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Abstract Aspect-level sentiment analysis, as a sentiment analysis task, aims to identify the sentiment toward 
specific aspects or topics mentioned in text. To optimize its performance, which is constrained by internal text 
information and ignores features such as part-of-speech, dependency relationship types, and syntactic distance in 
the syntactic dependency graph that could enhance the semantic information of aspect words, this paper combines 
the syntactic dependency graph with a graph neural network model. By leveraging external knowledge to enhance 
the graph attention network, we propose a graph neural network-based aspect-level text sentiment analysis method 
focused on semantic enhancement. We collect theme-related comment text data from various social media 
platforms to create a dataset tailored for aspect-level sentiment analysis composite tasks. By comparing with 
multiple baseline methods, we analyze the advantages of the proposed model in Chinese semantic analysis 
applications. The proposed model, SEGCN, achieves semantic analysis accuracy rates of 92.23% (PTS-1), 83.45% 
(PTS-2), and 90.76% (PTS-3) across all datasets, outperforming other baseline methods. 
 
Index Terms aspect-level sentiment analysis, graph neural network, external knowledge, syntactic dependency, 
Chinese semantic analysis 

I. Introduction 
With the development and widespread adoption of the internet, not only has the way Chinese is used and expressed 
changed, but it has also brought about a series of new vocabulary and linguistic phenomena, presenting new 
challenges for Chinese semantic analysis. First, Chinese is inherently ambiguous, with some words having multiple 
pronunciations or meanings, highlighting the complexity of the language. Second, the internet age has spawned a 
wealth of online slang and internet-specific terminology, such as “躺平” (lying flat), “绝绝子” (absolutely amazing), 
“YYDS” (the best), and “666” (excellent), which are widely used online and have gradually infiltrated everyday 
spoken language [1], [2]. Furthermore, in the internet environment, many words have developed additional 
meanings, such as “fan” (originally referring to a type of food, but now primarily referring to a fan of a celebrity), 
while Chinese dialects have become written in the online environment [3], [4]. These linguistic phenomena have 
made people's expressions more flexible and diverse, while also posing new challenges to the traditional norms 
and usage of Chinese [5], [6]. Additionally, text on social media has diverse characteristics, such as non-structured 
features like emojis and multi-modal characteristics like comments [7], [8]. 

Semantic analysis is one of the core tasks in natural language processing, with the primary goal of extracting 
meaning from text, understanding semantic information in natural language, and further processing and analyzing 
it [9]. Unlike traditional grammar-based analysis methods, semantic analysis focuses on extracting deeper 
meanings from text, with widespread applications including sentiment analysis, question-answering systems, and 
speech recognition [10]-[12]. With the rapid development of natural language processing technology, text semantic 
analysis has evolved from the dictionary rule matching and statistical probability calculation methods of the 20th 
century to the current mainstream intelligent analysis algorithms based on machine learning and deep learning. 
Chen et al. [13] utilized Chinese dependency syntactic analysis and latent semantic analysis to extract core words 
and perform semantic analysis on Chinese sentences, respectively, and developed a new latent semantic analysis 
algorithm capable of analyzing sentences with similar contexts but opposite meanings, thereby mitigating syntactic 
blind spots. Liu et al. [14] used deep learning to perform semantic analysis on COVID-19-related stigmatizing 
content on social media during the early stages of the COVID-19 outbreak, providing assistance to government 
regulation. Zhang et al. [15] shared a semantic analysis platform for Chinese and English in a network environment, 
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namely NLPIR-Parser, which combines a Chinese word segmentation system and features word segmentation, 
part-of-speech tagging, and new word recognition. 

Graph neural networks (GNNs) are deep learning models for processing graph-structured data. They update 
node representations by aggregating neighborhood information, enabling effective capture of topological structures 
and node feature information within graphs [16]. Xu et al. [17] combined dictionary-level and chapter-level 
knowledge from ancient Chinese books with GNN support, using a graph attention mechanism to input knowledge 
into the model, thereby enhancing semantics and optimizing named entity recognition methods. Wang et al. [18] 
designed a symbol-signal integration network based on a multivariate GNN. This network combines an attention 
mechanism to integrate syntactic and semantic features, enhancing the syntactic and semantic analysis of 
sentiment analysis based on aspects, thereby improving the accuracy of sentiment analysis. 

This paper proposes related foundational technologies, including graph convolutional neural networks. To meet 
the experimental requirements of aspect-level sentiment analysis, a dataset tailored for aspect-level sentiment 
analysis composite tasks was established. Thematic data was collected from social media comments on platforms 
like Meituan and Douyin, abnormal texts were processed, duplicate data was removed, and the text data was 
preprocessed before annotation. We analyzed graph-based dependency syntactic analysis methods to optimize 
syntactic dependency part-of-speech analysis and syntactic distance, and to obtain more aspect-level semantic 
information features. We proposed a graph convolutional neural network-based aspect-level text sentiment analysis 
model enhanced with semantic information. We set up a Chinese semantic analysis experimental environment, 
adjusted parameter settings, and analyzed the model's Chinese semantic analysis accuracy and F1 score. 

