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Abstract The rapid development of artificial intelligence technology has brought new opportunities to the field of 
education. Aiming at the problems of single scene and poor learning experience in traditional spoken English 
teaching, this paper proposes an immersive spoken English teaching scene design method based on cross-modal 
generative adversarial network. By constructing the SPSceneGAN model, the encoder-decoder structure and 
spectral regularization technique are used to realize the automatic generation of high-quality teaching scenes. The 
model is trained on the spoken English teaching dataset, which contains 7000 training images and 3000 test images. 
Experimental results show that the SPSceneGAN model significantly outperforms traditional methods in scene 
generation quality, with a PSNR value of 38.729dB, an SSIM value of 0.984, and an image processing speed of 
only 3.921s at a batch size of 500. User testing verifies the effectiveness of the system, with 500 college and 
university students taking part in a 50-minute comparative experiment, which shows that Students using the 
immersive teaching scenarios produced significant gains in all three dimensions of prior knowledge level, intrinsic 
motivation and self-efficacy. The method can effectively enhance students' oral English learning experience and 
provide a new technological path for intelligent language teaching. 
 
Index Terms Cross-modal generative adversarial networks, immersive teaching scenarios, spoken English 
teaching, learning experience enhancement, spectral regularization, SPSceneGAN 

I. Introduction 
The purpose of teaching English as a foreign language is to develop students' oral expression so that they can 
converse appropriately about general situations in daily life and can carry out conversations or make coherent 
speeches about materials they have heard or familiar topics [1], [2]. Oral expression must conform to the norms of 
grammar, phonetics, intonation and the use of appropriate vocabulary [3]. However, most students have the problem 
of poor listening and speaking skills in English, especially listening, and the important reason is that current teaching 
cannot provide a practical environment for oral communication and practice [4]-[6]. Therefore, in order to cope with 
this problem and improve students' English speaking ability, immersive English speaking teaching scenarios 
constructed by cross-modal generative adversarial networks supported by artificial intelligence are gradually applied 
[7]-[9]. 

Immersion teaching method emphasizes that students learn in an authentic and contextualized environment, and 
through wholehearted participation and experience, students' learning interest and effect are improved [10], [11]. 
Immersion pedagogy is a student-centered, contextualized, and experiential teaching method [12], [13]. Its core 
idea is to place students in an authentic and vivid teaching environment, so that students can learn, experience and 
explore in the context, thus improving students' learning effect [14], [15]. Immersion teaching method is 
characterized by authenticity, context, experience, and full participation, etc. Teachers can choose a suitable theme 
and context according to the teaching objectives and students' characteristics, which is of great significance in 
improving students' spoken English [16]-[18]. 

This study proposes an innovative approach to construct an immersive English speaking teaching scene using 
cross-modal generative adversarial network technology. First, the stability and quality of scene generation are 
improved by improving the traditional GAN architecture, introducing spectral regularization technology, and 
designing the SPSceneGAN model. Second, a specialized dataset of spoken English teaching scenes is 
constructed to provide high-quality sample data for model training. Then, the encoder-decoder structure is designed 
to realize the intelligent conversion from input scenes to target teaching scenes. Finally, the teaching effect of the 
system is verified through large-scale user testing to assess the effectiveness of the technical solution from multiple 
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dimensions of learning experience, providing theoretical basis and practical guidance for intelligent language 
teaching. 

II. Instructional scenario design based on cross-modal generative adversarial networks 
II. A. Generating Adversarial Networks 
Generative Adversarial Networks have both a wide range of application scenarios and stability as well as room for 
enhancement on each side, and are usually composed of two modules: generative models and discriminative 
models [19], [20]. Inspired by the game principle, the generative model generates samples and the discriminant 
model evaluates them. The evaluation results of the discriminator are used to adjust the parameters of the generator. 
Conversely, the samples generated by the generator combined with some real samples are used to tune the 
discriminator. The goal of our adversarial training is until the discriminator is unable to discriminate the generator's 
output as true or false, i.e., the generated samples are at the level of being false or true. In the original GAN theory, 
the generator and discriminator are not required to be neural networks, but only need to be able to fit the 
corresponding generator and discriminator function. However, in practice, deep neural networks are generally used 
as generators and discriminators. Because this can solve some of the problems that can not formulate the evaluation 
function for quantization. Than the immersive English speaking teaching scene design of the good, bad and ugly, is 
essentially a problem that can not be quantified. Because the model has two deep model components, we need to 
pay attention to the method of model training, otherwise the output may be unsatisfactory due to various reasons in 
the training process. 
 
