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Abstract The rapid development of digital music industry promotes the in-depth application of artificial intelligence 
(AI) in the field of music creation. Aiming at the problems of insufficient emotion expression and limited 
human-computer interaction in AI music generation, this paper constructs a topological sort-guided optimization 
model for AI music generation and human-composition interaction. Methodologically, a topological network 
structure characterization is used to establish a guitar chord generation mechanism, the quality of music 
generation is optimized by Deep Convolutional Generative Adversarial Network (DCGAN) combined with unilateral 
label smoothing and feature matching, emotion-driven music creation is realized based on the emotion-guided 
diffusion model, and a hierarchical attention mechanism is designed to enhance the rhyme and emotional 
expression of the lyrics. The experimental results show that the model achieves an excellent performance of 
4.5698, 0.2485, 0.0455, 0.0198 on seven objective evaluation indexes such as PR, PE, PH, SC, etc., and the total 
subjective evaluation score is 4.3485, with a mean value of 7.7419 and 8.3089 on the Lakh MIDI and MUT MIDI 
datasets, respectively. The study verifies that the effectiveness of the topological ordering guidance mechanism in 
improving the quality of AI music generation and human-computer interaction experience, which provides a new 
technical path for intelligent music creation and promotes the development and application of AI music generation 
technology. 
 
Index Terms Topological sorting, AI music generation, deep convolutional generative adversarial network, emotion 
guidance, diffusion model, hierarchical attention mechanism 

I. Introduction 
In today's era of rapid technological development, Artificial Intelligence (AI) has permeated all areas of our lives, 
and music composition is no exception. In the past, music creation often relied on the inspiration, talent and years 
of professional training of human musicians [1]. Behind every classic piece of music, the creator's countless days 
and nights of effort and emotion are condensed. However, the birth of AI music generation technology breaks the 
limitations of the traditional creation mode, which makes music creation no longer only the patent of a few 
professionals, and also provides a platform for those who love music but lack professional skills to show 
themselves [2]-[5]. However, AI music generation has also caused some controversy and thinking, which weakens 
the creativity and uniqueness of human musicians, resulting in the music works becoming the same, and the 
generated music works must also undergo post-reassembly if they want to be loved by the audience, because the 
music generated by AI has no emotion, and there is a lack of an effective interaction framework between artificial 
creation and AI generation, which requires the optimization of the interaction between the two creative methods 
[6]-[9]. 

Topological sort, as an algorithm for linearly ordering vertices of directed acyclic graphs, has a wide range of 
applications in scenarios such as project management, task scheduling, and course scheduling, and is especially 
suitable for planning task sequences with dependencies. Therefore, it can realize the optimization of AI-generated 
music and manual creation interaction, and provide mutual coordination between AI in music creation and manual 
creation, so as to create better music works [10]-[13]. 

In this study, by introducing the topological ordering theory to construct an ordered relational mapping between 
music elements, we designed a music generation framework based on deep convolutional generative adversarial 
networks, and integrated the emotion guidance mechanism and diffusion modeling techniques. Specifically, the 
topological network structural feature analysis method is used to establish a mathematical model for guitar chord 
generation, the spatial feature extraction capability of deep convolutional generative adversarial network is utilized 
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to improve the quality of music generation, the emotion-guided diffusion model is used to achieve controllable and 
emotional music creation, and the layered attention mechanism is designed to enhance the rhythmic and emotional 
expression effect in lyrics generation. The whole technology route focuses on multimodal fusion and 
human-computer collaboration, and strives to improve the intelligence level and user experience of music creation 
while ensuring the generation quality. 

II. AI music generation based on topological ordering guidance 
II. A. Guitar Chord Generation 
II. A. 1) Topological network structure characteristics 
The degree of a node is a simple but important concept in complex networks. The degree iK  of a node i  is 
defined as the number of other nodes connected to that node i . Its mathematical significance is expressed in 
terms of adjacency matrix as shown in equation (1): 
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For directed networks, the degree of a node is categorized into the in-degree 
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K w . The out-degree refers to the number of edges pointing away from the current node i , and the 

in-degree refers to the number of edges pointing to that node i . The average degree is the average of the degrees 

iK  of all nodes i  in the network, denoted as k  . Intuitively, a larger degree of a node indicates that the node 

is more important to some degree. 
 