II. Related technologies 
II. A. Graph Convolutional Neural Networks 
Ⅰ Implementation Process of Graph Convolutional Neural Networks 

Graph convolutional neural networks consist of an input layer, a convolutional layer, an activation function, and 
an output layer. The specific steps are as follows [19], [20]: 

Step 1: Input a dataset in a non-Euclidean space. 
Step 2: In convolutional layer 1, each node performs a convolutional operation with each of its neighboring nodes, 

and the convolutional results are used to update the node. 
Step 3: Pass through an activation function such as ReLU. 
Step 4: Enter convolution layer 2, where each node performs a convolution operation with each of its neighboring 

nodes, and the results of the convolution are used to update the node. 
Step 5: Pass through an activation function such as ReLU again. 
Step 6: Repeat the above steps until the convolutional layer reaches the desired number of layers, obtaining the 

local output function or overall output function of the graph convolutional neural network. 
Ⅱ Convolution Algorithm Principles 
The primary purpose of convolution in graph convolutional neural networks is to extract spatial features from 

topological spaces. There are two methods for feature extraction: one is based on spatial domain convolution, and 
the other is based on frequency domain convolution. 

In a linear time-invariant (LTI) continuous-time system, the process of calculating the convolution integral can be 
described as follows: first, the input signal is decomposed into impulse functions using the sampling theorem. Then, 
the impulse responses of each impulse function in the system are calculated. Finally, these impulse responses are 
summed to obtain the zero-state response of the input signal in the system. Equation (1) represents the convolution 
integral of functions 

1( )f t  and 
1( )g t : 

 
1 1 1 1( )* ( ) ( ) ( )f t g t f g t d  





   (1) 

In LTI discrete systems, discrete signals are primarily digital pulse signals, so it is easy to decompose the input 
signal into unit sequences. The process of calculating the convolution sum can be described as follows: based on 
the known unit sequence response of the system, calculate the response of each sequence in the system. Then 
add the responses of each sequence together to obtain the zero-state response of the input signal. Equation (2) 
represents the convolution sum of two sequences 

1 1( ), ( )f k g k  as: 

 
1 2 1 2

0

( )* ( ) ( ) ( )
k

i

f k g k f i g k i


   (2) 
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Mapping LTI systems to neural networks, 
1 1( ), ( )f t f k  can be regarded as features in neural networks and as 

signals in signal processing. 
1 2( ), ( )g t g k  can be regarded as kernels in the neural network and as filters in signal 

processing. 
GSP graphical signal processing method, which treats graphs as signals and uses signal processing methods 

(Laplace matrix, Fourier transform) to analyze graphs and extract their features. 
Convolution based on the frequency domain primarily utilizes the graph Fourier transform to achieve convolution. 

By deriving the Laplace operator in the frequency domain from the graph's Laplace matrix, and analogizing it to 
convolution in Euclidean structured data in the frequency domain, the formula for graph convolution is derived. The 
Fourier transform can transform a function from the time domain to the frequency domain, where time-domain 
convolution equals frequency-domain multiplication. 

Defining the Fourier transform, the expression is: 

 ( ) ( ) j tF j f t e dt






   (3) 

Fourier transform, expressed by the formula: 

 1
( ) ( )

2
j tf t F j e d 







   (4) 

Time-domain convolution theorem: 

 
2 2 3 3 1 2 1 2( ) ( ), ( ) ( ), ( )* ( ) ( ) ( )f t F j f t F j f t f t F j F j       (5) 

Frequency domain convolution theorem: 

 
1 2 1 2

1
( ) ( ) ( )* ( )

2
f t f t F j F j 


  (6) 

In Equations (3), (4), (5), and (6),   is the angular frequency, and ( )F j  is called the spectral density function 

of ( )f t . ( )f t  is the original function of ( )F j , and je   is the basis function. 

The specific steps for calculating the convolution of 
1( )f t  and 

2 ( )f t  are as follows: 

Step 1: Use formula (4) to transform the Fourier transforms of 
1( )f t  and 

2 ( )f t  into the frequency domain to 

obtain 
1 2( ), ( )F j F j  . 

Step 2: According to the time-domain convolution theorem, convolution in the time domain can be converted to 
multiplication in the frequency domain. From equation (5), we obtain: 

1 2 1 2( )* ( ) ( ) ( ) ( )f t f t F j F j G j    . 

Step 3: Convert ( )G j  to the time domain using the inverse Fourier transform (3) to obtain the convolution result 

( )g j . 

III Graph Convolutional Neural Networks 
In computer science, graphs are mainly used to describe the relationships between data. Based on whether the 

edges in a graph are directed or undirected, graphs can be divided into two categories: undirected graphs and 
directed graphs. 