II. A. 1) Discriminators 
Most of the discriminators of generative adversarial networks are a type of categorization network and deal with 
binary classification problems of true and false classification. There are also regressive networks. But the role is the 
same. That is, the generation of high-dimensional samples mapped to the low-dimensional, the role is equivalent to 
the generator generated samples with a label, a measure of the generation of samples close to the degree of real 
samples. For binary discriminators, they are only responsible for answering whether the generated samples are 
true or false, while the regression problem has a higher dimensionality of the discriminant vectors, which contains 
more detailed discriminative information and provides a more detailed gradient. For today's large-scale application 
of GAN in image generation, the discriminator part mostly uses convolutional neural networks. Convolutional neural 
networks perform convolutional operations on all pixels in an image by defining various types of convolutional 
kernels. This leads to the extraction of various aspects of features in the image. When we use deep convolutional 
network as a discriminator for deep adversarial network. A fully connected network is also connected behind it so 
that the output is a vector available for classification decisions. 
 
II. A. 2) Generator 
The generator of a generative adversarial network does not in principle have a fixed structure; it is generally a deep 
model that maps from low to high dimensions. Its goal is to learn the distribution of real samples from the experience 
provided by the discriminator, and to generate a sample close to the real distribution from a random Gaussian noise 
vector. A more representative premise for today's numerous image application scenarios is the use of an inverse 
convolution structure. Inverse convolution is a mainstream up-sampling process that can scale up small-sized 
images, mapping a 3*3 feature map to 5*5 by inverse convolution. 
 
II. A. 3) Optimization Functions for GANs and Training Methods 
For ease of reading and presentation in the following presentation the discriminator is written as D   and the 
generator is written as G . In the traditional adversarial generative network GAN the optimization function is defined 
in the form of equation (1). From this formula we can see the strategy of the model. We need to maximize the loss 
function of D  and minimize the loss function of G . The principle of the game is that when my generator is trained 
to be optimal, the discriminator, no matter how hard it is trained, can no longer discriminate the difference between 
the generated data and the real sample. For: 

 ~ ~min max ( , ) [log ( )] [log(1 ( ))]
data gx p x P

G D
V G D E D x E D x    (1) 

From the above description we can easily see that the training method of GAN is actually a game process of D  
and G . If G  is fixed, max ( , )

D
V G D  is the optimization objective, i.e., to train D  so that D  will have a better 

discriminative ability. If D  is fixed, min max ( , )
G D

V G D  is used as the training objective, i.e., train G , so that the 
samples generated by G  are closer to the distribution of the real samples. From this process we can easily analyze. 
If you want the network to continuously optimize the parameters, you need G , D  asynchronous training. That is, 
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train a D   to provide discriminative criteria for the training of G  . Then fix the G   and use the false samples 
generated by the G  to train the D  to the next deeper level of discriminative ability. This alternation achieves the 
common progress of both G  and D . The process of alternating training and can be expressed by the following 
formula. 

