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Abstract Machine translation technology plays an important role in the process of globalization, but traditional 
translation systems often face semantic breaks and lack of coherence when dealing with long texts. Although 
existing neural machine translation models perform well at the sentence level, they are still deficient in cross-
sentence semantic understanding and contextualization. In this study, an optimization model based on the multi-
head self-attention mechanism is constructed to address the problem of lack of semantic coherence in English long 
text translation. Methodologically, a context-dependent semantic coherence computation model is designed by 
adopting an encoder-decoder architecture combined with the multi-head attention mechanism, extracting sentence 
features through convolutional neural networks, and fusing document topic information and semantic matching 
strategies. The replication mechanism and gating mechanism are introduced into the encoder to improve the 
accuracy of vocabulary generation. The results show that after integrating the multi-head attention mechanism, the 
model achieves a BLEU value of 22.0885 on the Chinese-English translation task, which is improved by 0.7885 
compared with the baseline model; in the semantic coherence analysis task, the accuracy rate reaches 60.2485%, 
with an F1 value of 49.4955%; and the Pearson's correlation coefficient with the manual scoring is 0.7498.The 
conclusions show that the multi-head self-attention mechanism can effectively capture global semantic relations in 
long texts, significantly improve translation quality and semantic coherence, and provide a feasible technical path 
for English long text translation. 
 
Index Terms multi-head self-attention mechanism, English long text translation, semantic coherence, encoder-
decoder, convolutional neural network, machine translation 

I. Introduction 
In modern society, English translation plays an increasingly important role, and with the increase of economic and 
cultural ties worldwide, the demand for English translation is growing [1], [2]. English translation not only needs to 
accurately convey meanings and details, but also needs semantic coherence, especially in the translation of long 
texts, which is the key to ensure that the translated text is fully understood [3]-[5]. Semantic coherence refers to the 
connections and consistency between individual sentences or paragraphs in a text [6]. These connections can be 
realized through logical articulation, grammatical consistency and lexical repetition [7]. Semantic coherence in the 
translation of long English texts is one of the key factors in ensuring that readers are able to understand the 
translated text; if the text is incoherent, readers will be confused and may misunderstand it [8]-[10]. 

Semantic coherence can be achieved in several ways: (1) Logical articulation: is the expression of connections 
between different contents or ideas in a text [11]. Logical articulation can be realized through the use of logical 
connectives or phrases, which can help translators organically combine different parts of a text to form a coherent 
whole [12]-[14]. (2) Text consistency: it is the consistency between individual sentences or paragraphs in a text [15]. 
Textual consistency can be achieved by maintaining consistency in subject, tense, person and tone, which can help 
readers understand the text better and reduce the possibility of misunderstanding during reading [16], [17]. (3) 
Lexical repetition: lexical repetition refers to the repeated use of the same words in a text for coherence purposes 
[18]. This can help the translator to combine the parts of the text and reduce the possibility of misunderstanding by 
the reader during the reading process [19], [20]. And with the development of artificial intelligence, the optimization 
of semantic coherence of English long text translation can be achieved based on the model of multi-head self-
attention mechanism, which can solve the problem of information dilution that exists in the traditional machine 
translation, and achieve the semantic coherence of English long text translation [21]-[24]. 

This study proposes to construct a semantic coherence optimization model for English long text translation based 
on multi-head self-attention mechanism. First, the encoder-decoder architecture is designed to incorporate the multi-
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head self-attention mechanism in the encoder, which enhances the model's ability to capture long-distance 
dependencies. Second, a context-dependent semantic matching model is constructed to extract sentence features 
by convolutional neural network and combine them with document topic information for semantic fusion. Then, the 
semantic coherence degree calculation method is designed to analyze text coherence using frequent subgraph 
patterns. Finally, the effectiveness of the model is verified by multiple datasets, and the impact of different 
components on translation quality is analyzed. 

II. Construction of English Long Text Translation Model Based on Multiple Attention 
Mechanisms 

II. A. Encoder-Decoder Model for Synthesizing Chinese-English Code Conversion Texts 
II. A. 1) CS text synthesis based on the encoder-decoder model 
In this section, a recurrent neural network-based encoder-decoder model is used to construct a generator for 
generating bilingual CS text data. This generator implicitly learns the linguistic constraint rules of CS from a limited 
number of CS texts, implicitly learns the linguistic constraint rules within a language from a large number of 
monolingual parallel corpora, and then utilizes the monolingual parallel corpora to generate bilingual CS text data. 

Figure 1 shows the CS text generator based on the encoder-decoder model, which consists of an encoder, a 
decoder, and an attention mechanism. In this paper, we use a bi-directional long short-term memory network 
(BLSTM) as an encoder, a unidirectional long short-term memory network (LSTM) as a decoder, and a content vs. 
location based approach as an attention mechanism. 

I want to eat apples wo xiang chi ping guo

…

wo xiang<sos>

Word probability 
distribution

Parallel sentence pairs Decoding input

Attention 
distribution

Encoder 
hidden state

D
ecoder 

hidden state

Code-switching sentence
I want to eat apples

 

Figure 1: CS text generator based on the encoder-decoder model 

The encoder inputs a sequence of words  1, , LX x x  , L  is the length of the input word sequence, and the 
word sequences include five kinds of Chinese-English parallel sentence pairs, English-Chinese parallel sentence 
pairs, Chinese sentences, English sentences, and Chinese-English CS sentences. The encoder encodes the word 
sequences into a sequence of encoded vectors  1, , LH h h  , as shown in equation (1): 

 ( )H BLSTM X  (1) 

The attention mechanism receives the implicit state 1ts    of the decoder at each output time step t   and 

computes the attention weight vector ,1 ,, ,t t t La a a     and acts on the sequence of coding vectors to produce the 

context vector tc  for the t th output time step as shown in Equation (2): 

 ,
1

L

t t i i
i

c a h


  (2) 

The attention weights learned by the model denote intra-linguistic linguistic constraint rules, and cross-linguistic 
linguistic constraint rules. 