A simple undirected graph is represented as: { , , }G V E A , where V  denotes the set of vertices in the 

undirected graph, and | |V n  indicates that the graph has n  nodes. E  denotes the set of edges in the 

undirected graph, and A  denotes the adjacency matrix, indicating the connections between nodes in the 
undirected graph. 

The degree matrix ( )D , adjacency matrix ( )A , and Laplacian matrix ( )L  of an undirected graph are generated 

as follows: 
Define D  as an N N  degree matrix, expressed as: 

 ( , )
0
id i j

D i j
otherwise


 


 (7) 

Define A  as the adjacency matrix of N N , expressed as: 
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1,   ~

( , )
0

i jif x x
A i j

otherwise


 


 (8) 

So, the formula for the Laplace matrix is: 

 L D A   (9) 

In GCN, the normalized Laplacian matrix is used more frequently, with the formula being: 

 1/2 1/2sysL D AD   (10) 

Based on the above derivation, the formula for calculating the feature extraction of the first layer of GCN is: 

 (1) ( )oH AXW   (11) 

Among them: 

 1/2 1/2A D AD   (12) 

D  is the degree matrix formula (7), 
0

D DW R   is a weight matrix,   is an activation function, such as ReLu

( ) max(0, )x x  . The feature extraction formula for the multi-layer neural network GCN is: 

 ( 1) ( )( )l l
iH AX W    (13) 

l  is the number of layers in the GCN network. 

 
II. B. Aspect-level sentiment analysis 
Aspect-based Sentiment Analysis (ABSA) aims to predict the sentiment polarity of a given aspect in a sentence. It 
can be further divided into several subtasks: aspect term extraction, aspect category extraction, aspect sentiment 
classification, and aspect category classification. Aspect category extraction identifies implicit aspect categories 
present in a sentence. Aspect category classification determines the sentiment polarity of one or more implicitly 
occurring aspect categories in a sentence. 

The main research directions of ABSA involve the identification of four key elements: aspect terms, aspect 
categories, opinion terms, and sentiment polarity. Given the Chinese sentence “Today's weather is so refreshing,” 
the corresponding sentiment elements are “weather,” “good,” “refreshing,” and “positive,” where “weather” and 
“refreshing” are explicitly expressed in the sentence, and “weather” and “positive” belong to predefined categories. 

 
II. C. Language characteristics 
II. C. 1) Part of speech 
Part-of-speech tagging is a fundamental research area in natural language processing, primarily involving the 
classification of vocabulary. Typically, part-of-speech tagging is applied to words within sentences, with the following 
seven common categories: noun (NN), verb (VB), pronoun (PN), adjective (JJ), adverb (RB), preposition (IN), and 
conjunction (CC). 

In aspect-level sentiment analysis tasks, part-of-speech information is highly beneficial for determining the 
sentiment polarity of aspect words and understanding sentence semantics. Since aspect words are typically nouns 
or noun phrases, while opinion words are usually adjectives or adverbs, part-of-speech tagging can support aspect-
level sentiment analysis tasks. On one hand, incorporating part-of-speech information into word embeddings 
enables models to better extract word feature representations. On the other hand, incorporating part-of-speech 
representations can better distinguish word meanings, as some words have multiple meanings. Specifically, 
different part-of-speech categories can represent different meanings. For example, the word “check” as a noun 
means “bill,” while as a verb it means “to inspect.” Therefore, incorporating part-of-speech representations into word 
representations helps the model better understand sentence semantics. 

 
II. C. 2) Dependency Syntax Analysis 
This paper investigates Chinese semantic computation methods based on joint dependency analysis, taking into 
account the linguistic characteristics of the Chinese language. 

I. Dependency Grammar Theory 
Dependency grammar theory is defined as a syntactic system centered on verbs that constructs dependency (or 

subordination) relationships between words. It is further defined as a structural grammar that represents the deep 
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semantic structure of a sentence as its surface syntactic structure, describing the relationship between dependency 
grammar and semantic structure [21]. 

The four construction rules of dependency grammar constrain the dependency syntactic structure of sentences:   
a. A sentence has only one head word, and all other words are dependent on this word. 
b. Except for the head word of the sentence, all other words in the sentence are directly dependent on a particular 

word. 
c. No word in the sentence can be dependent on two or more words simultaneously. 
d. If word A directly depends on word B or word B directly depends on word A, then word C between A and B 

must directly or indirectly depend on A or B. 
These rules constrain the dependency grammar structure into a tree structure with a single root node, connected, 

and mappable. Researchers typically use words as nodes and directed arcs as dependency relationships between 
two words to draw the dependency structure of a sentence. Dependency grammar describes the relationships 
between words, directly extracting information from the lexicon, and is more closely related to morphological 
analysis. At the same time, dependency syntax expresses the deep semantic structure of a sentence in the form of 
syntactic relationships, describing semantic structure information, and is also more closely related to semantic 
analysis. Therefore, dependency grammar has gradually become a research focus in the field of syntactic analysis 
in recent years. 

