpiece in the d th layer is , ,d n j lN x . Similarly, the time sequence for completing the set of 

1d  th-layer workpieces processed in workshop 1w  that are required for the dN  types of workpieces in the d
th layer is as follows: 
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The time series of the completion of the complete set of 1d   layer workpieces processed in workshop 1w  
that are required for the d  layer dN  types of workpieces mentioned above, that is, the earliest possible start time 
series for each set of the d  layer dN  types of different workpieces in workshop w . Clearly, the earliest possible 
start time sequence for the first set of the d th layer of dN  types of workpieces for the j th product's l th batch 
within workshop w  is: 

 , ,1 , ,2 , , , ,( , ,..., ,..., )
dj d j d j d n j d Nt t t t     (7) 

At the same time, the l th batch of the d th layer of workpieces for the ( 1)j  th product, which is sorted before 
the j th product, is processed in workshop w  within the time dK  different machines in workshop w , i.e., the 
earliest possible start time for processing the d th layer of the j th product's 1st batch on these dK  different 
machines, can be arranged in ascending order and expressed as: 

 ( 1) ( 1), ,1,1 ( 1), ,2,1 ( 1), , ,1( , ,..., )
dj ld j d j d j d Kt t t t   

     (8) 

Thus, the earliest processing start time for different workpieces in the d th layer of the l th batch of the j th 
product on the dK  different machines in workshop w  can be calculated as follows: 
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V. B. 2) Earliest completion time for workpiece processing 
After determining the earliest processing start time sequence for different workpieces of the d th layer of the l th 

batch of the j th product on the dK  different machines in workshop w , the processing completion times for 

different workpieces on the dK  different machines in workshop w  can be calculated. Let 
1 2

, ,1,1 , ,2,1 , , ,1 , , ,1, , , , ...,k K
j d j d j d k j d Kt t t t  represent the processing times required for different workpiece units on different 

equipment dk , assuming that the processing times for each workpiece unit remain constant, then: 

The completion time sequences for workpieces processed on the first type of equipment are: 

 , ,1,1 , ,1,0 , ,1,1 , ,1,2 , ,1,0 , ,1,1, 2 ,......j d j d j d j d j d j dt t t t t t         (10) 

The completion time series for each set of workpieces processed on the dk th device are: 

 1
, , ,1 , , ,0 , , ,1 , , ,2 , , ,0 , , ,1, 2 ,......

d d d d d dj d k j d k j d k j d k j d k j d kt t t t t t        (11) 

The completion time sequence for each set of workpieces processed on the last piece of equipment is as follows: 



Research on Management Model Transformation in Manufacturing Enterprises under Intelligent Production Environments 

2717 

 1 1
, , ,1 , , ,0 , , ,1 , , ,2 , , ,0 , , ,1, 2 ,......

d d d d d dj d K j d K j d K j d K j d K j d Kt t t t t t       (12) 

After summarizing, the time series of the completion of various workpiece sets processed on dK  types of 

equipment is as follows: 
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V. B. 3) Product processing time matrix 
Based on the above principle, we can calculate the time when all batches of products at level 0 within time period l 
are processed. The time sequence matrix for each product is shown in Table 1. 

Table 1: The time series matrix of the completed processing of each product 

j  1 2 ⋯ n  1n   ⋯ n m  1n m   ⋯ n m u   

1 jPX  1,1t  1,2t  ⋯ 1,nt  1, 1nt   ⋯ 1,n mt   1, 1n mt    ⋯ 1,n m ut    

2 jPX  2,1t  2,2t  ⋯ 2,nt  2, 1nt   ⋯ 2,n mt   2, 1n mt    ⋯ 2,n m ut    

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ 

0k jPX  ,1kt  ,2kt  ⋯ ,k nt  , 1k nt   ⋯ ,k n mt   , 1k n mt    ⋯ ,k n m ut    

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ 

0K jPX  ,1Kt  ,2Kt  ⋯ ,K nt  , 1K nt   ⋯ ,K n mt   , 1K n mt    ⋯ ,K n m ut    

 
V. C. Solving Flexible Job Scheduling Optimization Decision Models 
In this paper, the simulated annealing genetic algorithm is used to solve the flexible job scheduling optimization 
decision model: 