II. A. 2) Average shortest path and network diameter 
The number of connected edges between node i  and node j  is defined as the distance between the two nodes 
and the minimum value in the distance is defined as the shortest path d  from node i  to node j . The maximum 
value of all the shortest paths in the network is defined as the diameter D  of the network. The mathematical 
formulation of the network diameter is shown in equation (2): 

 ,maxi j ijD d  (2) 

The average of the shortest distances between any two nodes in the network is defined as the average shortest 
path L , viz: 
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where N  represents the number of nodes in the network, and for ease of handling, equation (3) includes the 
distance from the node itself to itself (the distance is zero). In recent years it has been found that in many networks 
of considerable size, the average shortest path of the network is indeed surprisingly small. 
 
II. A. 3) The rich man's club and the coefficient of congruence 
There are a small number of nodes in the network that have a large degree, these nodes are called “rich nodes”. 
These rich nodes prefer to connect with each other, a phenomenon known as “rich club”. The “rich club” 
phenomenon can be characterized by the rich club connectivity ( )r , which represents the ratio of the actual 
number of edges L  between the top r  nodes with the largest degree in the network to the total number of 
possible edges ( 1)r r   between these r  nodes, i.e.,: 

 ( )
( 1)

L
r

r r
 


 (4) 

The degree correlation described above can also be described by the covariance coefficient. The definition of the 
covariance coefficient is shown in the following equation: 
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where ij  and ik  are the degrees of the nodes at the two endpoints of the i th edge, respectively, and M  is the 

number of edges in the network. If the coefficient of congruence 0r  , then the network is congruent and nodes 
with larger degrees in the network are interconnected. If 0r  , the network is heterocompatible, points with larger 
degrees in the network are not very connected, and nodes with larger degrees have lower average degrees of their 
neighboring nodes. 
 
II. B. Music generation based on deep convolutional generative adversarial networks 
II. B. 1) DCGAN model based solution idea 
Deep Convolutional Adversarial Network (DCGAN) is a derivative model that combines convolutional neural 
network and generative adversarial network, which introduces the idea of convolutional operation into the 
generative model for unsupervised training, uses convolutional neural network and transposed convolution as the 
network layer structure of generator and discriminator, and improves the training effect of generative adversarial 
network and the quality of generated image results with the help of the spatial feature extraction ability of 
convolutional operation. The structure is shown in Figure 1 [14]. 
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Figure 1: Structure of the generator and discriminator network of DCGAN 

Compared to the original generative adversarial model, DCGAN has the following features: 
(1) The discriminator uses convolutional steps instead of spatial pooling, and transposed convolutional 

operations are used in the generator to expand the data dimensions, both of which discard the pooling layer of 
CNN. 

(2) The generator and discriminator use a (BN) layer after each convolutional layer, i.e., a batch normalization 
layer, which is performed independently on each dimension of a batch of data. The batch normalization primitive 
arithmetic formula is as follows: 
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Here, k  is the dimension of the data, ( )kx  is the data before the batch normalization operation, ( )ky  is the data 
after the batch normalization operation, ( )k  is the mean of the input data batch, ( )k  is the standard deviation 
of the input data batch, ( )k  is a learnable translation parameter, ( )k  is a learnable scaling parameter, and   
is a very small value that prevents the denominator from being zero. 
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The advantage of the batch normalization operation is that it is applicable to a variety of deep neural network 
structures, can improve the accuracy and generalization ability of the model, effectively avoid model overfitting, 
and the effect is more obvious when there are few training samples or uneven distribution. 