II Dependency Analysis Algorithms 
(1) Transition-based Dependency Analysis Algorithms 
The dependency analysis algorithm based on transitions includes a set of analysis states { }C c  and a set of 

transition actions { | : }T t t C C  . Each state c C  represents a (partially constructed) dependency structure 

graph G , and each transition action t T  represents an operation in the process of constructing a dependency 

tree, guiding the dependency analysis from one state to the next. For a given sentence 
0 1 2{ , , ,..., }nx w w w w  (where 

0w  denotes the added root node, typically denoted by “ S ”, as the starting point of the analysis), the transition-

based analysis method ultimately yields a sequence of states 
0, 0 1( , , ...,m mC c c c ). 

0c  represents the initial state of 

the analysis, typically an edge-less graph 
0 { , }G V  . 

mc  represents the final state of the analysis, denoting the 

dependency parse tree of the final sentence { , }m mG V A . For two adjacent states 
1ic 

 and 
ic  in this state 

sequence, they are obtained under the guidance of a transition action 
1i i it c c  , Therefore, this sequence of 

states can be associated with a unique sequence of transition actions 
1T , where 

1 2( , ,..., )mm t t t . 

(2) Chinese integrated dependency analysis algorithm 
The most obvious feature of Chinese compared to English is that it does not have word segmentation tags. 

Therefore, when performing dependency analysis, it is necessary to first perform word segmentation and other 
operations to obtain lexical information. 

However, Chinese word segmentation is a highly challenging problem. Unlike English, which uses 26 letters as 
its basic units, the number of commonly used Chinese characters exceeds 3,000, thereby containing rich semantic 
information. Additionally, Chinese has a high information entropy, and the words that can be formed in different 
contexts are not entirely consistent. Therefore, to achieve high-precision word segmentation, it is necessary to fully 
utilize the syntactic and semantic information of the sentence. 

The set of transformation operations in Chinese integrated dependency analysis is shown in Figure 1. The set of 
transformation operations in Chinese integrated dependency analysis includes four transformation operations: Left-
Reduce, Right-Reduce, Shift/POS, and Append. 
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Left-Reduce

Right-Reduce

Shift

Append

( , , )A j i l

[ , , ]i jw w  [ ]

[ , ]jw  [ ]

( , , )A j i l

[ , , ]i jw w  [ ]

[ , ]jw  [ ]

i js c

[ ] [ , ]jc 

[ , ]is  [ ]

i i js s c  

[ , ]is  ,[ ]jc 

[ , ]is 
 [ ]

 

Figure 1: A collection of moving actions of Chinese integration dependence analysis 

III. Dataset for aspect-level sentiment analysis composite tasks 
This paper uses comment data from multiple social media platforms (including Meituan, Douyin, Xiaohongshu, and 
Weibo) as samples to ensure data diversity, covering different topics, emotional tendencies, and text styles. A 
dataset for aspect-level sentiment analysis experiments, namely PTS, is constructed. PTS is used in the training of 
the model proposed in this paper, improving the model's ability to handle Chinese text and sentences with multiple 
entity words, while also providing a data foundation for subsequent research. 
 
III. A. Collection of comment text data based on social media 
This paper uses Python to collect relevant comment texts from Meituan, Weibo, and Xiaohongshu in 2025 regarding 
“food delivery wars,” “TV show recommendations,” and “travel guides,” forming the PTS-1, PTS-2, and PTS-3 
datasets, respectively. 

First, the required libraries were imported: requests: used to send HTTP requests to retrieve web page content. 
BeautifulSoup: used to parse HTML content. csv: used to write comment data into CSV files. 

Next, the target website URL and request header information are defined: url: the target website URL, which can 
be replaced as needed. headers: request header information, including user agent information, used to simulate a 
browser sending requests. Send HTTP requests to retrieve web page content: use the requests.get() method to 
send HTTP requests, passing in the target website URL and request header information. Store the response content 
in the response object and extract the HTML content into the html_content variable. 

Then, use BeautifulSoup to parse the HTML content: Create a BeautifulSoup object and pass in the HTML content 
and parser type. Use the find_all() method to find the tags and class names containing comment information in the 
HTML, and store the results in the comments variable. 

Finally, create a CSV file and write the comment data to it. 
The data collection environment for this article is shown in Table 1. 

Table 1: Data collection environment 

System environment Windows 10 

Browser Chrome 110.0.5481.178 

Python version 3.7.0 

Development tool Pycharm2024.1.3 

Data marker tool ROST CM 

 
III. B. Data processing for web comment samples 
The raw data obtained needs to undergo data preprocessing, which involves the following steps: 
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Remove HTML tags and CSS styles: For text from web pages or other HTML formats, use the Beautiful Soup 
library in Python to process HTML tags and CSS styles, and use regular expressions to remove excess whitespace 
and special characters, retaining only plain text content. 