Step 1: Determine the initial sample population 1( )P q  based on experience. 
Step 2: Initialize the sample population 2P  of product sorting 2  based on 1( )P q , and set the competition size 

(randomly selecting k  individuals from the sample population) to 1k   [30]. 
Step 3: If k  does not meet the lower-level iteration requirement, repeat Step 2. If q  meets the algorithm 

termination requirement and the lower-level iteration termination condition is satisfied, calculate and select the 
sample with the optimal fitness value from the sample population 2P , and the algorithm terminates. Otherwise, 
record the sample population 2P  and proceed to the next step. 

Step 4: Calculate the lower-level fitness function for the sample population 2P  saved in Step 3 to determine the 
sample individual 2 ( )P q  corresponding to the optimal fitness value. 

Step 5: Re-initialize the sample population 1P  based on 2 ( )P q , and simultaneously increment the chromosome 
index q  by 1 ( 1q q  ). 

Step 6: Calculate the fitness values of the individuals in the new sample population 1P  using the upper-level 
fitness function, and identify the sample individual with the optimal fitness value. When the iteration count r  
reaches the required value, set 1( )P q  as the optimal sample individual and continue with Step 2; otherwise, 
continue with Step 5. 

VI. Numerical simulation and impact analysis 
This section focuses on exploring the mechanisms and effects of modern flexible production on the intelligent 
upgrading of manufacturing. Therefore, this section will analyze the impact of flexible production from three 
perspectives: the prevalence of flexible production, the expansion of flexibility, and the level of technological flexibility. 
 
VI. A. Impact of the widespread adoption of flexible manufacturing 
The results of the impact of the degree of flexible production adoption are shown in Figure 3 (a–d represent the 
overall production function of the manufacturing sector 1( )tY , the number of intelligent production links in the 
manufacturing sector 1( )tI , the level of intelligent production technology in the manufacturing sector 1( )tA , and the 
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level of intelligence in the manufacturing sector ( )t ). It can be seen that the increased adoption of flexible 
production effectively improves the level of intelligent manufacturing in the manufacturing sector, thereby achieving 
the goal of intelligent upgrading in manufacturing. This is primarily because the widespread adoption of flexible 
production increases the potential entry pressure from other potential industrial sectors on the manufacturing sector. 
The manufacturing sector and other potential industrial sectors operate in relatively isolated consumer markets. 
Therefore, the potential entry pressure faced by the manufacturing sector at this time is not only reflected in the 
impact of intelligent technologies but also in potential market environment displacement. 

  

(a) Integral production function (b) Quantity 

  

(c) Intelligent technology level 
(d) The level of intelligence in the manufacturing 

industry 

Figure 3: The influence results of the popularization degree of flexible production 

VI. B. Impact of increased flexibility 
The impact of enhancing the level of extended flexibility is shown in Figure 4 (a–d represent the overall production 
function 1( )tY , the number of intelligent production processes in the manufacturing industry 1( )tI , the level of 
intelligent production technology in the manufacturing industry 1( )tA , and the level of intelligence in the 
manufacturing industry ( )t ). It can be seen that the improvement in the level of expanded flexibility can promote 
the intelligent upgrading of the manufacturing industry in the short term. The improvement in the level of expanded 
flexibility has an impact on the intelligent production technology level A1t and the number of intelligent production 
processes I1t in the manufacturing industry. In terms of the impact on the level of intelligent production technology 
in manufacturing (A1t), the improvement in the level of expanded flexibility creates a push effect on A1t. Regarding 
the impact on the number of intelligent production processes in manufacturing (I1t), the increase in the level of 
expanded flexibility necessitates that the manufacturing sector implement more comprehensive and complete 
production process arrangements to control intelligent production processes, thereby establishing effective entry 
barriers. From the overall impact perspective, whether it is the improvement in the level of intelligent manufacturing 
technology A1t or the increase in the number of intelligent production processes I1t, these changes ultimately reflect 
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on the level of intelligent manufacturing 2  and ultimately promote the intelligent upgrading of the manufacturing 
sector. 
 