When fixing G , train D . For: 

 ~ ( ) ~ ( )max log( ( )) log(1 ( ))x p r x p gE D x E D x   (2) 

transformed into its smallest form: 

 ~ ( ) ~ ( )min log( ( )) log(1 ( ))x p r x p gE D x E D x      (3) 

When fixing D  , train G  . The hyperparameter k   can be set to indicate that training k   times D   and then 
again G . For: 

  ~min log(1 ( ))
gG x PLoss E D x   (4) 

The convergence state of the network can be analyzed as follows. Let the derivative of _Loss D  with respect to 

 D x  be 0, i.e., the discriminator is optimally trained to the optimal capacity: 

 
( )( )

0
( ) 1 ( )

gr
P xP x

D x D x
  


 (5) 

where ( )rp x  and ( )gp x  denote the distributions of true and false samples. The simplification yields the optimal 

discriminator as: 

 
* ( )
( )

( ) ( )
r

r g

P x
D x

P x P x


  (6) 

It is not difficult to find that if the model effect is optimized, the real sample distribution and the sample distribution 
generated by G  are exactly the same. That is, ( ) ( )r gp x p x , at this time the probability given by the optimal 

discriminator is 0.5. The meaning of this 0.5 is that the discriminator can not distinguish the current data from the 
real one even after further training, and at this time we consider that the ability of G  to generate false samples can 
be recognized. The generated fake samples reach the point where they are as good as the real ones. 

 
II. B. Spectral regularization based generative algorithm SPSceneGAN 
Realizing English speaking teaching scene generation is more difficult than the general image generation task. This 
task firstly requires the completion of feature extraction and reconstruction of the input scene images. Secondly, in 
the training phase, the model has to learn the rules and meanings embedded in the spoken English teaching scene, 
e.g., the generation of English teaching equipment should be in the right place, and the generation of student desks 
should be on the floor, not in the air or on top of other desks. Individual image feature extraction has achieved great 
success with the development of convolutional neural networks, and subsequent feature reconstruction requires 
the involvement of generative models, where GANs have made significant progress. In addition to this, in this paper, 
we will add a spectral regularization constraint model to the model to further improve the quality of generating 
English speaking teaching scenarios. 
 
II. B. 1) Overview of Spectrum Regularization 
For the problems existing in the original GAN, it is either improved from the objective function or from the constraint 
limitation level. Among them, the spectral normalization method has achieved the current best results since it was 
proposed, and in this paper, we will introduce the spectral regularization (SN) method in the specific scene 
generation model to improve the quality of generating English speaking teaching scenes, which in turn will 
guarantee the students' sense of learning experience. 

The role of spectral regularization in the model will be demonstrated theoretically. In the previous chapter, the use 
of JSdivergence for primitive GANs was analyzed in depth leading to a number of problems such as vanishing 
gradients, unstable training, and poor diversity. The JSdivergence used by the primitive GAN cannot accurately 
measure the distance between the real distribution rp  and the generated distribution gp , because in reality, it is 

difficult to have an overlap between rp  and gp , and at this time, the JSdivergence of the distance between rp  
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and gp  turns out to be a constant log2, which leads to the instability of gradients, and it is impossible to continue 

to training the model. In addition, the generator will tend to generate duplicate samples to avoid being penalized, 
which can cause the model to crash. 

To solve the above problems, WGAN proposes to use the Wasserstein distance (EM) instead of the JS scatter 
measure to measure the distance between real and generated samples. For: 

 ( , )~
~ ( , )

( , ) inf
r g

r g x y
P P

W P P E x y 
     (7) 

where ( , )r gP P  is the joint distribution of all possibilities consisting of rp  and gp . the Wasserstein distance ratio 

JS 
That is, 1 ( ) 1xD Lipschitz D x    ‖ ‖  is satisfied for all x , in other words, a differentiable function is a 1-

Lipschitz function if and only if, for any x , the modulus of the gradient is less than or equal to 1. WGAN-GP The 
expression for the discriminant is: 

 


  
~ ~( , ) max [ ( )] [ ( )]

max 0, ( ) 1

r gx P x P
D

x
x

V G D E D x E D x

D x dx

 

  
 (8) 

This objective function adds a third conditional term, which counts all terms where the mode of the gradient does 
not satisfy less than or equal to 1. Assigning a penalty parameter   to these terms, calculating the penalty value, 
and accumulating all the penalties. 