Handling abnormal text: To simulate real-world scenarios where a sentence contains multiple entity words, during 
the data preprocessing stage, first merge the original sample files into a single-line format. Split the data by blank 
lines and merge the sentences, with one sentence per line. Then merge multiple sample files into one for easier 
reading. Additionally, the maximum length of text in the takeout review data is set to 256 characters. Since extremely 
long texts are rare, manual removal is sufficient. 

Handling duplicate data: The pandas library in Python is used to handle duplicate data in documents. 
Text preprocessing: Stopword removal is performed on the text data. Removing stopwords reduces the number 

of words in the text data, thereby lowering the dimensionality of the text data and accelerating subsequent 
processing and analysis speeds. 

 
III. C. Data annotation for model composite tasks 
In this paper, based on the requirements of aspect-level sentiment analysis experiments, two subtasks need to be 
completed: entity word recognition and corresponding sentiment classification. Therefore, entity word annotation 
and sentiment annotation must be performed on the text data. 

This paper uses the BIO annotation method to annotate entities in the text. In the BIO annotation scheme, B-ASP 
represents the starting position of the aspect. The ROST CM software is selected for sentiment annotation of the 
text data. 

Next, the annotated dataset is divided into training, validation, and test sets, with an 80%-10%-10% ratio. After 
obtaining the data labels, the data is integrated and randomly shuffled. Originally, there were over 20,000 entries, 
but after processing, there were 18,000 entries in total. Among these, over 9,000 positive entries were labeled as 
1, 6,000 negative entries were labeled as 2, and 3,000 neutral entries were labeled as 0. 

IV. Chinese semantic analysis technology based on graph neural networks 
IV. A. Dependency Analysis Based on Graph Neural Networks 
This paper adopts a graph-based dependency parsing method, which can consider global information for 
dependency analysis decisions. Recent analysis shows that this method outperforms transition-based dependency 
analysis methods in terms of performance. 

Below, we take the sentence 
0 1{ , , , }NP p p p   as an example to introduce the dependency parsing module in 

detail. Following standard practice, the root node identifier “<root>” is added at the beginning of each sentence as 

0p . 

First, the input word sequence is converted into a numerical vector representation, consisting of three parts: pre-
trained word vectors, randomly initialized word vectors, and part-of-speech tag vectors. Let ( ) d

ie p R  denote the 

pre-trained word vector, ( ) d
ie p R   denote the randomly initialized word vector, ( ) posd

ie pos    denotes the part-

of-speech tag vector, where 
posd  is the embedding dimension for part-of-speech tags. These three components 

are updated during training. Finally, the representation of each word is calculated using the following equation, 
where “ ” denotes concatenation. That is: 

 ( ( ) ( )) ( )i i i ix e p e p e pos    (14) 

To capture long-range contextual information in sentences, deep bidirectional LSTM (BiLSTM) is used to learn 
word representations in sentences. The hidden state at time i  (corresponding to the i th word) is represented as 

follows: 

 
1 1( , , , )i i i ih BiLSTM x h h  

 
 (15) 

Among them, 
ih


 and 
ih


 are the hidden representations of the forward and backward LSTM at time i  

respectively.   is the parameter in BiLSTM. 

The calculation is performed using a double affine attention mechanism, as shown in the following equation. Here, 

ijs  represents the score for 
j ip p , with a higher score indicating a greater likelihood of forming 

j ip p . That 

is: 

 ( ) ( )dep dep
i ir MLP h  (16) 
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 ( ) ( )head head
j jr MLP h  (17) 

 dep head head
ij i j js r Ur r u   (18) 

Here, U  denotes the weight matrix, and u  denotes the bias term. 

0 , , , , ( {0,1, , })i i ij iNs s s s j N      , 
ijs  is the score for the dependency relationship 

j ip p , where 
0is  is 

used to measure the probability of the i th word becoming the root ROOT. Subsequently, normalization is performed 

using formula (19) to obtain the probability distribution 
i , which is used to construct the dependency probability 

matrix   from ( {0,1, , )i i N   . Finally, in the final section, cross-entropy is used as the loss function, as shown 

in equation (20): 

 ( )i isoftmax s   (19) 

 
0

1 1

log( )
s kN N

k k
i i

k i

L  
 

   (20) 

The objective function 
0L  represents the cross-entropy loss, 

sN  represents the number of sentence pairs in a 

batch, and 
kN  represents the number of words in the k th P  sentence. k

i  is the unique hot code 

representation of the true core word of the i th word in the k th P  sentence. 

 
IV. B. Semantically Enhanced Graph Neural Networks for Sentiment Analysis at the Text Level 
A sentiment analysis model based on graph neural networks can utilize external information such as syntactic 
dependency information and common-sense knowledge modeled by graph neural networks to enrich the semantic 
meaning of target aspect words. 