The decoder receives the context vector tc  with the output word of the previous output time step 1t   and 

combines it with the decoder's implicit state 1ts   to obtain the decoder's current implicit state ts , which is then 
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predicted by the output-layer mapping to predict the probability distribution of the word of the current label 
1( ) ( ), , ( )vvoc t voc t voc tP w p w p w    , V  is the size of the output vocabulary list as shown in equation (3): 

 *
1 1( ) ( ,[ , ])v

voc t t t tp w LSTM w s c   (3) 

In the training phase, *
1tw   is the reference label, and in the synthesis phase, *

1tw   is the output of the decoder 
from the previous time step. 

The training objective function of this generator is the cross-entropy between the reference sequence and the 
predicted sequence, as shown in Equation (4): 

 *

1

1
( )

T

voc t
t

Loss p w
T 

    (4) 

The types of reference sequences inputted by the decoder include five kinds: Chinese-English parallel sentence 
pairs, English-Chinese parallel sentence pairs, Chinese sentences, English sentences, and Chinese-English CS 
sentences. 

 
II. A. 2) CS synthesis based on band replication mechanism 
Text generators based on the encoder-decoder model result in synthesized word sequences that are subject to 
fewer intra-linguistic linguistic constraints versus cross-language linguistic constraints, i.e., the synthesized text has 
a low degree of naturalness due to the fact that the decoder does not show to receive timely linguistic knowledge 
guidance during the decoding process. To solve this problem, based on this, this subsection introduces a replication 
mechanism for the encoder-decoder. On top of the CS text generator based on the encoder-decoder model, a gating 
is added which determines whether the next word produced by the generator is predicted from the decoder or 
copied from the input source text of the encoder. The gating probability [0,1]genp   denotes the probability that the 
current word selects the word predicted by the decoder (from the predicted vocabulary list distribution), while 
1 grnp  denotes the probability that the current word selects the copied text word. 

The genp   is jointly computed from the encoder's context vector tc  , the decoder's implicit state ts  , and the 
decoder's current input, i.e., the previous output *

1tw  : 

 *
1( ( ))T T T

gen c t s t w tp W c W s W Emb w     (5) 

where , ,c s wW W W  are trainable parameter matrices, and *
1( )tEmb w   is the embedding vector of the word *

1tw  . 
The final glossary output probability distribution 1( ) [ ( ), , ( )]v

i i tP w p w p w    produced by the decoder is the 
glossary probability distribution ( )vc tP w  with all the inputs of the encoder as v

i ix w . The corresponding attentional 
weight summation is obtained after gated summation: 

 ,
:

( ) ( ) (1 )
i i

v v
t gen vec t gen t i

i x n

p w p p w p a


     (6) 

The training objective function of this generator is the cross-entropy of the reference sequence and the predicted 
sequence, as shown in Equation (7): 

 *

1

1
( )

T

t
t

Loss p w
T 

    (7) 

II. B. Machine Translation Model Based on Encoder-decoder Architecture 
II. B. 1) Encoders based on multiple attention mechanisms 
Text generators based on the encoder-decoder model result in synthesized word sequences that are subject to 
fewer intra-linguistic linguistic constraints versus cross-language linguistic constraints, i.e., the synthesized text has 
a low degree of naturalness due to the fact that the decoder does not show to receive timely linguistic knowledge 
guidance during the decoding process. To solve this problem, based on this, this subsection introduces a replication 
mechanism for the encoder-decoder. On top of the CS text generator based on the encoder-decoder model, a gating 
is added which determines whether the next word produced by the generator is predicted from the decoder or 
copied from the input source text of the encoder. The gating probability [0,1]genp   denotes the probability that the 
current word selects the word predicted by the decoder (from the predicted vocabulary list distribution), while 
1 grnp  denotes the probability that the current word selects the copied text word. 

The genp   is jointly computed from the encoder's context vector tc  , the decoder's implicit state ts  , and the 
decoder's current input, i.e., the previous output *

1tw  : 
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 *
1( ( ))T T T

gen c t s t w tp W c W s W Emb w     (8) 

where , ,c s wW W W  are trainable parameter matrices, and *
1( )tEmb w   is the embedding vector of the word *

1tw  . 
The final glossary output probability distribution 1( ) [ ( ), , ( )]v

i i tP w p w p w    produced by the decoder is the 
glossary probability distribution ( )vc tP w  with all the inputs of the encoder as v

i ix w . The corresponding attentional 
weight summation is obtained after gated summation: 

 ,
:

( ) ( ) (1 )
i i

v v
t gen vec t gen t i

i x n

p w p p w p a


     (9) 

The training objective function of this generator is the cross-entropy between the reference sequence and the 
predicted sequence, as shown in Equation (10): 

 *

1

1
( )

T

t
t

Loss p w
T 

    (10) 

In this section, the encoder based on multi-head attention mechanism is used to capture the key parts of text 
sequence features and spatial features. 

