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Abstract This paper explores the construction of intelligence sharing mechanisms in the context of cross-border 
security law enforcement cooperation. It analyzes intelligence sharing models under different counter-terrorism 
interests and establishes a corresponding counter-terrorism utility model. An improved PBFT consensus algorithm 
is adopted to optimize the consensus process. A blockchain-based intelligence transaction and sharing framework 
is designed to achieve secure and efficient intelligence resource exchange. Through numerical simulation 
experiments, the performance of the proposed scheme and the evolution of intelligence sharing game processes 
are explored. When the number of user attributes in the proposed scheme reaches a maximum of 42, the encryption 
computation time is approximately 183.4 ms, the key generation time is approximately 226.7 ms, and the decryption 
time is approximately 40.9 ms. These time consumptions are within normal ranges and can meet practical 
application requirements. The larger the intelligence sharing cooperative benefit coefficient/penalty coefficient 
between the two parties, the more it promotes national intelligence sharing. 
 
Index Terms transnational law enforcement, intelligence sharing mechanism, improved PBFT consensus algorithm, 
blockchain 

I. Introduction 
The development of economic globalisation has increasingly transformed the world into an interconnected global 
village, where cooperation and exchange between nations have become the norm and the underlying theme of 
international relations [1], [2]. However, as the globalisation process expands and deepens, a series of transnational 
and global issues have also emerged [3]. In recent years, cross-border crime has become increasingly rampant, 
involving serious illegal activities such as drug trafficking, human trafficking, cyber fraud, and money laundering [4], 
[5]. In these cross-border criminal activities, criminals exploit differences in national laws, enforcement procedures, 
and regulatory frameworks to evade prosecution [6]-[8]. For example, drug traffickers may use complex 
transnational transportation routes to transport drugs from production areas to consumption areas, passing through 
multiple countries along the way, exploiting loopholes in border controls and differing enforcement rhythms to 
facilitate the smooth flow of drugs [9]-[11]. The harm caused by non-traditional security issues and the losses they 
incur are growing increasingly severe, posing a significant challenge to criminal justice systems worldwide [12], [13]. 
In this context, the necessity and urgency of cross-border security law enforcement cooperation models become 
particularly evident [14]. 

International law enforcement cooperation refers to cross-border exchanges in law enforcement matters, where 
law enforcement agencies from different countries provide mutual assistance and coordinate efforts in combating 
transnational crimes and maintaining international social order, in accordance with their domestic laws or the 
international conventions they have joined [15]-[18]. However, transnational security law enforcement faces serious 
challenges such as cultural differences and shortages of information resources, which hinder the progress of 
transnational law enforcement [19], [20]. In this context, transnational security law enforcement cooperation based 
on intelligence-sharing mechanisms becomes critically important. By establishing intelligence-sharing mechanisms 
for transnational law enforcement, breaking down national borders, and enabling law enforcement agencies from 
various countries to promptly and comprehensively monitor criminal activities, such mechanisms are key to the 
smooth operation of international law enforcement cooperation [21]-[24]. Without intelligence sharing, countries 
would have to act independently, allowing criminal gangs to exploit information gaps to continue their activities, 
resulting in significantly reduced enforcement effectiveness and an inability to effectively curb the spread of cross-
border crime [25]-[27]. 
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Reference [28] examines the impact of conceptual confusion surrounding the legal language governing the 
relationship between entities and information, and conducts a case study using information sharing for law 
enforcement purposes as an example, proposing a classification system to determine the allocation of 
responsibilities and powers related to information. Reference [29] emphasises the importance of multi-agency 
information sharing and analyses the methods of information sharing in law enforcement operational environments, 
providing empirical, original evidence indicating that law enforcement officers' information sharing practices vary. 
Literature [30] explores the differences in the level of confidentiality between observable police agencies and secret 
services, and analyses the relationship between information sharing, confidentiality, and accountability among 
security agencies, discussing the level of confidentiality in the work of security agencies within a democratic rule-
of-law system. Literature [31] highlights the global prevalence of terrorist organisations and the threats they pose 
to the entire world, noting that the people of Pakistan have long been targets of terrorist attacks. Literature [32] 
indicates that transnational crime poses a severe challenge to international security and emphasises international 
law enforcement cooperation as an important component of international exchange. It introduces the threats faced 
by China and the United States in the field of cybersecurity and suggests that the two countries engage in 
comprehensive cooperation in combating cybercrime. Document [33] studies the theories, concepts, and methods 
of international cooperation among law enforcement agencies in safeguarding economic security, aiming to 
establish a coherent methodology to understand the collaborative efforts of law enforcement entities in protecting 
national economic interests. Document [34] aims to examine the factors driving the mobility of police work by 
studying two different systems, their internal obstacles, and their interactions. Literature [35] identifies the primary 
narrative frameworks defining the nature of European criminal cooperation and constructs a deep judicial integration 
model based on the narrative of a common European region, aiming to promote proper management of criminal 
justice and handling of cross-border personal matters. Literature [36] explores the full range of law enforcement 
means and tools available to the Chinese government in combating transnational crime, aiming to eliminate 
obstacles to its national sustainable development. 