  

(a) The overall production function (b) Quantity 

  

(c) Intelligent technology level 
(d) The level of intelligence in the manufacturing 

industry 

Figure 4: The impact results of the improvement in the level of expansion flexibility 

VI. C. Impact of improved technological flexibility 
When analyzing the impact of improvements in technological flexibility, it is also necessary to consider the impact 
of changes in the evolution rate   and development ceiling   on the results. 

(1) The impact of changes in   on improvements in technological flexibility 
The impact of improvements in technological flexibility levels varies with the evolution rate  , as shown in Figure 

5 (a–d represent the overall production function, the number of intelligent production processes in manufacturing, 
the level of intelligent production technology in manufacturing, and the overall level of intelligent manufacturing, 
respectively). Overall, in the short term, the improvement in the level of technological flexibility can achieve the goal 
of promoting the intelligent upgrading of manufacturing. However, as the level of technological flexibility evolves, 
once a certain threshold is crossed, the improvement in the level of technological flexibility actually inhibits the 
progress of manufacturing intelligence t  to a certain extent. Additionally, as shown in the figure, as the evolution 
rate   continues to increase, the threshold inflection point of the level of technological flexibility shows a 
decreasing trend. This implies that a higher evolution rate weakens the duration of the positive impact of the level 
of technological flexibility on the intelligent upgrading of the manufacturing industry. From a medium- to long-term 
perspective, this outcome is not conducive to the manufacturing industry achieving sustained intelligent upgrading. 
Due to the influence of machine learning mechanisms, the evolution of technological flexibility levels follows an “S”-
shaped curve approaching an upper limit, while increases in evolution rate μ make the evolution trend steeper. 
Specifically, under conditions where evolution rate   remains constant, as technological flexibility levels increase, 
other potential industrial sectors can more easily integrate into the production processes of the manufacturing sector. 
Additionally, since the initial evolution rate is relatively slow and has not yet reached the inflection point where the 
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curve transitions from convex to concave, the coercive effect of the growth in the level of technological flexibility 1
tA  

on the level of production intelligence technology dominates at this stage. As shown in the figure, an increase in the 
level of technological flexibility at t=0 can drive an increase of approximately 0.06 in 1

tA . However, as the threshold 
inflection point arrives, the growth rate of technological flexibility levels experiences an explosive increase, enabling 
other potential industrial sectors to quickly replicate the production technologies and processes of the manufacturing 
sector. Without considering intellectual property protection, these sectors can leverage this advantage to erode the 
manufacturing sector's market share. This gradually erodes the manufacturing sector's motivation to invest in R&D 
for intelligent production technologies over the medium to long term. As shown in the figure, after the threshold 
inflection point, improvements in technological flexibility have a significant negative impact on the change in 1

tA , 
with an impact magnitude of approximately -0.02. A similar effect is also evident in its impact on the number of 
intelligent production processes 1

tI  in the manufacturing sector. The short-term technological pressure effect 
forces the manufacturing sector to more widely deploy intelligent production processes to maintain its excess profits. 
At this point, an increase of one standard deviation in the level of technological flexibility can bring about a 0.028-
unit increase in 1

tI  at t=0. However, with the arrival of the threshold inflection point, the overly rapid growth rate of 
the level of technological flexibility renders the advantages of intelligent production processes in the manufacturing 
sector less evident. Therefore, during this phase, the improvement in the level of technological flexibility to some 
extent inhibits the expansion of intelligent production processes in the manufacturing sector. If the evolution rate of 
technological flexibility   is further accelerated under these circumstances, it is evident that as the evolution rate 
  continues to rise, the threshold inflection point where technological flexibility transitions from convex to concave 
will arrive more rapidly. 