Joint modeling of common-sense knowledge and syntactic knowledge can effectively extract various external 
knowledge information, but this model ignores features such as part-of-speech, dependency relationship type, and 
syntactic distance in the syntactic dependency graph that are helpful for enhancing the semantic meaning of aspect 
words. To address this issue, this paper proposes a semantic-enhanced graph convolutional neural network aspect-
level text sentiment analysis model (SEGCN). It constructs a weighted syntactic dependency graph based on 
syntactic dependency relationship types, syntactic distance, and relative position relationships, while also 
constructing an external common-sense knowledge subgraph to extract external knowledge information. By utilizing 
multiple features, it enhances the semantic information of target aspect words. 

 
IV. B. 1) Task Definition 
The aspect-level sentiment analysis task addressed in this paper is defined as follows: For a review text 

1 2 1{ , , , , }n nS w w w w  , the target aspect words contained in the text are represented as 

1 1{ , , , , }Aspect start start end endA w w w w   , where start and end denote the starting and ending indices of the target aspect 

word sequence 
AspectA  in sentence s . where 

AspectA  consists of one or more words. The aspect-level sentiment 

analysis task involves determining the sentiment polarity represented by the aspect sequence 
AspectA  in the text s . 

The sentiment polarity {0,1,2}C  represents “negative,” “neutral,” and “positive” sentiment polarities, respectively. 

 
IV. B. 2) Specific Modules 
(1) Word Embeddings and Bi-GRU Layer 

To extract contextual semantic information from review text and target aspect words, the word embedding vectors 
of text s  and target aspect 

AspectA  are input into the BiGRU layer. The extracted hidden layer states are 

represented as 
1 2( , , , , , )c c c c c

t nH h h h h    and 
1 2( , , , , , )a a a a a

t kH h h h h   . 

(2) Distance Encoding Module 
The syntactic distance vector can be represented as 

1 2( , , , , , )i nD d d d d    , where 
id  is the syntactic 

distance between the context word 
iw  and the target aspect word. The formula for calculating the syntactic 

distance weight of each word in a sentence is as follows: 

 
max

1
2

i
i

d
l

d
   (21) 
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Among them, 
maxd  is the maximum value in the syntactic distance. 

The relative distance between the context word 
iw  and the target aspect word 

ia  also has a different impact 

on the emotional polarity of the target aspect word. Therefore, it is necessary to calculate the relative distance 
weight of the text words as follows: 

 '

1
1 ,1 1

0, 1

1 ,

i

start i
i start

n
l start i start k

i start k
start k i n

n

     


    
      


 (22) 

In this case, start is the starting index of the target aspect word. k  is the length of the target aspect word 

sequence, and n  is the length of the text. i  is the position of the word in the text. Then, a new distance weight 

representation is generated by combining the syntactic distance weight and the relative distance weight: 

 
1 2( , , , )nq q q q   (23) 

 
2

i i
i

l l
q


  (24) 

Finally, introduce 
iq  to update the hidden layer representation 

1 2( , , ..., )c c c c
nH h h h , and the updated sentence 

hidden state 
1 2( , , , , , )d d d d d

t nH h h h h    contains both word position information and semantic information. The 

calculation formula is as follows: 

 d c
i i ih q h  (25) 

(3) Knowledge Embedding Module 
The feature representation of knowledge subgraph nodes is obtained by searching the affective-space file to 

obtain the initial feature representation 
1 2( , , , , , )aff aff aff aff aff

t mH h h h h   , where m  is the number of knowledge 

nodes in the knowledge subgraph. The overall feature representation of the nodes in graph kG  is denoted as kH . 

The set of edges kE  consists of the connection relationships between text word nodes and knowledge nodes, as 

well as the connection relationships between internal knowledge nodes. The adjacency matrix kA  of the 

knowledge graph is defined as follows: 

 
Both i and  are kno

0

wledge node

othe

1, ,

1,

s

, r

k
ij

k
ij

e E

A j

j

i

 
 



 (26) 

(4) Graph Convolutional Neural Network Layer 
The graph convolutional neural network processes weighted syntactic dependency graphs and knowledge 

subgraphs to extract feature representations of target aspects that integrate syntactic dependency types and 
external common-sense information, thereby enhancing the semantic information of target aspect words. 