The output results after processing by the embedding layer are used as input data for the encoder. In this section, 
the word sound and word shape embedding representations in the previous section are vectorially connected with 
the word element embedding results, and the obtained results are fed into the fully connected layer and summed 
with the positional embedding and segmentation embedding, and finally the embedded results are obtained through 
the regularization layer and dropout layer. Among them, the role of the regular layer is to add a regular term in the 
loss function, which is used to penalize the weight values that are too large or too small, and prevent overfitting or 
underfitting from occurring. The dropout layer is used to randomly discard a part of the neurons during the training 
process, in order to reduce the dependence between the neurons, and to enhance the network's ability of 
generalization, as well as avoiding the occurrence of overfitting. The specific process is shown in Eqs. (11)-(13): 

 ( )concat pinyin font tokenE FC E E E    (11) 

 total concat pos segE E E E    (12) 

 ( ( ))v totalH Dropout Norm E  (13) 

  denotes the vector concatenation operation (concat), el d
concatE    denotes the result of concatenation of the 

word sound, word shape and word embedding layers, el d
totalE   denotes the final result after summing concatE  

with positional, segmentation embedding, and the output after regular and dropout layers is hl d
vH   , hd  denotes 

the hidden layer dimension, h ed d . 
Due to the complexity and diversity of Chinese variant characters, it brings some challenges to mine the core 

semantic information, while the attention mechanism can accurately capture the key parts of the vectors. In this 
paper, we adopt the multi-head attention mechanism in the model to expand the model's ability to focus on different 
positions, and at the same time give the model multiple representation subspaces. The Query, Key, and Value 
weights corresponding to the i  th head are , ,h q h k h vd d d d d dQ K V

i i iW W W        , the Query matrix hl dQ     is 
calculated and the Key matrix hl dK   , Value matrix hl dV   , and then based on all the ihead   and output 
weights hd do

vW     to get MutiHead, in this paper, we use the number of attention heads as 
8, /q k v hh d d d d h     . Finally, the output result of the encoder is obtained through the residual network, 

regularization layer and feedforward network, in which the residual layer is used to solve the degradation problem 
of deep neural networks and improve the training efficiency by learning the residual function between the input and 
the output, as shown in Eqs. (14)-(16): 

 , ,Q K V
i v i i v i i v iQ H W K H W V H W    (14) 

 
( )

( , , ) ( )
T

i i
i i i i i

k

Q K
head Q K V softmax V

d
  (15) 

 1 2( , , ) ( ... ) o
nMutiHead Q K V head head head W     (16) 
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II. B. 2) English Long Text Encoder 
A text decoder is a network structure used in conjunction with an encoder to transform data for the current word 
based on the encoder's feature representation of the current word and the prediction result of the previous word. 
The text decoder used in this section consists of an input layer, an attention mechanism and a generator. 

The input of the text decoder consists of two parts: the decoder output of the previous time step and the last 
encoder output of the current time step, which is obtained through the residual linkage, regularization layer, 
feedforward layer, and the multi-head attention mechanism as shown in Eqs. (17)-(18): 

 ( ( ( , , )))&enc t
t encH FW Add Norm MultiHead Q K V  (17) 

 1
1 ( ( )& ( , , ))dec t

t decH FW Add Norm MultiHead Q K V
   (18) 

where 1
dec
tH   is the output of the decoder at time step 1t   and enc

tH  denotes the output of the encoder at time 
step t . 

Unlike the encoder, in the decoder's attention mechanism, the input to the Query matrix dec
tQ  at time step t  

comes from the output of the decoder at the previous time step 1t  , 1
dec
tH  . The inputs of the Key matrix dec

tK  and 
the Value matrix dec

tV  The output enc
tH  from the current time step t  of the encoder is shown in Equation (19). 

Through the attention mechanism, we can focus on the connection between the predicted normal characters and 
the corresponding variant characters, mine deeper semantic information, and improve the model's learning ability 
on the Chinese variant character task: 

 1 , ,dec dec Q dec enc K dec enc V
t t t t t t t t tQ H W K H W V H W    (19) 

The generator in this paper consists of a linear layer and a LogSoftmax layer to solve the problem of overflow 
and underflow of Softmax results and improve the efficiency of model training. The generator calculates the lexicon 
probability distribution through the LogSoftmax layer and the linear layer based on the attention score to get the 
corresponding predicted words, as shown in Equation (20): 

 1 1( )vocab tP Logsoftmax W b   (20) 

where vocabP  is the lexicographic probability distribution of the task, t  denotes the attention score at time step t , 
and 1W  and 1b  are learnable parameters. 

 
II. C. English Long Text Translation Based on Multiple Attention Mechanisms 
Transformer is a deep learning model based on an attention mechanism, and like RNNs, Transformer is designed 
to process data whose inputs are sequences, such as in natural language processing for tasks such as translation 
and text summarization. However, Transformer does not process data in the order of the sequence itself. For 
example, if the input data is a natural language sentence, instead of processing it from the beginning of the sentence 
to the end of the sentence, the Transformer recognizes the meaning of each word in the sentence in context, and 
then builds the corresponding attention relation for each word.This working mechanism of the Transformer model 
determines that it can perform more parallelized computations, which achieves the effect of decreasing training time. 
Prior to Transformer, most of the best performing NLP models relied on RNN structures, such as LSTMs and Gated 
Recurrent Units (GRUs), with added attention mechanisms, while the Transformers model, which is based on an 
attention mechanism, has topped several NLP tasks in recent years, which proves the conclusion that --The model 
based on the attention mechanism itself has the performance of RNN with the efficiency of attention. 

Figure 2 shows the structure of the Transformer model, which consists of two parts, the encoder group and the 
decoder group, both of which are stacked by 6 identical encoders and decoders. The design of this 6-layer stacked 
structure was developed by Google's research team after a lot of experiments, and does not have a strict logical 
meaning in itself. 