 
II. B. 2) Structure of the DCGAN-based music generation model 
The architecture of the generator consists of a fully connected layer, a transposed convolutional layer and a 
convolutional layer. An input batch is 72, so the input random vector z  is a Gaussian noise vector of size 72 × 100. 
z  goes through the fully connected layer to change its shape and then enters the transposed convolutional layer. 
In the first three transposed convolutional layer operations, the convolution kernel size is (2, 1) and the step size is 
set to (2, 2). In the fourth transposed convolutional layer, the convolutional kernel size is (1, 128) and the step size 
is set to (1, 2). Since the structure of DCGAN is then used, each transposed convolution is processed using a 
batch normalization operation, and the activation function for each layer is a ReLU function. In contrast, the startup 
music bars are input vectors of size 128×16 that enter the convolutional layers, in the first convolutional layer the 
convolutional kernel size is (1, 128) with a step size of (1, 2), and in the second to fourth convolutional layers the 
convolutional kernel size is (2, 1) with the step size set to (2, 2). It can be seen that the process of starting the 
convolution operation of the music bars in the generator can be seen as the inverse operation of the generator 
transposed convolution, and also with reference to the structure of DCGAN, the batch normalization operation is 
carried out for each convolution, while the activation function of each layer is used is the Leaky-ReLU, with the 
formula: 
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Here,   is the coefficient required when the input x  is negative and i  is the number of convolution channels. 
When greater than 0, Leaky-ReLU is a linear function, and when less than 0 it will control the data through the 

set parameters, introducing a nonlinear transformation while mitigating the gradient vanishing problem. In order to 
maintain the sensitivity of the training process model and help capture more complex data patterns, the α 
parameter is set to 0.2 in this model. 

 
II. B. 3) Optimization and adaptation of the loss function and model structure 
In order to solve the problems of training instability and mode crash that are prone to generative adversarial 
networks, this chapter further improves the architecture and loss function of the DCGAN model. For the loss 
function, the method of one-sided label smoothing and feature matching is used, and for the model structure, the 
small batch discriminator is used to replace the original discriminator structure. 

When the discriminator thinks that the generated sample is too poor, or too different from the real sample, the 
error sample from the model cannot be stimulated to get close to the real data, therefore, the positive label needs 
to be smoothed from 1 to  , and the sublabel is set to 0 where   only needs to be smoothed to a number 
slightly less than 1, and 0.9 is taken here to replace the original discriminator: 
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The original generative adversarial network objective function needs to maximize the output of the discriminator, 
and feature matching is achieved by specifying a new objective that requires the generator to produce results that 
match the real samples as closely as possible, while the discriminator is used to specify only the data that is worth 
matching as a way of avoiding overfitting of the generator in response to the requirements of the discriminator. The 
specific implementation method is to let the generated sample through the discriminator intermediate layer when 
the features and the features of the real sample as much as possible the same, in the objective function to 
introduce a penalty term. Under this premise, the objective function of the generator at this point in training is: 

 2
~ ( ) ~ ( ) 2|| ( ) [ ( )] ||

data z

G FM

G x p x D z p z D

loss loss loss

loss E f x E f G z

 
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where Gloss  is the generator loss function and FMloss  is the feature matching penalty term. 

Df  is the output of the middle layer of the discriminator. In this model, two L2 regularization terms are actually 

introduced as penalty terms to force the generated pianoroll matrix to be close to the real music bar matrix. 
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The Df  function in the regularization term takes the first convolutional layer in the discriminator, i.e., it takes the 

result after the first convolution as the feature of the generated result and the real data, and the 1  and 2  

empirical parameters are taken as 0.1 and 0.01 respectively. 
The discriminator can only process one sample independently at a time, and there is no coordination between 

the gradients. In the event of pattern collapse phenomenon, the samples are under similar or the same pattern, 
resulting in the gradient update information fed back from the discriminator to the generator also pointing to the 
same direction. The idea of improving the small batch discriminator is to let the discriminator no longer consider a 
sample independently, but consider a batch of samples at the same time. 