For the weighted syntactic dependency graph sG , its adjacency matrix wsA  and feature representation dH  are 

used as inputs to the graph convolutional neural network. The node update formula is as follows: 

 ( ) ( ) ( 1) ( )

1

( ( ))
n

s l ws l d l l
i j

j

h A W h b 



    (27) 

Among them, ( )bW  is the weight matrix of the l th layer. ( )bb  is the bias of the l th layer, and n  is the number 

of words in the text. 
For the knowledge subgraph KG , its adjacency matrix KA  and feature representation kH  are used as inputs 

to the graph convolutional neural network. The node update formula is as follows: 

 ( ) ( ) ( 1) ( )

1

( ( ))
n m

k l k l k l l
i j

j

h A W h b






    (28) 
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Among them, m  is the number of knowledge node words. 
(5) Attention layer [22] 
The model in this paper uses the contextual semantic features of target aspect words 

1 2( , , , , , )a a a a a
t kH h h h h    

and the text features output by the graph convolutional neural network 
1 2( , , , , , )s s s s s

t nH h h h h    using an attention 

mechanism, extracting features important for target aspect words from text features that integrate syntactic structure 
information and distance encoding information. The calculation formulas are shown in Equations (29) to (31), and 
the output of the attention layer is denoted as saH . That is: 

 
1

( )
k

s a T
t i i

i

h h


  (29) 

 

1

exp( )

exp( )

i
t n

i
i










 (30) 

 
1

n
sa s

i i
i

H h


  (31) 

(6) Emotion classification layer 
For the feature representation kH  that integrates emotional common sense knowledge, retain the feature 

representation kaH  of target-related words. Concatenate it with the output saH  of the attention mechanism as the 

final feature representation r . Use the Softmax function to perform emotional polarity classification as follows: 

 ( , )k sar Concat H a H  (32) 

 ( )y Softmax wr b   (33) 

The loss function used by the model is the multi-class cross-entropy loss function, where cross-entropy measures 
the difference between the probability distributions of the predicted values and the true values. The model in this 
paper has three label values. Let the probability that the i th sample is predicted to belong to the k th label be 

ikp , 

and 
3

1

1ik
k

p


 , where 3 represents the number of category labels and N  represents the number of samples. Then, 

the loss function of the model is as follows: 

 
3

1 1

1 N

ik ik
i k

L y lbp
N  

    (34) 

V. Semantic analysis experiment based on graph neural networks 
V. A. Experimental setup 
The hardware environment for this experiment was Linux 5.8.0-44-generic x86_6, Anaconda3-5.1.0-Linux-x86_64, 
NVIDIA 2080Ti graphics card, Pytorch deep learning framework, and Python 3.7. 
 
V. A. 1) Parameter Settings 
In the experiment, SEGCN uses Glove word vectors to initialize word embeddings with a dimension of 500. 
Additionally, 50-dimensional part-of-speech (POS) embeddings and 50-dimensional position embeddings are added, 
where position embeddings represent the relative position of each word with respect to the reference word in the 
sentence. Then, the word embeddings, POS embeddings, and position embeddings were concatenated as the input 
word representation. The concatenated word representation was fed into a Bi LSTM network, with the hidden state 
dimension set to 100. All sentences were parsed by a syntactic dependency parser, and the edge embedding 
vectors were initialized to 100 dimensions. 

The model's batch size is set to 32, and the number of training epochs is set to 100. Additionally, a dropout 
function is applied to the hidden states of the Bi LSTM, with a dropout rate of 0.1. The model is trained using an 
Adam optimizer with a learning rate of 0.001 to optimize the parameters. 
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V. A. 2) Baseline Method 
This paper conducts comparative experiments between the SEGCN model and other aspect-level sentiment 
analysis models. The models compared in the experiments are as follows:   

(1) The TD-LSTM model concatenates the target string with word embedding vectors and inputs them into the 
LSTM to represent the semantic relationship between the target and the context. 

(2) The ATAE-LSTM model incorporates aspect information into word embeddings and uses an attention 
mechanism to capture important parts of the sentence. 

(3) The MemNet model utilizes a multi-hop memory network to focus on aspect words in sentences based on 
word and position information. 

(4) ASGCN employs a multi-layer graph convolutional neural network after the LSTM to extract aspect-specific 
basic features, and uses masking and attention mechanisms to obtain aspect-specific high-level features. 

(5) The BERT model directly processes sentence text using the pre-trained BERT model and fine-tunes aspect-
level sentiment classification as a downstream task. 

(6) InterGCN constructs aspect-specific graphs and aspect relationship graphs to extract aspect-specific features 
and aspect interaction features, respectively. 

(7) SenticGCN integrates external sentiment knowledge from SenticNet to construct a graph neural network, 
enhancing the dependency graph of sentences. 

(8) CDT first learns sentence feature representations using a bidirectional long short-term memory network, then 
further enhances the embeddings using a graph convolutional neural network operating on the sentence 
dependency tree. 

(9) BiGCN encodes corpus-level word co-occurrence information to construct a conceptual hierarchy on syntactic 
and lexical graphs for sentiment prediction. 

(10) DGEDT proposes a dual transformer network based on syntactic dependency graphs, combining the word 
representations learned by the transformer with the graph representations of the dependency tree. 

 
V. B. Experimental Results 
The accuracy rates of different models on different datasets are shown in Figure 2. 

The MemNet model achieved the lowest Chinese semantic analysis accuracy rate of 71.42% on the PTS-2 
dataset. The performance of all comparison models on the PTS-2 dataset was poor, possibly because the PTS-2 
dataset is a Chinese text dataset for “TV series recommendations,” which contains TV series characters, 
background settings, and other elements that are more challenging for Chinese semantic analysis methods. 