This paper first analyzes different intelligence sharing models in the field of counter-terrorism and quantifies the 
contribution of sharing strategies to national security through a counter-terrorism utility model. It proposes a value 
consensus algorithm based on a trusted execution environment to dynamically assess node value. Combining 
blockchain technology, it establishes a decentralized intelligence trading framework. Multiple simulation 
experiments are designed to validate the advantages of the proposed design in terms of performance overhead, 
node reliability, and fault tolerance. Based on evolutionary game theory, the evolutionary game process of cross-
border intelligence sharing is simulated. Through numerical simulation verification, the influence mechanisms of 
different factors on the selection of intelligence sharing strategies are revealed. 

II. Building intelligence sharing mechanisms for transnational law enforcement 
cooperation 

Cross-border law enforcement cooperation is becoming increasingly important in the context of globalization, and 
intelligence sharing, as its core component, directly affects the effectiveness of such cooperation. This article 
systematically analyzes the establishment and optimization of intelligence sharing mechanisms from both 
theoretical and practical perspectives. 
 
II. A. Design of Counter-Terrorism Intelligence Sharing Mechanisms 
II. A. 1) Different models of counterterrorism intelligence sharing 
Based on differing counter-terrorism interests, countries may directly share counter-terrorism intelligence in 
accordance with domestic law or indirectly exchange intelligence through third-party counter-terrorism organizations 
(such as Interpol or Europol). When the purpose of sharing intelligence is to safeguard national security and 
maximize individual counter-terrorism interests, countries tend to establish bilateral cooperation and directly 
exchange counter-terrorism intelligence. For example, China and Pakistan share counter-terrorism intelligence to 
prevent terrorist activities in Afghanistan from spilling over into their own territories. When the purpose of sharing 
intelligence is driven by stronger common interests, aiming to achieve regional stability and security and maximize 
overall interests, countries tend to share intelligence through international or regional counter-terrorism 
organizations. For example, Thailand and Malaysia strengthen their intelligence exchange and cooperation through 
the Association of Southeast Asian Nations (ASEAN) to prevent international terrorists from infiltrating the Southeast 
Asian region. Therefore, based on different counter-terrorism interests, intelligence-sharing models can be 
summarized into three categories: no intelligence sharing, direct intelligence sharing, and indirect intelligence 
sharing. Different counter-terrorism intelligence-sharing models are illustrated in Figure 1. 
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Figure 1: Different Modes of Counter-Terrorism Intelligence Sharing 

II. A. 2) Counterterrorism Effectiveness Model for Direct Intelligence Sharing 
Due to constraints such as limited counter-terrorism budgets and insufficient intelligence-gathering technologies, 
some countries seek bilateral counter-terrorism cooperation by exchanging intelligence to ensure their own security. 
At this point, while both countries allocate their intelligence resources at level 

kx , they must also determine the 

level of intelligence sharing at level 
ks . For the country receiving counter-terrorism intelligence, this effectively 

grants them access to additional counter-terrorism resources, with the two countries now possessing intelligence 
resources at levels 

1 2x s  and 
2 1x s , respectively. Regarding the setting of the impact of externalities on network 

information security investment decisions, when Country 1 obtains positive (negative) externalities, it possesses 
intelligence resources of 

1 2 2 1 2( )x x s s   , and when Country 2 obtains positive (negative) externalities, it 

possesses intelligence resources of 
2 1 1 2 1( )x x s s   . Thus, when directly sharing counter-terrorism intelligence, 

the probabilities of counter-terrorism success for Country 1 and Country 2 are respectively: 
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       
       

 (1) 

Due to significant differences in data modalities among governments and intelligence agencies, sharing 
intelligence incurs certain costs associated with standardizing sharing protocols, among other factors. Therefore, 
the costs associated with processing and transmitting intelligence are denoted as s

kc . Countries sharing intelligence 
face the risk of information leaks; if intelligence is intentionally leaked, it could render prior counter-terrorism 
deployments by intelligence agencies ineffective; unintentional leaks of intelligence (such as passenger information 
or counter-terrorism operation information) may expose citizens' privacy or allow the receiving country to infer the 
sending country's defense capabilities or key leading technologies. Therefore, the losses from information leaks are 
recorded as 

kd . The benefits to the receiving country from unintentional intelligence leaks are denoted as 
k . 