Each encoder in Transformer consists of two main modules: a self-attention mechanism and a feed-forward neural 
network. The self-attention mechanism inputs the coded vectors from the previous layer of encoder outputs and 
computes the correlation between them to generate the output coded vectors. The feed-forward neural network 
further processes each output coding vector and then passes these output coding vectors as inputs to the next 
encoder as well as to the decoder. The first layer encoder takes the Embedding and positional information of the 
input sequence as its input. 
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Figure 2: Structure of the Transformer model 

Each decoder of Transformer consists of three main modules: a self-attention mechanism, an encoding attention 
mechanism, and a feed-forward neural network. The decoder functions similarly to the encoder, with the difference 
that an encoding attention mechanism is added; the added attention mechanism is to correlate the correspondence 
between the encoded vectors and the decoder output vectors. The first layer decoder takes as its input the 
Embedding and location information of the output sequence, which is the same as the input of the first layer encoder. 
Considering that the decoder can only predict future outputs based on the current and previous outputs, the decoder 
needs to mask part of the output sequences during the training process to prevent the model from “spying” on the 
reference answer in advance. The last decoder is connected to the softmax layer, which is used to generate the 
predicted probability of the output sequence. 

In the Transformer model, not only the sequences are Embedding, but also the positional information of the 
sequences, i.e., the positional encoding (PE) of the sequences, which is used to represent the position of the 
elements in the sequences. This is due to the fact that the Transformer model does not process the sequences in 
the order of the sequences themselves as RNN does, and although it pays attention to the connections between 
the elements by virtue of the attention mechanism, it does not pay attention to the positional information of the 
elements in the sequences, which is quite necessary in natural language processing. Therefore the Transformer 
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model uses the position encoding method of sine and cosine functions in order to preserve the position information 
of the elements in the sequence, which is calculated as follows: 

 2 /
( ,2 ) ( /10000 )i d
pos iPE sin pos  (21) 

 2 /
( ,2 1) ( /10000 )i d
pos iPE cos pos   (22) 

where pos   denotes the position of the element in the sequence, d   denotes the dimension of the positional 
encoding (same as the dimension of the sequence Embedding), PE   denotes the positional encoding of the 
sequence, 2t   denotes the even dimension of the sequence, and 2 1i    denotes the odd dimension of the 
sequence. 

III. Optimizing Semantic Coherence in English Long Text Translation 
III. A. Context-dependent Semantic Matching Models 
III. A. 1) Convolutional neural network based sentence feature extraction 
In this paper, we use convolutional neural networks to learn semantic representations of sentences and candidate 
target phrases. For the input sentence, the words in the sentence are first initialized into pre-trained word vectors 
to obtain the word vector matrix of all the words in the sentence. Second, the convolutional neural network performs 
convolutional operations on all possible windows of the input sentence and pools the features obtained from the 
convolution for selection. After several convolution and pooling operations, the semantic feature representation of 
the sentence is finally obtained. Assuming that the length of the input sentence is n  and k

ix R  is the word vector 
of the i th word in the sentence (with dimension k ), the source language sentence can be viewed as a matrix of 
n k  dimensions. For ease of presentation, the sentence is represented in the form shown in Eq. (23): 

 1: 1 2 ...n nx x x x     (23) 

where    denotes the concatenation operator and :i l jx    denotes connecting the word vectors of the words 
1, ,...i i i jx x x   of word vectors are connected. 

In the first layer (Layer-1), the convolutional layer of the neural network takes as input a matrix of word vectors 
for a source language sentence f   or a candidate phrase e  , and operates a sliding window of length h   to 
perform a convolutional transformation of all possible combinations of neighboring word sequences using a filter 

h kw R  . For each possible combination of word sequences, a new feature representation is generated, which is 
finally combined into a feature vector of the sentence or phrase. This is shown in equation (24): 

 (1, ) (1, ) (1, )
: 1( )j j j

i i i hc f w x b     (24) 

where (1, )j
ic  denotes the feature generated by the word window : 1i i hx    after convolution of the j th filter, (1, )lw  

denotes the parameter matrix corresponding to the j th filter in the first layer, (1, )Jb R  denotes the bias term, and 
f  denotes the nonlinear activation function, and in this paper we use the ReLu function as the activation function. 

In order to distinguish phrases and their contexts, this paper adds a new dimension after the word vector to 
distinguish whether the current word is within the scope of a phrase pair, where 1 means the word is inside the 
phrase pair and 0 means other context words. The purpose of adding this dimension is to allow the model to take 
more information about the current phrase into account during the training process. Since the lengths of sentences 
and target candidate phrases are variable, in this paper, we fill in the beginning of sentences or target candidate 
phrases to reach the maximum length of sentences in the training set, so as to ensure that the input sequences are 
of the same length. 

In the second layer (Layer-2), its input is the feature vector obtained from the convolution of the previous layer. 
In this paper, all adjacent non-overlapping convolutional features are pooled and selected. The details are shown 
in Eq. (25): 

 (2, ) (1, ) (1, )
2 2 1max{ , }j j j

i i ic c c   (25) 

After several convolution and pooling operations, this paper obtains the feature vectors of source language 
sentences and target phrases. 

 
III. A. 2) Sentence Semantics and Text Theme Fusion Strategies 
In this paper, we use the Wikipedia document set to train the LDA topic model and use the generated model to 
reason about the topic vectors of all documents in the translation system training set. The topic vectors of the 
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documents represent the probability that a document belongs to each topic. This topic information will be used to 
assist translation decisions. 