  ~ ~
1

( , ) max [ ( )] [ ( )]
r gx P x P

D Lipschitz
V G D E D x E D x

 
   (9) 

When this cumulative penalty is large enough, it will drag down the value of  max ( , )V D G , eventually leading to 

such that D  is no longer the optimal solution. However, this added condition, being valid for all x , makes the 
penalty very high and introduces a lot of unnecessary computation, so further changes are made to the added 
condition. In fact, the region that has a substantial impact on the discriminator is the real penalty to be considered. 
Since the overall purpose of WGAN is to keep the two distributions rP  and gP  close together, the region located 

between the two distributions must have a substantial impact on the discriminator, so WGAN-GP narrows down the 
range of x  in the penalty term to penaltyP , and penaltyP  is the region between rp  and gp , so the The objective 

function of the discriminator is transformed into 

 
     

  
~ ~

~

, max ( ) ( )

max 0, ( ) 1

r g

penalty

x P x P
D

x P x

V G D E D x E D x

E D x 

 

   
 (10) 

II. B. 2) Data sets and pre-processing 
In order to verify that the spectral regularization GAN network can achieve the generation of high-quality spoken 
English teaching scenes, a scene dataset named Oral English Teaching (OET), containing two types of images, 
one is the input domain scene image and the other is the target domain scene image, was collected from the web 
and produced. In order to minimize the interference of the background, the data collected are scene images with 
clean backgrounds that do not interfere with the scene. The images were cropped to 1024 × 1024 using Photoshop's 
batch tool, and then they were resized to 512 × 512.In this paper, the latter 3000 images in the input and target 
domains were selected as the test set, and all the remaining 7000 scene images were used for the training data, 
keeping the training data roughly 7:3 with the test data. 
 
II. B. 3) SPSceneGAN network structure 
The SPSceneGAN model follows the structure of a general GAN, which consists of two parts: a generator and a 
discriminator. The goal of the generator is to generate specific scenes that are indistinguishable from real spoken 
English teaching scenes. The generator first learns a mapping between the input English speaking teaching scene 
and the target image in the conditional domain, and learns the same mapping through other common latent vectors, 
and then uses the learned mapping to generate the input English speaking teaching scene image into an English 
speaking teaching scene that is consistent with the target domain. Specifically, the generator inputs the original 
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spoken English teaching scene image, the target domain image is input as a conditional variable which guides the 
generation of the generator, and the target domain image is copied at input and stitched with the input image to be 
fed into the generator. The generator reconstructs the new spoken English teaching scene from the input image 
and then mimics the target scene to generate a fake spoken English teaching scene. The goal of the discriminator 
is to distinguish the real scene from the generated scene, which is a binary classifier with output samples that are 
probabilities of the real scene. In this paper, the fake spoken English teaching scene image and the target spoken 
English teaching scene image generated by the generator are respectively spliced with the original input spoken 
English teaching scene image and input into the discriminator, using the back-propagation algorithm, which 
distinguishes between the real and the fake ones by the discriminator and feeds back to the generator, guiding the 
generator to generate a more realistic image of the spoken English teaching scene, and at the same time, the 
discriminator's ability to recognize the real English teaching scene is improved, and both of them mutually Against 
each other, the final English speaking teaching scene generated by the generator is the same as the real English 
speaking teaching scene, and the discriminator can not be distinguished, to achieve Nash equilibrium. 
 
II. B. 4) Loss function 
In addition, this paper uses the SN method to stabilize the model in both the generator and the discriminator, which 
is a method of constraining the weights, and it can be simply understood as replacing the loss function (11) in the 
traditional GAN with the form of (12): 

 2

1

1
min ( ( ), ) ( )

K

i i i
i

imize L f x y w
K






   (11) 

where the canonical terms are replaced with spectral paradigms: 

    2
1 1

1
min ( ),

2

K L
l

i i
i l

imize L f x y W
K

 


 

   (12) 

And the computation of the spectral paradigm is approximated using power iteration. The W   matrix is 
normalized to the equation where the spectral paradigm is constant equal to 1, which in turn makes the parameter 
gradient of the whole network constant less than or equal to 1, and ultimately achieves the 1-Lipschitz restriction on 
the generator and discriminator. The additional processing done by the stochastic gradient descent (SGD) algorithm 
with spectral regularization compared to the traditional SGD is the normalization of the W   matrix: 

   :l l l lW W W W . ie: 

  l T l
l lW u W v     (13) 

where u  and v  are the left and right singular vectors of  lW , respectively. 