When both countries share intelligence, they derive a collaborative benefit   from information sharing. Regarding 
the setting of cybersecurity information sharing costs, the sharing costs for Country 1 and Country 2 when sharing 
counter-terrorism intelligence are as follows: 
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    
 (2) 

Among these, s
kc  represents the costs incurred by a country when sharing intelligence, including the costs of 

collecting, transmitting, and processing the shared information; 
kd  represents the losses incurred by a country due 
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to intelligence leaks; 
k  represents the potential benefits that an unintended intelligence leak from one country 

may bring to another country; and   represents the collaborative benefits when both countries share intelligence. 

The above cost function satisfies  1 1 2 1; / 0s s s   ;  2 2
1 1 2 1; / 0s s s    ;  2 2 1 2; / 0s s s   ,  2 2

2 2 1 2; / 0s s s    ; 

 2
1 1 2 1 2; / 0s s s s     ;  2

2 2 1 2 1; / 0s s s s     . 

In summary, when both parties directly share intelligence to achieve their respective national security, the counter-
terrorism utility maximization problems for both parties are: 
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Both countries simultaneously decide on their intelligence resource investment and intelligence sharing ratio. The 
superscript S  indicates the probability of successful counterterrorism and the effectiveness of counterterrorism 
when intelligence is shared directly. In the rest of this paper, the superscript S  is used to indicate the analysis of 
both sides directly sharing intelligence to pursue national security. 

 
II. B. Value Quantity Consensus Algorithm Based on Trusted Execution Environment 
II. B. 1) Overall Algorithm Scheme Process 
This consensus algorithm protects Orderer sorting nodes in a trusted execution environment to complete broadcast 
requests, message processing, configuration transaction messages, and other steps. It uses an improved PBFT 
consensus algorithm to generate node value based on node performance, and calculates the mixed value of nodes 
together with consensus completion status, node performance value, and trusted security environment identification, 
and allocates node identities accordingly. By assigning node identities, it simplifies consensus complexity and 
reduces communication complexity. Key management and remote authentication within the trusted execution 
environment provide a secure, isolated runtime environment for smart contracts, safeguarding algorithm security. 
The consensus process is illustrated in Figure 2. 
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Figure 2: Consensus Process 
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II. B. 2) Node Value Quantity Model 
Definition 1: Performance value calculation is related to the value carried by nodes. By reading the value carried by 
each node, we can see the expectations for nodes with higher value weights. 

The performance value calculation method is defined as follows: Using the Analytic Hierarchy Process (AHP), 
the value is treated as an element within a hierarchical structure to construct a hierarchical model for calculating the 
value of nodes. Specifically, this includes: 

S1: For a specific node, using the AHP, the value criteria are treated as elements within a hierarchical structure 
to construct the node's hierarchical model. This hierarchical model includes, from highest to lowest, the objective 
layer, criteria layer, and sub-criteria layer: 

The first level represents the target layer, which contains the value 
kvalue , where value is a rational number and 

k  is a node; 
The second level represents the standard layer, which contains t  elements, where t  is a positive integer, 9t  ; 
The third level represents the sub-standard layer, which contains p  elements, where p  is a positive integer, 

20p  ; 
S2: Collect node value scores based on the standard layer to obtain the value carried by each element. Compare 

the values carried by the standard layer in pairs, quantify the comparison results as numerical values, and normalize 
them to obtain the weights 

1 2
, ,...,

tB B BW W W , where 
1 2, ,..., tB B B  represent the t  elements in the standard layer; 

S3: Calculate the sub-standard layer data based on the number of failure messages, the number of times it 
became a leader node, and the number of TEE identifiers in the sub-standard layer to obtain the security weight S . 
Compare the elements in the sub-standard layer in pairs, quantify the comparison results as numerical values, and 
normalize them to obtain the weights 

1 2
, ,...,

pS S SW W W , where 
1 2, ,..., pS S S  represent the p  elements in the sub-

standard layer; 
S4: The total weight of each element in the standard layer is 

iV
W : 

 
i i jV S BW w w   (4) 