In addition, the topic information of a document can be represented by the words in the document, so this paper 
also obtains the vector representation of a document by weighting the word vectors of different words in the 
document. In this paper, we use the TF-IDF metric to measure the importance of words in a document, where the 
IDF value indicates how many documents the current word has appeared in the training set, and the TF value 
indicates the frequency of the word in the current document. Assuming that the document is represented as an 
ordered combination of all word word vectors, i.e., 1 2{ , ... }nd d d d . Then the vector representation of the document 
is shown in Equation (26): 

 1

1

( )

( )

n

i
i

n

i

w i d
V

w i









 (26) 

where V  denotes the semantic vector of the document, ( )w   denotes the weight of the i th word in the document, 
in this paper, we use the TF-IDF metrics as the weight function, and id  denotes the word vector of the i th word 
in the document. 

 
III. A. 3) Semantic Coherence Calculation 
Based on the above method, this paper obtains the fused semantic representations of source language phrases 
and context information as well as the semantic representations of target candidate phrases. On this basis, this 
paper uses a multilayer perceptron to calculate their semantic matching degree, which indicates the probability of a 
source language phrase being translated into a target candidate phrase in a given context. 

In this paper, the semantic feature vectors of the source and target languages are spliced together as inputs to 
the multilayer perceptron. The first layer of the multilayer perceptron first nonlinearly varies the spliced feature 
vectors to get the hidden layer state. The details are shown in Equation (27): 

 ˆ ˆ( [ : ] )
ji

c c e cf
h w s t b    (27) 

where 
tf

s   denotes the fused semantic features of the source language phrase in context, and je
t   denotes the 

semantic features of the target candidate phrase. 
The second layer of the multilayer perceptron takes the above hidden layer as input, and gets a new hidden layer 

after a nonlinear transformation and then undergoes a linear transformation to reach the output layer. The output 
layer has only one node, which represents the semantic matching score of the phrase pair in the context. The 
specific formula is shown in (28) below: 

 2 1 1 2( , ) [ ( )]l l c l lscore s t W w h b b     (28) 

III. A. 4) Semantic Coherence Model Training Strategy 
The training goal of the context-dependent phrase-pair semantic matching model proposed in this paper is to assign 
high matching scores to correct translation results of source language phrases in specified sentence and document 
contexts, and low matching scores to incorrect translation results. Based on the idea of pairwise ranking learning, 
this paper transforms the problem of ranking all candidate translations of a source language phrase into a problem 
of ranking two-two candidate translation pairs. First, this paper constructs two pairs of comparable candidate 
translations, i.e., the correct translation result of a source language phrase and an incorrect target translation result 
in a specified context. Second, the above context-dependent phrase pair semantic matching model is adopted to 
obtain the semantic features of the source language phrase fused with the context and the target candidate phrase, 
which are used to construct the ternary ( , , )s t t  , where s  denotes the semantic feature vector of the source 
language phrase fused with the context, t  the feature vector of the correct target translation, and t  the feature 
vector of the incorrect target translation. Finally, the pairwise ranking loss function is adopted as the loss function of 
the model, as shown in Equation (29): 

 {0,1 ( , ) ( , )}L max score s t score s t
     (29) 

where ( , )score s t  denotes the semantic matching degree of the defined phrase pairs according to Eq. (29).   
deotes all the parameters of the neural network model, including the sentence and target phrase convolutional 
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network (two-layer convolution, two-layer pooling), the shallow network for fusion of sentence and document 
information, and the parameters of the multilayer perceptron. 

In this paper, we use the above methods to construct the training dataset and minimize the target loss function 
training to obtain the context-dependent phrase pair semantic matching model. The loss function on the full training 
set is defined as shown in Equation (30): 

 
( , , )

( , , )g
s t t C

L L s t t
 

 



   (30) 

In this paper, we use mini-batch gradient descent algorithm to optimize the parameters of the neural network 
model. When translating and decoding, the trained model and the context in which the phrase is located are used 
to determine the semantic match between the current phrase and all target candidate phrases, and are incorporated 
into the machine translation system as new features. 

 
III. B. Optimized Evaluation of Semantic Coherence in English Long Text Translation 
Coherence quality analysis is the most important part of all coherence analysis models, and each coherence 
analysis model has a different approach. Most of the traditional sentence graph models use the feature of average 
outgoingness to measure the quality of coherence of English texts, but such an approach its experimental results 
are not good enough to accurately capture the coherence information of English texts. An important assumption of 
this paper is that a coherent text follows a specific logic and coherence pattern between words or sentences within 
its discourse, based on which we adopt the method of frequent subgraphs to capture the coherence pattern in the 
text, which is an important foundation of the model of this paper for the analysis of the semantic coherence quality 
of English texts. In the sentence semantic graph, the coherence information of the text is reflected as the connection 
patterns between sentence nodes and the distributional differences of the weight values of sentence edges, so this 
paper analyzes the coherence quality of English texts by capturing the frequency of these frequent subgraph 
patterns and the semantic values of the subgraphs. Considering the different overall distributions of frequent 
subgraph frequencies, graph signatures and subgraph semantic values in coherent and incoherent English texts, 
the coherence quality of English texts is analyzed by mining the frequently occurring three-node and four-node 
subgraph patterns in the semantic graph of sentences and treating their probabilities, subgraph semantic values, 
etc. as coherent features. The specific analysis process is as follows: 

(1) Use a large number of English texts with good coherence as a training set to train, and count the frequency 
of all three-node and four-node subgraphs appearing in the training set; 

(2) Set the frequency coefficients to filter out the frequent subgraph patterns that appear frequently in the training 
set, and calculate the occurrence probability of each frequent subgraph pattern to generate our frequentist subgraph 
model, which is used as the frequent subgraph distribution feature of English texts with good coherence quality; 