  

(a) The overall production function (b) Quantity 

  

(c) Technical level (d) Level of intelligence 

Figure 5: The situation where the impact brought about by the improvement 

(2) The impact of changes in   on the improvement of technological flexibility level 
The impact of the improvement of technological flexibility level on the upper limit   is shown in Figure 6 (a to d 

represent the overall production function, the number of intelligent production links in the manufacturing industry, 
the level of intelligent production technology in the manufacturing industry, and the level of intelligence in the 
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manufacturing industry, respectively). Due to the machine learning characteristics of artificial intelligence, the 
evolution of the level of technological flexibility follows an “S” curve, where the development ceiling   represents 
the highest level of technological flexibility that potential industrial sectors can achieve under current technological 
conditions to successfully integrate into manufacturing production processes. Clearly, changes in the development 
ceiling   depend on breakthroughs in key core technologies. To simplify the model, this paper sets the 
development ceiling for the level of technological flexibility. The results show that changes in the development upper 
limit   do not alter the overall trend of the impact of technological flexibility on the intelligent upgrading of 
manufacturing. In the short term, an increase in technological flexibility can effectively promote the intelligent 
upgrading of manufacturing, but from a medium- to long-term perspective, an increase in technological flexibility 
has a significant inhibitory effect on the intelligent upgrading of manufacturing. However, it is evident that as the 
upper limit of technological flexibility level development   gradually increases, in the short term, the promotional 
effect of technological flexibility level on the intelligent level of manufacturing t  becomes increasingly evident, 
and the duration of this positive effect also shows a trend of gradual extension. 

  

(a) The overall production function (b) Quantity 

  

(c) Technical level (d) Level of intelligence 

Figure 6: Effect of technological flexibility level improvement 

VII. Simulation Applications 
The machining task involves all major components of the complete mold frame. The main machining processes are 
divided into eight sub-processes. To ensure the optimal machining capacity of the eight machines during the process, 
the manual tool change time required by the machines is ignored. Based on the established model, the results can 
be obtained through simulation using Matlab R2013a under the machine environment of 8/8/G/Cmax. The 
simulation results yield a scheduling time diagram, enabling the determination of the optimal scheduling outcome 
(10 simulations are conducted on the selected data, and the best result from one of the 10 simulations is selected). 
The parameters for the simulated annealing genetic algorithm are set as follows: Optimization objective: maximum 
completion time. Iteration count: 500. Mutation probability Pm: 0.35. Mutation transformation logarithm Pc: 4. 
Simulated annealing initial value: 1000. Simulated annealing final value: 0. These parameters effectively achieve 
the optimization of the global solution. 
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VII. A. Particle Swarm Optimization Simulation Scheduling Gantt Chart 
The particle swarm optimization scheduling Gantt chart is shown in Figure 7. The machines used to process 
Workpiece 2 in sequence are Machine 7, Machine 4, Machine 3, Machine 1, Machine 5, Machine 2, and Machine 
7, while the original processing machines were 3, Machine 7, Machine 1, Machine 4, Machine 7, Machine 5, and 
Machine 2. This demonstrates that the particle swarm algorithm can reorder the original sequence of operations. 
Since the first three operations can be interchanged and the last five operations can be interchanged, the shortest 
processing sequence can be determined, resulting in a total processing time of 648 minutes. This can be used to 
optimize the original sequence of operations, thereby improving the overall production process. 

 

Figure 7: Particle swarm optimization algorithm scheduling 

VII. B. Simulation of Genetic Algorithm Simulation Scheduling 
The initial population is optimized using a simulated annealing genetic algorithm, yielding the globally optimal 
solution. During the iterative process, the minimum average flow time is 401 minutes, the maximum completion time 
is 608 minutes, and the minimum gap time is 812 minutes. The simulated annealing genetic algorithm scheduling 
Gantt chart is shown in Figure 8. As can be seen from the figure, the workpieces and processes processed by 
Machine 1 are as follows: 102 Workpiece 1's first process, 404 Workpiece 4's second process, 202 Workpiece 2's 
third process, 603 Workpiece 6's first process, 505 Workpiece 5's second process, 706 Workpiece 7's third process, 
806 Workpiece 8's third process, and 302 Workpiece 3's third process. Among these, the optimal completion time 
for the simulated annealing particle scheduling algorithm is 615 minutes, which is significantly shorter than the 
optimal scheduling time of the particle swarm scheduling algorithm. Therefore, it can be concluded that the 
simulated annealing particle swarm scheduling algorithm outperforms the particle swarm scheduling algorithm in 
flexible production. 