Among them, 
iS  denotes the i th element in the sub-standard layer, and 

jB  denotes the j th element in the 
standard layer; 

S5: The performance value 
kvalue  of node k is as follows: 

  20

1 i ik ks VN
value value W


   (5) 

Among them, 
iksvalue  represents the performance value generated by node k  after passing through the 

standard layer; 
iS  represents the safety weight of the standard layer, 

iV
W  represents the total weight of each 

element in the standard layer, N  is a built-in constant in the formula, and 
kvalue  is the obtained performance 

value. 
Definition 2: Historical credit value is related to time. By considering the proportions of the current credit value 

and past credit values, it can be shown that the historical credit value is dynamically changing. The expression is: 

 
3

min

( -1)
( ) 1 *60

C i
C i

C

  
    
   

 (6) 

Among them,  C i  represents the historical credit value of the current node i , ( 1)C i   represents the credit 
value in the previous period, and 

minC  represents the minimum credit value allowed by the exchange. If the credit 
value is lower than the minimum credit value, it means that the node will not participate in the supervision and 
leadership node competition behavior. 

Definition 3: The transaction completion rate associated with each node is derived from the proportion of 
successful transactions after the node enters the network, expressed as: 

 
1

60
( )

n

ii
T i f

m 
   (7) 

Among them, m  represents the total number of network transactions, and n  represents the number of 
transactions completed by node i . f  indicates whether the transaction was successful. If the transaction was 
successful, f  is 1; if the transaction failed, f  is -1. Through this positive and negative feedback on the 
completion of transactions, nodes can be better distinguished. 

Definition 4: The formula for calculating the final mixed value of a node is as follows: 
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Among them, x  is the weight of the node's credit value ratio, y  is the weight of the node's own transaction 
success rate, and z  is the weight of the performance value. Let 1x y z   . The mixed value intuitively reflects 
the comprehensive performance of the node. 

 
II. C. Blockchain-based intelligence trading and sharing 
II. C. 1) Access Control and Transaction Requests 
When a node wishes to request intelligence resources, it can query the locally stored data chain backup based on 
intelligence feature descriptions and intelligence pricing information. Once the required intelligence resources are 
identified, the node can send a data request to the provider based on the provider ID and reach a transaction 
consensus. The intelligence owner then submits the transaction request to the shared platform for review and 
approval. Additionally, intelligence service providers can query intelligence requests submitted by requesters. When 
a suitable intelligence request is found, they can communicate with the other party using the provider ID to negotiate 
terms (such as transaction time and price), and after reaching a transaction consensus, the intelligence service 
provider submits the transaction request to the shared platform for review and approval. 
 
II. C. 2) Establishment of the transaction chain 
The shared platform is responsible for collecting and aggregating transaction requests submitted by intelligence 
owners during the consensus cycle, including transaction time, data summaries of transaction intelligence, 
signatures of intelligence providers, signatures of intelligence purchasers, transaction prices, delivery formats, and 
other information. The on-duty node writes each submitted application into the transaction record during the 
consensus cycle, generates a Merkel value, packages it into a block, and stamps it with a timestamp. The block is 
then broadcast within the community, and approved blocks are added to the end of the transaction chain. 

III. Experimentation and analysis of intelligence sharing mechanisms 
III. A. Performance Analysis 
III. A. 1) Program Overhead 
The main computational overhead of this scheme is concentrated in two aspects: the computational overhead of 
the ciphertext policy attribute encryption algorithm and the execution cost of the corresponding smart contract 
algorithm calls. To this end, this paper simulates the scheme process in an actual physical environment and 
calculates the actual overhead of each stage to evaluate the scheme's performance. 

First, regarding the computational overhead of the ciphertext strategy attribute encryption algorithm, an improved 
PBFT consensus algorithm was used to implement data encryption/decryption algorithms and data key generation 
algorithms. Under identical physical conditions, key generation and content confidentiality key encryption/decryption 
operations were performed. The computational overhead was calculated by averaging the results of 200 
experiments with an interval of 7 attributes. The runtime under different attribute counts is shown in Figure 3. As the 
number of attributes increases, the corresponding intelligence data encryption time and intelligence consumer 
attribute key generation time exhibit a linear growth trend. When the number of user attributes in the scheme 
reaches a maximum of 42, the encryption computation time is approximately 183.4 ms, the key generation time is 
approximately 226.7 ms, and the decryption time is approximately 40.9 ms. The time consumption remains within 
a reasonable range and can meet practical application requirements. 