(3) Extract the graph signature and subgraph semantic value information in the sentence semantic graph 
representation of the English text to be analyzed: 

(4) Combining the frequent subgraph related calculation method of LeoBorn et al. to design an algorithm to 
analyze the English text's coherence quality by using the distributional features of frequent subgraphs in the 
sentence semantic graph. Its calculation formula is as follows: 

 1 1

( ) ( , ) ( )

( )
( )

n m

j i i i
j i

P sg sg G SemanticValue sg

CoherenceScore G
SentenceNum G

 
 

 

 

 (31) 

In Equation (31), m  is the total number of frequent subgraphs of k  nodes in the English text to be analyzed, 
n   is the number of values of k  , which has the value of 2 in this paper, ( )iP sg   is the frequency of frequent 
subgraphs for the i  th k   node in the English text to be analyzed, ( , )isg G   is the number of times that the 
frequent subgraph isg  in the graph G , ( )iSemanticValue sg  is the subgraph semantic value of frequent subgraphs, 
and ( )SemtenceNum G   is the number of nodes of the semantic graph of a sentence. Finally, in this paper, the 
maximum-minimum normalization algorithm is used to normalize the coherence quality score ( )CoherenceScore G  
of English texts between 0 and 1. 

The final value obtained is used to represent the coherence quality of English text. The closer the value is to 1, 
the better the quality of coherence of the English text. 
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IV. Coherence Analysis of English Long Text Translation with Multi-attention 
Mechanisms 

IV. A. Model parameterization 
IV. A. 1) Experimental results 
In this paper, the model uses Moses model to label the data and remove more than 80 labeled sentences from the 
source language side and the target language side with the following steps: 

(1) Data screening. Firstly, the sentences with more than 80 markers are deleted, after that the data with garbled 
codes are deleted, and finally the sentences with errors are deleted by manual screening. 

(2) Segmentation. For Chinese this paper uses jieba participle. 
The model of this paper is optimized based on the Transformer model, using PyTorch 0. 4. 1 in the Fairseq toolkit 

to implement the model of this paper. The BLEU value is utilized as the evaluation metric of this paper through the 
method of small lattice network search. In this paper, Bi-Dependency and Pascal are chosen as the benchmark 
models for comparison experiments, and the experiments are based on the Transformer architecture, respectively. 
All experiments are performed on a single NVIDIA RTX 2070 SUPER GPU. In this paper, 3800 warm-up 
optimizations were performed according to the learning schedule using the hyperparameter settings in the latest 
Tensor2Tensor. A label smoothing rate of 0.15 is used during training. a beam search with beam size 5 and length 
penalty of 0.5 is used for validation. The learning rate used in this paper is 0.0008, batch size max-tokens is 4093 
and dropout is 0.25. In the experiments on compressed data, 7800 warm-up optimizations are used in this paper. 

In this paper, experiments were conducted on Newsdev2023 dataset, CWMT dataset, IWSLT14 dataset, and 
compressed Chinese-Thai and Chinese-English datasets, respectively, and Table 1 shows the BLEU results of 
translations with different models. 

Transformer's BLEU values for Chinese-English and English-Chinese translations on CWMT are higher than 
Newsdev2023 by 6.7199 and 14.9453 respectively, and higher than IWSLT14 by 16.834 and 25.0154.This paper 
has improved the translation quality of English long text by incorporating the multi-head attention mechanism, which 
indicates that the proposed multi-head self-attention mechanism is effective. 

Table 1: BLEU results of different model translations 

Model 

Newsdev2023 CWMT IWSLT14 

Chinese- 

English 

English- 

Chinese 

Chinese- 

English 

English- 

Chinese 

Chinese- 

English 

English- 

Chinese 

Bi-Dependency 21.2966 19.1655 28.3485 34.3488 10.9845 9.3485 

Pascal 21.6333 19.5636 28.6366 34.6348 11.3448 9.6152 

Transformer 22.0789 19.8486 28.7988 34.7939 11.9648 9.7785 

 
IV. A. 2) The effect of multiple attention on translation results 
In order to verify the reasonableness of the Chinese-English neural machine translation method based on multi-
head self-attention mechanism proposed in this paper, experiments on the influence of two-way dependency 
information, fusion of two-way dependency information in different layers of multi-head attention mechanism and 
Gaussian weight function on the translation effect of the model were designed respectively. 

In order to verify the effectiveness of fusing source language bidirectional dependency information, this paper 
conducts experiments on the effectiveness of fusing bidirectional dependency information on the Chinese-English 
dataset. The definition of “Transformer+ Multiple-focus” represents the model framework of this paper, and the 
definition of “Pascal” represents the fusion of only the information of the direction from the child word to the parent 
word in the dependency knowledge. Define “Bi-Dependency” to mean that only the information from the parent word 
to the child word direction in the dependent knowledge is fused. Table 2 shows the comparison of the BLEU values 
of the fused single/multiple-attention mechanism. 