The proposed SEGCN model achieves semantic analysis accuracy rates of 92.23% on the PTS-1 dataset, 83.45% 
on the PTS-2 dataset, and 90.76% on the PTS-3 dataset. On the PTS-1 dataset, the SEGCN model outperforms 
the best baseline method, DGEDT, by 0.27%. 

 

Figure 2: The accuracy of different models on different data sets 

The F1 scores of different models on different datasets are shown in Figure 3. 
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The F1 scores of the TD-LSTM and ATAE-LSTM models are lower than the average F1 score across all datasets. 
The F1 scores of the SEGCN model are higher than those of the TD-LSTM model by 14.39% (PTS-3), 18.32% 

(PTS-2), and 14.02% (PTS-1), respectively. 

 

Figure 3: F1 values on different data sets 

V. C. Ablation analysis 
To verify the impact of different components on model performance, ablation experiments were conducted, with the 
results shown in Table 2. 

The experimental results indicate that the model's accuracy significantly decreases when positional encoding is 
absent. In the PTS-2 dataset, the F1 score for w/o P is the lowest at 72.58%. This result strongly demonstrates the 
critical role of positional information in model training. Specifically, positional encoding enables the model to 
accurately identify the relative positional relationships between different parts of the input data, which is crucial for 
the model to comprehensively and deeply understand the data content. It helps the model capture the sequential 
and structural information in the text, thereby improving the accuracy of sentiment analysis. 

Additionally, when the attention module is removed, the model's performance on all four datasets decreases to 
varying degrees. When external sentiment knowledge was removed, the model's performance also generally 
declined. This result further validates the significant value of external sentiment knowledge in improving model 
performance. External sentiment knowledge is a quantitative representation of the sentiment orientation of 
sentiment words in different contexts, providing more precise and detailed sentiment information. By introducing 
external sentiment knowledge, the model can more accurately judge the sentiment polarity and intensity of 
sentiment words in the text, which is of great significance for improving the accuracy of sentiment analysis. 

Table 2: Ablation experiment results 

Model 
PTS-1 PTS-2 PTS-3 

Acc F1 Acc F1 Acc F1 

w/o Position coding 0.8212 0.7473 0.7906 0.7258 0.8432 0.7366 

w/o Attention layer 0.8356 0.7514 0.7973 0.7311 0.8455 0.7424 

w/o External emotional knowledge 0.8374 0.7552 0.8084 0.7339 0.8469 0.7467 

SEGCN 0.8528 0.7669 0.8359 0.7445 0.8571 0.7782 

 
V. D. Effect of number of layers 
Since SEGCN can be stacked on top of L  layers, to investigate the impact of the number of layers L  on the final 
performance, the experiment considered different numbers of layers from 1 to 8 and examined the corresponding 
accuracy of SEGCN on three datasets. 

The results of varying the number of SEGCN layers are shown in Figure 4. From the experimental results, it can 
be observed that performance varies with the increase in the number of SEGCN layers. However, SEGCN 
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experiences a performance decline after multiple layers, and the SEGCN model achieves optimal performance 
when L  = 4. At L  = 4, the SEGCN model achieves the highest accuracy of 90.26% and the highest F1 score of 
85.54%. 

For this observation, two aspects were considered: 
(1) When L=1, SEGCN only considers first-order syntactic relationships on the syntactic dependency tree, and 

edge vectors can only aggregate features of first-order adjacent nodes. This is insufficient to obtain multi-hop 
contextual word sentiment features on the syntactic dependency tree and lacks more syntactic information. For 
some complex sentence structures, it is impossible to obtain the corresponding opinion word expressions. 

(2) When the number of layers increases, SEGCN operating on the syntactic dependency tree often leads to 
overly smooth nodes, making it difficult to distinguish between node representations. This also tends to cause 
gradient vanishing issues, thereby impairing model performance. 

 

Figure 4: Model SEGCN layer number changes 

VI. Conclusion 
This paper enhances Chinese text sentiment analysis technology based on graph neural networks by improving 
semantic analysis capabilities. A Chinese dataset tailored for aspect-level sentiment analysis is developed, and 
combined with parameter settings, it is compared with baseline methods to evaluate the experimental performance 
of the graph neural network-based aspect-level text sentiment analysis technology with enhanced semantic 
capabilities. 

In Chinese semantic analysis experiments, the model SEGCN achieved semantic analysis accuracy rates of 
92.23%, 83.45%, and 90.76% across all datasets. These results are 12.03% higher than the MemNet model (PTS-
2) and 0.27% higher than the DGEDT model (PTS-1). Ablation analysis shows that position encoding, attention 
modules, and external sentiment knowledge all have a certain impact on the model's performance. The model 
design in this paper improves traditional graph neural network-based semantic analysis technology. 
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