 
II. B. 5) SPSceneGAN Algorithm Implementation 
Both the generator and the discriminator of SPSceneGAN use a convolutional network structure to extract features. 
Specifically, the generator includes a convolutional structure that performs down-sampling and an inverse 
convolutional structure that performs up-sampling, and they form an encoder-decoder, and the discriminator 
includes a convolutional structure that performs down-sampling. The goal of the encoder is to extract the features 
of the English speaking teaching scene in the input image to form a correspondence with the features of the target 
English speaking teaching scene image, and the encoder is chosen as a part of the generator not only because of 
the need to extract the fine features of the input English speaking teaching scene, but also because of the need to 
generate a new English speaking teaching scene based on the input image, and the encoder is capable of extracting 
more features than a general convolutional neural network. more features than normal convolutional neural network, 
it only performs convolutional operation without pooling, and passes more information to the next 
layer.SPSceneGAN needs to process the input and output which both contain images of the English speaking 
teaching scene, and the input image is a part of the output image, and it adopts the structure of the encoder and 
the decoder to firstly extract the features of the input image and the target English speaking teaching scene, and 
then it maps the input English speaking teaching scene into an English speaking teaching scene similar to the target. 
Finally, as the number of training times increases, the generated images of the spoken English teaching scene 
become more and more realistic, and it is more and more difficult for the discriminator to distinguish the truth of the 



A Study on Scenario Design and Learning Experience Enhancement for Immersive English Speaking Teaching Constructed 

4622 

input image, until the discriminator can not distinguish the truth of the input image, and the whole model reaches 
the Nash equilibrium. 

III. Test and Analysis of Scenario Design Scenarios for Teaching English as a Foreign 
Language 

III. A. Algorithm effectiveness test analysis 
III. A. 1) Assessment of indicators 
As far as the evaluation of the results of the English speaking teaching scene generation work is concerned, the 
peak signal-to-noise ratio (PSNR) and structural similarity index (PSNR) evaluation indexes are traditionally utilized 
to calculate the pixel values of the generated English speaking teaching scene images and the real English speaking 
teaching scene images, so as to measure the relatively objective comparison results. The peak signal-to-noise ratio 
(PSNR), structural similarity index (PSNR) calculation formula is shown below: 

PSNR is a concept in signal processing used to measure the signal-to-noise ratio of a signal. In the context of 
quality assessment of spoken English teaching scenarios, PSNR represents the ratio between the maximum 
possible signal value and the error signal power in an image. For images, this is usually the inverse of the mean 
square error MSE between the original image and the processed image (e.g., compressed or encrypted image.) 
The MSE is calculated as follows: 

     21 2
1 1

1
, ,

H W

i j

MSE I i j I i j
H W  

 
   (14) 

where 1I  and 2I  make the reference image and the image to be compared, respectively, H  and W  are the 

height and width of the image, respectively, and the smaller the value of MSE  is, the more similar the two images 
are expressed. The formula for PSNR  is as follows: 

 
2

1010 log IMAX
PSNR

MSE

 
    

 
 (15) 

where IMAX  is the maximum possible pixel value of the image (for an 8-bit image, this is usually 255), and MSE  

is the mean-square error between the original image and the processed image. PSNR  is in decibels (dB), and 
higher values indicate that the two images are more similar and the generated spoken English teaching scenario is 
more realistic. 

SSIM   is a more complex metric that takes into account not only the brightness, contrast, and structural 
information of the image, but also the visual perception characteristics of the image. The formula for SSIM  is as 
follows: 

  
  

  
1 2 1 2

1 2 1 2

1 2
1 2 2 2 2 2

1 2

2 2
,

I I I I

I I I I

b b
SSIM I I

b b

  

   

 


   
 (16) 

where 
1I

  and 
2I  are the mean of the images, 

1I
  and 

2I  are the standard deviations of the images, 
2 1I I  

are the covariances of the two images, and 1b  and 2b  are small constants added to avoid a zero denominator. 