Transformer+Multiple-focus achieves the best results: on the Chinese-English translation task, the BLEU 
improves by 0.7885 and 0.7 compared to the Bi-Dependency model, and by 0.4488 and 0.799 compared to the 
Pascal model.On the compressed dataset, the BLEU value of Transformer+Multiple-focus also has a large 
improvement. The Transformer+Multiple-focus translation model proposed in this paper achieves the highest BLEU 
value and the best translation effect on the bi-directional Chinese-English translation task, indicating that the 
integration of the multiple-attention mechanism at the source language side is of greater help to the neural machine 
translation task. 
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Table 2: Contrast of the bleu value of a fusion single/long attention mechanism 

Model 
Chinese- 

English 

English- 

Chinese 

Chinese- 

Englishsmall 

English- 

Chinesesmall 

Bi-Dependency 21.2969 19.1486 10.9566 9.3488 

Pascal 21.6366 19.0496 10.9966 9.6363 

Transformer+Multiple-focus 22.0854 19.8486 11.9625 9.7856 

Transformer 21.6788 19.5699 11.3165 9.6548 

 
IV. A. 3) Fusion in different attention layers 
In this paper, we also conducted self-attention mechanism layer experiments on the Chinese-English dataset at 
different layers of the multi-head attention mechanism to verify at which layer fusing semantic knowledge is more 
effective, and the experimental results are shown in Table 3. 

The Transformer model achieved the best results in fusing semantic knowledge at the first layer of the multi-head 
attention mechanism, with BLEU values of 22.0885, 19.8215, 11.9655, and 9.7485, respectively.Compared with the 
lowest results, on the Chinese-English translation task, the BLEU values were improved by 0.6187 and 0.9679, 
respectively. After compressing the data, 1.4799 and 0.37 BLEU values were boosted, respectively. The 
performance of the model on the test set decreases significantly when the Transformer is placed in a lower layer. 
Such a result confirms that more attention in the first layer is focused only on the word itself that needs to be 
translated, rather than its context. It can be inferred that incorporating syntactic correlation in the first layer can be 
effective in learning word representations, thus further improving the translation accuracy of the Transformer model. 

Table 3: Contrast of BLEU values in different attention-level 

Attention layer 
Chinese- 

English 

English- 

Chinese 

Chinese- 

Englishsmall 

English- 

Chinesesmall 

1 22.0885 19.8215 11.9655 9.7485 

2 21.4698 18.9358 11.1248 9.6485 

3 21.7496 19.4088 10.4856 9.6748 

4 21.4936 18.8536 10.9466 9.3785 

5 21.6336 18.9485 11.1648 9.7299 

6 21.4899 18.9699 10.9485 9.7293 

 

IV. B. Semantic Coherence Analysis Experiments and Analysis 
IV. B. 1) Experimental data sets 
In the experiment of analyzing text semantic coherence three corpora are used to solve different sub-tasks, which 
are GCDC dataset, CLEC corpus and TECCL corpus, and the fusion model of Transformer with the multi-head self-
attention mechanism is trained and tested on the corpora. The components of the discourse parse tree include 
structural segments, nuclear tags and relational markers, in order to observe the effects of these three components 
on the semantic coherence of the text, an ablation experiment is conducted by removing structural segments, 
nuclear tags and relational markers from the Transformer model in the sub-datasets of the GCDC corpus, Yahoo, 
Clinton, Enron, and Yelp, respectively. . 

 
IV. B. 2) Ablation experiments 
The accuracy of the specific model is shown in Table 4 and the F1 value evaluation metrics are shown in Table 5 
(all data in the table are in the form of percentage (%)). 

From the experimental results, it is concluded that the Transformer model achieves an average accuracy of 
56.8495% and an average F1 value of 45.5499% in each domain dataset. The overall model embedding the basic 
discourse units into the discourse parse tree compared to only the topology of the discourse relation tree (t) into the 
neural network model, the kernel sex labeling model (ns) with the addition of the discourse parse tree, and the 
relational labeling model (re) with the addition of the discourse parse tree in the categorization task compared to 
the categorization task the accuracy was improved by 9.387 percentage points, 7.8037 percentage points, 
respectively, 4.5 percentage points. Therefore, all components of the discourse parse tree are crucial for semantic 
coherence analysis, and the more significant influences are nuclear labels and discourse relations, the removal of 
which leads to a decrease in model performance. Since the Transformer model can only analyze semantic 
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information from the bottom-up, and the part-of-speech parser also parses from the sentence perspective, the model 
is a local coherence study in the overall view. Therefore, a hierarchical network model based on the multi-attention 
mechanism is integrated on the basis of the Transformer model, and the model better captures the global semantic 
coherence at the three levels of sentence paragraph and paragraph document from the perspective of the coherent 
structure of the paragraph or the overall text, so that the accuracy of the semantic coherence categorization task is 
improved to 60.2485%, and the F1 value reaches 49.4955%. 

Table 4: The accuracy rate of ablation experiments conducted by the semantic coherence model 

Model t ns re e Yahoo Clinton Enron Yelp Overall 

Transformer √    38.1845 53.6158 44.2485 53.7485 47.4625 

Transformer √ √   44.8486 54.5696 44.7498 52.1635 49.0458 

Transformer √ √ √  48.3485 56.3158 47.4985 56.9552 52.3495 

Transformer √ √ √ √ 53.9663 59.8969 54.8485 58.6155 56.8495 

Multiple-focus     58.9345 62.1325 56.9315 58.5366 59.1348 

Transformer+Multiple-focus √   √ 60.2486 60.9486 56.4985 57.5152 58.8985 

Transformer+Multiple-focus √ √  √ 61.2978 61.8415 56.4936 58.7985 59.5485 

Transformer+Multiple-focus √ √ √ √ 61.7899 63.7984 56.5596 58.9694 60.2485 

Table 5: The F1 value of the ablation experiment conducted by the semantic coherence model 