Assume that the feature vector of a sample ix  at a certain layer of the discriminator network is ( )if x , multiply 

( )if x  by a tensor parameter * *A B CT  to get a tensor *B C
iM , and then compute the L1 paradigm number for each 

iM , i.e. ( , )b i jc x x , and then sum all ( , )b i jc x x  to get ( )i bo x , and ( )i bo x  denotes the difference between the 

sample ix  and that of the sum of the differences of the b th feature of the other samples in the batch, and then all 

( )i bo x  are combined to obtain a vector ( )io x  of size B : 
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Among them: 

 , , .( , ) exp( || || )b i j i b j b L lc x x M M     (14) 

The vectors ( )io x  and ( )if x  are combined as inputs to the next layer of the discriminator network. Compared 

to the original discriminator structure, here there is an additional mini-batch layer whose input is ( )if x  and whose 

output is ( )io x , with a learnable tensor parameter T  in between. The mechanism of the original discriminator is 

to determine the probability that a sample originates from the training dataset. The discriminator that introduces a 
small batch of discriminative layers has no change in the training principle, but its output no longer depends on a 
single sample only, but sends information about the differences between samples in a small batch to the next layer 
along with this batch of samples, which can effectively avoid the situation where the generator is trapped in a single 
pattern sample. 

When the generator needs to be updated for a mode collapse condition, the generator is first generated into a 
batch of samples 1 2{ ( ) , ( ) , ( ) }mG z G z G z , and the mini-batch layer results are computed by the small-batch 

discriminator 1 2{ ( ( ) ), ( ( ) ), ( ( ) )}mo G z o G z o G z . In the case of a mode collapse, this batch of samples is in the same 

mode, and the computed results of the mini-batch layer are bound to be very different from those of the real dataset 
used to train the discriminator. The minibatch layer result will be very different from that of the real data set used to 
train the discriminator, and the captured difference information will keep the minibatch discriminator ( ( ))iD G z  

value from being too low, so the minibatch discriminator will not simply give the same gradient direction to all the 
samples, which ultimately serves to stabilize the training and attenuate the phenomenon of mode collapse. 

In this model, similar to the feature matching method mentioned above, here ( )if x  is still taken from the 

resultant features of the first convolutional layer of the discriminator as the input of the mini-batch layer, and at the 
same time, in order to simplify the model, the original method of the mini-batch discriminator is not used, and 
another version of the mini-batch discriminator is used, which is similar to the above mentioned method in idea, 
except that it simplifies the computation and does not introduce new tensor parameters that require additional 
learning. For a batch of input samples 1 2{ ( ) , ( ) , . ( ) }mG z G z G z , the first convolutional layer of the discriminator is 

used as the features of the samples, and the standard deviation of each dimension is computed and the mean is 
used as the output of the mini-batch layer: 
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II. C. Music generation network based on emotion guidance-diffusion modeling 
II. C. 1) Diffusion models 
Diffusion models are a class of probabilistic generative models that learn the mapping of noise to data by iteratively 
refining the noise samples. Denoising Diffusion Probabilistic Model (DDPM) is a typical diffusion approach [15]. 
DDPM defines a forward process that gradually transforms the input into Gaussian noise, while learning an inverse 
process for recovering the input. Specifically, in the forward diffusion process, the original sample 0x  is gradually 

added with noise after T steps to generate a series of noisy samples 1 2, , , Tx x x . At each time step t , the 

conditional probability distribution of the sample tx  is determined by the sample 1tx   at the previous moment, 

which has the mathematical form: 

 1 1( | ) ( | 1 , )t t t t t tq x x N x x I     (16) 

where 1 1, , , , T     is a predefined noise scheduling parameter. Based on the nature of Gaussian distribution, it 

can be derived: 

 0 0( | ) ( | , (1 ) )t t t tq x x N x x I    (17) 

where 1 , 1t
t s s t t       . By sampling ~ (0, )N I  and using the reparameterization trick, one can obtain the 

sample 0 1t t tx x     . Under certain conditions, the distribution ( )Tq x  of the final step is approximated as 

a standard Gaussian distribution. 
The inverse generation process starts with pure noise samples x  and progressively denoises and reconstructs 

1 2 0, ,...,T Tx x x  , and finally obtain a realistic sample. The inverse process is defined as a conditional probability 

distribution 1( | )t tp x x  , which is learned by a neural network for approximating 1 0( | , )t tq x x x . To learn 

1( | )t tp x x  , simply train the model output ( , )tx t  to recover the noise   that was added in generating tx . The 

loss function for training the diffusion model is 
0

2
, , [|| ( , ) || ]t x tE x t ò . In inference, given tx  and the predicted 

noise, it can be sampled from 1( | )t tp x x   by the following equation: 
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Of these, ~ (0, )z N I . 
 