The values of SSIM range from 0 to 1, and the closer the value is to 1, the more similar the two images are. 
 
III. A. 2) Loss value analysis 
The network model is completed using the Tensorflow 2.0 framework as well as TensorLayer (an auxiliary library for 
TensorFlow), in addition to the Numpy library, OpenCV library, OS: Ubuntu 18.04 LTS, Graphics card: Nvidia 
RTX4080Ti, CPU: Intel Core i7- 9700 K. The initialization weights of all convolutional kernels in the generator 
network and discriminator network are randomly initialized with a normal distribution with mean 0 standard deviation 
0.02 ~ N  (0.02), and the bias terms are all initialized with 0.0 (b=0). The learning rate is adaptively decreasing 
according to the number of training rounds, and the initial learning rate is 0.0005. The weight of the original cyclic 
consistency loss function in the cyclic loss term is set to 10, and the weight of the new covariance matrix loss 
function   is set to 1. Fig. 1 demonstrates a comparison of the loss values of the original GAN network with those 
of the SPSceneGAN generator structure for both the generator and the discriminators. The left and right graphs 
show the process of real image to generation and the conversion process of generation to real photo, respectively, 
where the green and red lines represent the generator and discriminator loss value changes of the PSceneGAN 
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generator structure, while the black and blue lines represent the generator and discriminator loss value changes of 
the original model. The data in the figure show that the improved model can reduce the generator loss and increase 
the discriminator loss to a certain extent, i.e., the images generated by the improved generator can better “fool” the 
discriminator, so that the generated immersive English speaking teaching scenes are of higher quality. 

  

Figure 1: Loss value analysis 

III. A. 3) Analysis of experimental results 
Two different experiments (Experiment 1 and Experiment 2) were designed to demonstrate the performance of the 
SPSceneGAN model in English speaking teaching scenarios compared with the current mainstream methods (e.g., 
multi-GAN overlays). In Experiment 1, the SPSceneGAN model is based on U-Net, Patch-GAN as the basic GAN 
architecture, and GAN for color conversion of the complete image, and the experimental control group is the 
unoptimized Patch-GAN model (referred to as the Patch-GAN model) and the general method, the dual-GAN 
tandem model (referred to as the GAN+GAN model). In Experiment 2, SPSceneGAN is used as the basic 
architecture of GAN network to complete the immersive English speaking teaching scene generation, and the 
control group is the RL-GAN model and triple GAN tandem model (referred to as GAN tandem model), and the 
GAN+GAN model and GAN tandem model are collectively referred to as the GAN overlay model. 

Figures 2(a) and 2(b) show the average probability of the generated images in the pre-trained classifier for 
different number of iterations of Patch-GAN, SPSceneGAN and GAN+GAN models in Experiment 1, and the 
classification probability of the output images of the three models in the classifiers for a random 500 inputs, 
respectively. Similarly, the results of Patch-GAN, SPSceneGAN and GAN tandem model comparison in Experiment 
2 are shown in Fig. 3. The results show that as the number of tasks increases, the Patch-GAN model outputs better 
true probabilities than the GAN stacked model, and the SPSceneGAN model outputs the highest image category 
truthfulness compared to the Patch-GAN model and the GAN tandem model. 

  

(a)The highest probability (b)Average probability 

Figure 2: Experiment 1 Classification Probability Comparison 
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(a)The highest probability (b)Average probability 

Figure 3: Experiment 2 Classification Probability Comparison 

Table 1 demonstrates the time taken by the above models to process images of different batch sizes. As can be 
seen from Table 1, the Patch-GAN model image processing speed is better than the GAN overlay model, and the 
SPSceneGAN model has the fastest processing speed compared to the other two models. 