 

Figure 3: Running Time under Different Numbers of Attributes 



Analysis of Transnational Security Enforcement Cooperation Models Based on Intelligence Sharing Mechanisms 

2964 

To simulate the actual costs associated with each stage of the intelligence-sharing scheme, we calculated the 
execution costs of various algorithms within the smart contract. Using Remix-IDE as the development platform, we 
wrote the smart contract using the Solidity smart contract programming language. We deployed and tested the 
contract on the Ropsten blockchain test network via the MeatMask blockchain wallet, obtaining the gas consumption 
of the program and calculating the corresponding actual consumption. The corresponding costs for the relevant 
operations of the smart contract described in the scheme are shown in Table 1 below. This simulation uses the ETH 
price on August 15, 2024, as the standard, where the actual Gas consumption equals the product of the consumed 
Gas quantity and the Gas unit price (Gwei). The results indicate that this scheme has relatively low consumption in 
terms of smart contract execution costs. 

Table 1: Smart Contract Costs 

Smart contract operation Gas consumption/ Gwei ETH consumption/ unit Actual cost/ dollar 

DsharesignContract Create 1295664 0.001186332 4.018633566 

userinfoset 101375 0.000097253 0.297514657 

datainfoset 197863 0.000198366 0.718546638 

DldentityContract Create 1138565 0.001353231 3.093752415 

sethistory 137543 0.000136432 0.501856414 

updatehistory 89936 0.000083986 0.318645243 

getfrequentinfo 127535 0.000153642 0.397515862 

InfoTranContract Create 937521 0.000893754 3.017545674 

setskinfo 146342 0.000201756 0.501864663 

 
III. A. 2) Node Reliability 
Assuming that an attacker mimics the behavior of normal contributors, in order to disguise themselves as ordinary 
users, attackers need to participate in consensus normally. These normal behaviors are used as the cost of 
executing malicious actions, thereby maintaining the node reliability required for the attacker to sustain their attacks. 

Therefore, we conducted simulation experiments to demonstrate the impact of the attacker's attack costs under 
malicious behavior in cycle t. In this section of the experiment, three types of nodes were simulated: normal 
contributing nodes with no malicious behavior, i.e., t=0; cautious malicious nodes that perform a malicious attack 
every 10 rounds and contribute normally the rest of the time to disguise themselves, i.e., t=9; and reckless malicious 
nodes that perform a malicious attack every two rounds and contribute normally the rest of the time, i.e., t=3. In 
terms of initial value selection, after comparing the results of multiple experiments, the reliability change d was set 
to 0.02. At this value, the amplitude of node reliability changes is moderate, avoiding nodes converging too quickly 
toward the peak value of 1 or being prematurely excluded from the consensus set due to excessive changes, which 
aligns with the design expectations and scenario requirements of this paper. Depending on the value of the penalty 
coefficient p, the change trends of the two types of malicious nodes also differ. To better align with real-world data, 
Gaussian noise (m=0, s.d=0.01) was introduced, where m is the mean and s.d is the standard deviation. In the 
experiments, if a node's reliability reaches 0, it no longer changes. The experimental results under different penalty 
coefficients are shown in Figure 4 (a–b). 

In the figure, when p = 10, although the reckless-type malicious nodes quickly drop to 0, the cautious-type 
malicious nodes are not identified, and their reliability reaches 1 only after 95 rounds of consensus. When p is 20, 
the reliability of reckless malicious nodes rapidly drops to 0, and the reliability of cautious malicious nodes also 
reaches 0 after 60 rounds. The experimental results indicate that under high p values, this method can effectively 
identify both types of malicious nodes and cause their reliability to rapidly approach 0. 
III. A. 3) Consensus Fault Tolerance Performance 
To address the issue of low fault tolerance in the PBFT algorithm, where consensus cannot be reached normally 
once the number of Byzantine nodes exceeds 33%, this solution adopts an improved PBFT consensus algorithm. 
Through simulation experiments, it has been proven that the system can effectively exclude malicious nodes from 
the consensus set, thereby enhancing the fault tolerance performance of the improved PBFT consensus. 

Since the message complexity of the improved PBFT consensus increases exponentially with the number of 
nodes, the experiment selected a blockchain network with 200 nodes when setting the number of nodes. The 
number of Byzantine nodes in the consensus scheme is shown in Figure 5. In an initial blockchain system with 200 
nodes, there are 68 marked Byzantine nodes, including 35 cautious malicious nodes and 33 reckless malicious 
nodes. After 20 consensus rounds, only 4 marked Byzantine nodes remain in the consensus set. 