II. C. 2) Human emotion-guided music generation 
The overall architecture consists of two components, the VAE module and the emotionally guided diffusion-based 
bootstrap module.The VAE module is used to compress the representation NS R  of a musical source containing 
N  sample waveform domains into a compact and contiguous latent space while ensuring that the reconstruction 
result is perceptually indistinguishable from the original source. Given an input signal S , the encoder maps it to a 
posterior distribution: 

 ( ) ( | ( ), ( ))enc z
z

S N S S     (19) 

where /( ) C N D
z S R   is the potential a posteriori mean, ( )

z

S  is the a posteriori covariance matrix, D=320 is 

the time-domain downsampling factor, and C=80 is the potential spatial dimension. 

After encoding, the signal S  is reconstructed by sampling ~ ( | ( ), ( ))z
z

z N S S   and feeding it to the decoder. 

To further simplify the extraction of potential features, this paper directly uses the posterior mean ( )s zz S  as 

the potential representation. 
Modeling the process of music generation in the latent space, this paper further introduces music emotion 

information to guide the generation of latent variables based on the latent diffusion model. Musical affective 
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potency is an important feature of musical expression [16]. Russell's two-dimensional model of affect uses the 
dimensions of pleasantness and arousal as the broadest indicators, whose continuity and and tunability are well 
suited to capture such dynamic changes in musical affect. By directly modulating the values of pleasantness and 
arousal, variables in the latent space can be guided to generate musical content with specific emotional 
characteristics. 

Let the potential representation of multiple input music sound sources be /
1 2( , ,..., ) K C N D

KZ z z z R    , where iz  

is the potential representation of the i th music segment and K  is the number of segments. Music emotion 

information is generated by an emotion encoder that maps the emotion description to a feature matrix M CE R   
in the potential space, where M  is the number of emotion features. During the generation process, a 
cross-attention mechanism is used to combine the sentiment information with the latent representation: 

 softmax ( ),
TZE

A g g Z Z AE
c

    (20) 

where K MA R   is the attentional weight and Z  is the latent representation after incorporating emotional 
information. In the diffusion process, according to the time scheduling ( )t t  , the forward diffusion process is 

defined as: 

 ( )( ) ( ) log ( ( ) )Z tdZ t t pl Z t r dt   
   (21) 

where 2( ) ( (0), ( ) ), (0)Z t N Z t I Z Z     . And then sample Z  by solving the ODE inverse process: 

 ( )( ) ( ) log ( ( ) )Z tdZ t t pl Z t r dt  
   (22) 

where the score term ( ) log ( ( ))Z t p Z t   is approximated by the neural network ( ( ), ( ))S Z t t  , and trained by the 

score matching loss. 

III. Emotionally and rhythmically enhanced lyric generation 
III. A. Lyrics and Rhymes 
Lyrics, as an important part of a song, serve to clarify the main idea of the song. Lyrics are derived from poems, 
and the creation of lyrics needs to follow rules similar to those of poems, such as formatting (word pattern) and 
rhyming. Lyrics generation is a sub-task of text generation, and unlike open domain text generation, lyrics 
generation requires effective control of word pattern, rhyme and emotional expression, so that the generated lyrics 
can complement the music. Grammar is the formatting rule that lyrics need to follow strictly to ensure that they can 
be smoothly integrated into the rhythm of the music and are easy to sing. Rhyme is also a key consideration in the 
process of generating lyrics. Maintaining appropriate rhymes within a certain range can make the lyrics catchy and 
enhance the sense of rhythm and fluency. In terms of emotional expression, as the lyrics usually most directly 
reflect the emotion of the entire song, it is important to ensure that the generated lyrics can match the emotional 
tone of the music and maintain emotional consistency throughout the lyrics. 
 