 

Figure 8: Simulated annealing genetic algorithm scheduling 
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The particle swarm optimization algorithm machine idle table is shown in Table 2. The total idle time obtained 
from the table is: Machine 1 took 42 minutes. Machine 2 took 40 minutes. Machine 3 took 32 minutes. Machine 4 
took 42 minutes. Machine 5 took 29 minutes. Machine 6 took 31 minutes. Machine 7 took 40 minutes. Machine 8 
took 57 minutes, with a total idle time of 313 minutes. After optimization using the particle swarm algorithm, the idle 
time was improved by 21.5% compared to the original, and the total processing time was reduced by 18.8%. 

Table 2: Particle swarm algorithm machine tool idle table 

Workpiece Workpiece 1 Workpiece 2 Workpiece 3 Workpiece 4 Workpiece 5 Workpiece 6 Workpiece 7 Workpiece 8 

Machine 1 2 8 3 6 9 3 5 6 

Machine 2 1 3 6 9 5 4 8 4 

Machine 3 6 7 2 4 2 0 1 10 

Machine 4 10 2 4 6 3 2 8 7 

Machine 5 3 10 3 2 5 0 2 4 

Machine 6 7 3 2 5 0 4 7 3 

Machine 7 7 4 9 4 3 9 0 4 

Machine 8 6 7 7 6 8 7 8 8 

 
The idle time table for machine tools using the simulated annealing genetic algorithm is shown in Table 3. The 

total idle time series obtained using the simulated annealing genetic algorithm is as follows: Machine 1 took 39 
minutes, Machine 2 took 25 minutes, Machine 3 took 26 minutes, Machine 4 took 42 minutes, and Machine 5 took 
24 minutes. Machine 6 took 25 minutes. Machine 7 took 40 minutes. Machine 8 took 58 minutes, with a total idle 
time of 279 minutes. After calculation, the processing idle time based on the simulated annealing genetic algorithm 
was 279 minutes, representing a 26.9% improvement in idle time compared to the original method, with a 22% 
reduction in total processing time. Based on the data in Tables 2 and 3, it can be seen that the optimization results 
of the simulated annealing genetic algorithm are better than those of the particle swarm algorithm alone. After 
adopting the simulated annealing genetic algorithm, the overall processing time has significantly improved, and the 
idle time of machines in scheduling has been greatly reduced, proving the effectiveness of the simulated annealing 
genetic algorithm in flexible manufacturing systems. 

Table 3: Idle table of Simulated annealing Particle swarm algorithm machine tool 

Workpiece Workpiece 1 Workpiece 2 Workpiece 3 Workpiece 4 Workpiece 5 Workpiece 6 Workpiece 7 Workpiece 8 

Machine 1 3 3 2 8 8 3 6 6 

Machine 2 1 0 6 3 3 1 7 4 

Machine 3 2 4 2 4 4 1 1 8 

Machine 4 8 6 3 7 4 1 5 8 

Machine 5 1 5 0 2 6 1 4 5 

Machine 6 5 1 1 3 1 1 4 9 

Machine 7 9 8 4 1 3 9 3 3 

Machine 8 10 6 5 4 9 9 9 6 

 

VIII. Conclusion 
This paper investigates the management models of manufacturing enterprises and proposes optimization and 
control strategies for their operational management. It also constructs a flexible job scheduling optimization 
decision-making model. This aims to achieve collaborative, intelligent, flexible restructuring, and mass 
customization in manufacturing enterprise management, thereby maximizing resource utilization efficiency. The 
conclusions drawn in the article are as follows: 

Improvements in flexibility levels can drive the intelligent upgrading of manufacturing enterprises, while 
enhancements in technical flexibility levels can only temporarily promote the intelligent upgrading of manufacturing 
enterprises in the short term, but will significantly inhibit such upgrading in the medium to long term. 

In simulation experiments using the simulated annealing genetic algorithm for scheduling, the simulated 
annealing genetic algorithm reduced idle time by 26.9% and total processing time by 22% compared to the original 
method. Comparisons show that the optimization results of the simulated annealing genetic algorithm proposed in 
this paper are better than those obtained using the particle swarm algorithm alone, with a significant improvement 
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in overall time and a substantial reduction in machine idle time, thereby validating the effectiveness of the simulated 
annealing genetic algorithm in flexible manufacturing systems. 
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