Table 1: Processing time for images of different batch sizes 

Model 
Batch size 

100 200 300 400 500 

GAN+GAN 0.207s 1.815s 3.106s 4.069s 5.118s 

Patch-GAN 0.116s 1.404s 2.229s 3.319s 4.279s 

SPSceneGAN 0.089s 1.126s 1.889s 2.978s 3.921s 

 
With the support of the research data, the values of the image evaluation indexes of different models are 

compared and analyzed, and the comparative analysis of the values of the image evaluation indexes of different 
models is shown in Table 2. Based on the size of the data in the table, it can be seen that both in Experiment 1 and 
Experiment 2, compared with the Patch-GAN model and the GAN superposition model, the model in this paper has 
the highest priority on the immersive spoken English teaching scene, and its corresponding PSNR and SSIM values 
are 38.729dB (39.11dB) and 0.984 (0.992), respectively, and the PSNR, SSIM The larger the values are, the more 
the designed immersive spoken English teaching scenarios can meet the students' experiential learning needs. 

Table 2: Comparative analysis of Image Evaluation Index values 

Model 
Experiment 1 Experiment 2 

PSNR/dB SSIM PSNR/dB SSIM 

GAN+GAN 25.71 0.729 24.88 0.753 

Patch-GAN 26.78 0.807 25.92 0.824 

SPSceneGAN 38.729 0.984 39.11 0.992 

 
III. B. Usability Assessment of English Speaking Teaching Scenarios 
In order to test the effectiveness of the system, we implemented a pilot experiment using the traditional way of 
teaching spoken English as a control group. In this section, it is still describing the user tests and questionnaires 
and sharing the results of the tests, aiming at English speaking teaching scenarios that can enhance students' 
learning experience. 
 
III. B. 1) User test participants and objectives 
Considering the objectives of the study, students of higher education are in principle optimal as participants. 
However, the participants should also have the ability to receive questionnaires to give feedback on their 
psychological changes in the learning process. Considering the age of college students and the feasibility of the 



A Study on Scenario Design and Learning Experience Enhancement for Immersive English Speaking Teaching Constructed 

4625 

research, we chose college students as the subject of the user test. The research in this paper was conducted with 
voluntary enrollment of students, and the sample consisted of 500 students (250 males and 250 females) who had 
initially mastered a certain level of English speaking ability. The ages of the children ranged from 18 to 22 years old. 
Guardian consent was obtained for all data collection and possible presentation. It was also reviewed by the school's 
privacy and ethics committees. We designed two groups of experiments in which students learned English under 
different conditions. In Group A, students learned by teaching English in an oral manner. In Group B, students 
learned through an oral English teaching scenario. Participants were equally divided into two groups based on their 
pre-tested level of spoken English. Qualitative and quantitative data were collected to analyze the findings. The aim 
was to investigate whether the participants in the spoken English teaching scenarios had a better learning 
experience. Both groups were encouraged to perform better in their own research conditions. Invited educational 
experts were involved throughout the design, implementation and analysis of the results of the user tests. 
 
III. B. 2) User testing process 
One week prior to the official start of user testing, students were pretested. The pretest participant questionnaire 
included measures of a priori knowledge (a priori level of spoken English), intrinsic motivation, and self-efficacy. 
Participants were divided into two groups based on their level of spoken English as indicated in the pretest to ensure 
that both groups had approximately the same level of spoken English. The content learned in the user test was 
identified as something that the participants had not learned. The two groups of participants received 50 minutes of 
training in different teaching methods. At the end of the learning training, all students received an immediate posttest. 
We assessed changes in students' learning experiences by calculating pretest and posttest self-reports. Finally, one 
week after user testing, students were given a delayed retention test to further observe learning effectiveness. A 
one-week delay in testing was chosen because one week is a typical window for memorization. 
 
III. B. 3) Questionnaire design 
The pretest questionnaire contained measures of participants' a priori knowledge level, intrinsic motivation, and self-
efficacy. The a priori knowledge measure consisted of 11 questions, the intrinsic motivation measure consisted of 5 
questions, and the self-efficacy measure consisted of 5 questions, for a total of 21 questions comprising the 
questionnaire items. A five-point Richter scale was used, with 1 indicating strong disagreement, 2 indicating 
disagreement, 3 indicating basic agreement, 4 indicating agreement, and 5 indicating strong agreement. After 
students' feedback and experts' suggestions, finally the questionnaire has a good reliability performance and can 
be used for research testing. 
 