It can be observed that as the number of consensus rounds increases, this scheme gradually excludes Byzantine 
nodes from the consensus set. Moreover, this scheme not only rapidly identifies and excludes unmasked reckless 
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malicious nodes but also, after a certain number of consensus rounds, can identify cautious malicious nodes that 
disguise themselves as normal nodes to perform malicious actions, significantly enhancing the fault tolerance 
performance of the consensus algorithm. 

  

(a) p=10 (b) p=20 

Figure 4: Experimental results under different penalty coefficients 

 

Figure 5: The number of Byzantine nodes in the consensus scheme 

III. B. Evolutionary Game Simulation Analysis 
Since the mechanisms by which certain parameters influence the shared game system are similar, this paper 
employs the method of taking partial derivatives for their analysis, with no errors present. Therefore, the following 
sections will not conduct detailed numerical simulations for each parameter; instead, similar parameter groups will 
be represented by a single example. 

Selecting parameter values where the difference between the shared benefits and speculative benefits of cross-
border cooperation between Country A and Country B is greater than 0, the evolutionary game process of national 
intelligence sharing is shown in Figure 6. Specifically, when the probabilities of countries A and B choosing to share 
intelligence are 0.4 and 0.3, respectively, at t = 0.035, both countries ultimately choose to share intelligence, 
meaning the shared game system stabilizes at (1,1). Next, numerical simulations are conducted on the relevant 
influencing factors in the game system. By altering the numerical values of these factors, the strategy choices of 
the two parties and the overall stability of the system are observed. 

By adjusting the value of the cooperative benefit coefficient and setting multiple comparison values ((70, 70), (100, 
100), (10, 10), and (30, 30)), the evolutionary game process of cooperative benefits is shown in Figure 7, where the 
letter A represents Country A and the letter B represents Country B. When the cooperative payoff of information 
sharing between Country A and Country B increases to (70,70), the slope of the corresponding curve also increases, 
indicating that in the information-sharing game system, the time required for both parties to ultimately choose the 
sharing strategy is shorter, and the system stabilizes more quickly at (1,1). When it increases to (100,100), the slope 
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approaches positive infinity, and both sides choose the sharing strategy more quickly, ultimately stabilizing at (1,1). 
However, when the cooperative payoff of intelligence sharing between Country A and Country B decreases to 
(30,30), the slope of the corresponding curve is less than 0. At this point, both sides choose not to share information 
as the optimal strategy, and the sharing game system ultimately stabilizes at (0,0). When reduced to (10,10), the 
slope approaches negative infinity, indicating that both parties more quickly choose the non-sharing strategy, and 
the system ultimately stabilizes at (0,0). Therefore, the larger the intelligence sharing cooperative benefit coefficient 
between the two parties, the higher the benefits obtained through intelligence sharing, and the more it promotes 
national intelligence sharing. The principle of the penalty coefficient is entirely consistent with that of the cooperative 
coefficient; thus, the larger the penalty coefficient, the more it promotes both parties to choose intelligence sharing. 

 

Figure 6: The Evolutionary Game Process of National Intelligence Sharing 

 

Figure 7: Evolutionary Process of Synergistic Benefits Game 

IV. Conclusion 
This paper addresses the issue of intelligence sharing in cross-border law enforcement by proposing a multi-layered, 
multi-technology integrated solution. 

When the number of user attributes reaches a maximum of 42, the encryption computation time is approximately 
183.4 milliseconds, the key generation time is approximately 226.7 milliseconds, and the decryption time is 
approximately 40.9 milliseconds. These time consumptions are within normal ranges and can meet practical 
application requirements. Under high p-value conditions, the solution can effectively identify two types of malicious 
nodes and rapidly reduce their node reliability to 0. In a blockchain network with 200 nodes, after 20 rounds of 
consensus, only 4 marked Byzantine nodes remain in the consensus set, significantly enhancing the fault tolerance 
performance of the consensus algorithm. 

When the probabilities of countries A and B choosing to share intelligence are 0.4 and 0.3, respectively, and t = 
0.035, both countries A and B ultimately choose to share intelligence, meaning the intelligence-sharing game system 
stabilizes at (1,1). The larger the intelligence-sharing coordination benefit coefficient between the two parties, the 
higher the benefits obtained through intelligence sharing, thereby more effectively promoting national intelligence 
sharing. Similarly, the larger the penalty coefficient, the more it promotes both parties to choose intelligence sharing. 
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