Model t ns re e Yahoo Clinton Enron Yelp Overall 

Transformer √    29.7485 39.2489 34.0495 41.7966 36.2455 

Transformer √ √   34.1648 40.7498 35.5352 41.4955 37.9485 

Transformer √ √ √  42.9485 42.5988 35.9542 43.5486 41.2488 

Transformer √ √ √ √ 46.5299 44.7498 44.9485 45.8496 45.5499 

Multiple-focus     46.6252 54.6486 45.6489 46.0866 48.2485 

Transformer+Multiple-focus √   √ 46.8485 52.5969 44.9485 45.8595 47.5485 

Transformer+Multiple-focus √ √  √ 49.6486 53.0469 45.4985 46.2496 48.6315 

Transformer+Multiple-focus √ √ √ √ 51.8998 54.5645 45.1348 46.0495 49.4955 

 
IV. B. 3) Accuracy 
The accuracies of the four models for classifying text semantic coherence on the four sub-datasets are shown in 
Fig. 3. The EGridConv model is to represent the English text in the form of a solid grid and analyze the local 
coherence of the text through a convolutional neural network, and the CohLSTM model is to use recurrent neural 
networks to capture the textual contextual information, and to cumulate the states of the two most similar recurrent 
networks in the sentence to obtain the semantic The CohLSTM model uses recurrent neural network to capture the 
textual contextual information, and accumulates the two most similar recurrent network states in the sentence to 
get the semantic information, and then encodes the change pattern of the semantic information by convolutional 
neural network to represent the coherence of the text. 

It can be seen that no model consistently gives the best results in each dataset, as the data from the four domains 
have different contexts involved, leading to differences in the criteria learned by the models when it comes to 
semantic understanding. Nevertheless, the fusion model proposed in this paper has the best average performance 
in the classification task, with an improvement of 8.029 percentage points compared to the EGridConv model, 
6.1759 percentage points compared to the CohLSTM model, and 0.9661 percentage points compared to the Avg-
XLNet model. For the labels low coherence, average coherence and high coherence, the lower performance of all 
models in the three classifications is due to the fact that the models have difficulty in correctly classifying the text 
with average coherence, which is caused by the fact that the number of training samples in this category is difficult 
to learn its features with a small number of training samples. 
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Figure 3: Text semantic coherence classification accuracy 

IV. B. 4) Semantic coherence modeling vs. manual scoring 
By comparing the machine scoring with the manual scoring, on the one hand, we can analyze the effect of the 
wrong words in the translated text on the semantic coherence of the text, and verify that this paper's model corrects 
the words before understanding the semantic coherence is scientific, and on the other hand, we test the feasibility 
of the present model in the practical application. The 700 translated texts were selected from the CLEC corpus 
containing wrong word annotations for experiments, and the Pearson's correlation coefficient of the unsemantic 
coherence model was 0.6848, and the Pearson's correlation coefficient of the semantic coherence model with the 
addition of word correction algorithms was 0.7498, and the difference of the Pearson's correlation coefficients was 
about 0.065 when comparing the addition of semantic coherence model and the human teacher scoring, the 
difference of Pearson's correlation coefficients was about 0.065 for texts with the inclusion of wrong words in the 
model. The occurrence of erroneous words in the text has a greater impact on the semantic coherence of the text, 
and the inclusion of word spelling errors as a reference factor in the analysis model helps to assess the coherence 
of the text more accurately. For the feasibility analysis of the model, 700 compositions from the TECCL corpus were 
selected for model testing, and the scatter plot of the experimental comparison between the automatic model scoring 
and manual scoring by teachers is shown in Figure 4. 

The overall level of machine scoring is higher than that of manual scoring, and there is a large gap between the 
model and the teacher's scoring results in this paper, but the overall view is relatively similar, after all, semantic 
coherence is an abstract concept, and the manual correction of translated compositions will be affected by a lot of 
subjective factors, such as different degrees of coherence requirements, too many incorrect words that make it 
difficult for the teacher to understand the content of the author's expression, etc. The second corpus is also a manual 
process, which is not a simple process. Secondly, the corpus is also manually labeled, and the existence of a small 
number of large discrepancies in the marking points is acceptable. The average absolute error between the scores 
of the English compositions scored by the model and the scores of the compositions corrected by the teachers is 
3.1685, the error value is less than 4, and there is not much difference between the results of manual correction 
and the results of machine correction, and the Pearson correlation coefficient of the scores of the two scores is 
0.6848, the value of which ranges from 0.6 to 0.8 and belongs to the strong correlation. In summary, this model has 
good practical application value. 
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Figure 4: The comparison of the scores 

V. Conclusion 
The semantic coherence optimization model for English long text translation based on multi-head self-attention 
mechanism has achieved remarkable results in multiple dimensions. The experimental results show that the model 
incorporating the multi-head attention mechanism achieves a BLEU value of 28.7988 for Chinese-English 
translation on the CWMT dataset, which is significantly improved compared with the traditional Transformer model. 
In the semantic coherence analysis task, the accuracy of the full model is 60.2485%, which is 9.387 percentage 
points higher than the base model using only the topology, proving the importance of the components of the 
discourse parse tree. The ablation experiments further validate the contribution of each component of the model, 
where the removal of nuclear and relational labels leads to a significant performance degradation. The multi-head 
attention mechanism works best when fusing semantic knowledge in the first layer, with a BLEU value of 22.0885, 
validating the effectiveness of early semantic fusion. The correlation analysis between the model and manual 
scoring shows that the Pearson correlation coefficient is 0.6848 and the average absolute error is 3.1685, indicating 
that the model has good practical value. The method of capturing text coherence features through frequent 
subgraph patterns effectively improves the overall quality of long text translation and provides new ideas and 
methods for the development of neural machine translation technology. The model not only makes a breakthrough 
in translation accuracy, but also shows superior performance in semantic coherence maintenance, which lays a 
solid foundation for practical application. 
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