III. B. 4) Analysis of experimental results 
(1) Intergroup assessment analysis 

The assessment results of the learning experience of the two groups of students before the intervention are 
shown in Table 3, and the assessment results of the learning experience of the two groups of students after the 
intervention are shown in Table 4. The synthesis of Table 3~4 shows that when there was no intervention, there 
was no significant difference between the students in Group A and Group B, indicating that the research samples 
were all in the same, which well ensured the rigor of the research results. After the 50-minute experimental 
intervention, it was found that the three dimensions of the learning experience of the two groups of students 
produced significant differences. It can be inferred that the oral English teaching scenario enhances students' 
learning experience. In order to strengthen the credibility of this result, the within-group assessment analysis will be 
developed below. 

Table 3: Assessment results of learning experience before intervention 

Dimension 
Group A Group B 

T-Value P-Value 
Mean Standard deviation Mean Standard deviation 

Prior knowledge level 2.465 0.357 2.481 0.374 1.799 0.112 

Intrinsic motivation 2.116 0.296 2.198 0.313 2.187 0.217 

Self-efficacy 2.117 0.331 2.343 0.324 2.083 0.296 
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Table 4: Evaluation results of learning experience after intervention 

Dimension 
Group A Group B 

T-Value P-Value 
Mean Standard deviation Mean Standard deviation 

Prior knowledge level 2.852 0.055 3.417 0.449 1.135 0.003 

Intrinsic motivation 2.679 0.033 3.528 0.399 1.366 0.004 

Self-efficacy 2.754 0.387 3.483 0.378 1.016 0.008 

(2) Intra-group assessment 
In order to better visualize the differences in the learning experience of students in the two groups, the learning 

experience of students within the two groups will be assessed and analyzed, and the results of the intra-group 
assessment are shown in Figure 4, where X1~X3 are the level of a priori knowledge, intrinsic motivation, and self-
efficacy, respectively. As can be seen through the data performance in the figure, no significant difference in 
students' learning experience was produced within Group A, and the significance of the three dimensions of learning 
experience can be clearly observed within Group B, which is in line with the above findings and further confirms 
that the English speaking teaching scenarios are able to enhance students' learning experience. 

 

Figure 4: Intra-group assessment results 

IV. Conclusion 
Spectral Regularization Generative Adversarial Network shows significant advantages in the construction of English 
speaking teaching scenarios and effectively solves the limitations of traditional teaching modes. The technical 
validation results show that the SPSceneGAN model obtains a PSNR value of 39.11dB and an SSIM value of 0.992 
in Experiment 2, indicating that the generated scene is highly similar to the real scene. Compared with the traditional 
GAN+GAN model, the processing efficiency is significantly improved, and the processing time is reduced by about 
23.4% under the same batch size, which proves the superior performance of the algorithm. 

Teaching effectiveness evaluation confirms the positive impact of immersive scenario design on the learning 
experience. A comparative experiment with 500 college students aged 18-22 found that the experimental group 
showed significant differences in a priori knowledge level, intrinsic motivation and self-efficacy, and the learning 
experience was comprehensively improved. The mean value of a priori knowledge water in the experimental group 
reaches 3.417, which is 19.8% higher than that of 2.852 in the control group, and intrinsic motivation and self-
efficacy also reach high levels of 3.528 and 3.483 respectively. 

Cross-modal generative adversarial network technology opens up a new development path for English speaking 
teaching. Through intelligent scene generation, it not only reduces the production cost of teaching resources, but 
also provides a richer and more diversified learning environment for learners. The technical solution has good 
scalability and practicality, can adapt to different levels and needs of spoken English teaching scenarios, and 
provides important technical support and theoretical references for the construction of intelligent language learning 
system. 
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