III. B. Modeling 
III. B. 1) Lyrics Text Input Representation 
In this chapter, we explicitly model the clauses, internal positions, rhymes and moods of lyrics to form a joint input 
representation, which enhances the expressive power of such information in the input. The following is an example 
of the input representation of the lyrics “your tears/softly hurt” (excerpted from Jay Chou's “Chrysanthemum 
Terrace”, using “/” to indicate the position of the break): 

(1) Sentence marking: 

 0 0 0 0 1 1 1 1 1{ , , , , / , , , , , , / , }SEG s s s s s s s s s s s eos        (23) 

where is  denotes the token of the i th sentence, /s   is the inter-sentence separator, and eos   is the sentence 
termination marker. By setting the sentence separator token, the model can explicitly learn the association 
information of different sentences in the lyrics. 

(2) Internal position markers: 

 3 2 1 0 4 3 2 1 0{ , , , , / , , , , , , / , }POS p p p p s p p p p p s eos        (24) 
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where ip  denotes the penultimate 1i   word of the sentence (i.e., i  is the number of remaining words of the 
sentence). In the lyrics generation task, the number of words in each sentence is strictly specified according to the 
word frame, and the function of setting the internal position markers is to enable the model to learn the information 
of the number of words in each sentence, so as to avoid incomplete forced truncation in the generation process. 

(3) Rhyme markers: 

 { , , , , / , , , , , , / , }m nRHY c c c r s c c c c r s eos        (25) 

where c  is the general character in the sentence, mr  denotes the rhyme of the rhyming word at the end of the 
sentence, and , {0,1, ,13}m n  , denotes one of the 14 rhymes. In particular, if the rhyming pattern of the lyrics is 
uncertain and no fixed rhyme scheme exists, the end word of the stanza is still denoted by c . 

(4) Sentence-level mood markers: 

 { , , , , / , , , , , / , }m m m m n n n nEMO e e e e s e e e e s eos        (26) 

where , {0,1, ,7}m n  , denotes one of the 8 emotion categories. 
After constructing the input tokens as above, the tokens for each part are mapped into fixed-length vector 

representations through the embedding layer, and then the embedding vectors of each type are summed to obtain 
the initial hidden state representation 0H  at layer 0 as in Equation (27): 

 0
t t t t t tt w SEG POS RHY EMO gH E E E E E E       (27) 

where t  is the position index, *E  is the embedding vector of input *, w  is the original input token, and g  is the 
global position index, as implemented in Transformer. 

In order to enable the model to capture the dynamic information of the global sequence for word pattern and 
rhyme, the global information representation 0F  is introduced as in Equation (28): 

 0
t t tt SEG POS RHYF E E E    (28) 

In order to make the sentiment information always noticed during the model generation process, this chapter 
also introduces the global sentiment representation 0S , as in Equation (29): 

 0
t tt EMO gS E E   (29) 

III. B. 2) Hierarchical attention mechanisms 
After the inputs are embedded for representation, in order to make the model learn the rhyme and emotion 
information in the lyrics more fully, two layers of attention mechanisms are introduced in this chapter, where the first 
layer is the masked self-attention and emotion attention, and the second layer is the global attention, and the 
hierarchical attention structure is shown in Fig. 2. The design details of each layer of the attention mechanism are 
described in detail next. 

(1) Masked self-attention 

Global attention

    

        

Emotional 
attention

Masked self-
attention

            
 

Figure 2: Hierarchical Attention Structure 
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where *W  is the optimizable parameter matrix, and LayerNorm(∙), Attention(∙) and FFN(∙) are the layer 
normalization, attention, and feed-forward network, respectively. In order to prevent the information after time step 
t  from being input to the model in advance and causing information leakage, only the content from that time step 
and before is considered in time step t , which is denoted by subscript t . 

(2) Emotional attention 
Emotional attention is calculated in a similar way to the masked self-attention in the same layer, as shown in 

Equation (31): 

 

0 0 0 0 0 0

1 0 0 0 0

1 1 1

, , , ,

( ( , , ) )

( ( ) )

Q K V

t t t t t

t t t

Q K V H W S W S W

T LayerNorm Attention Q K V H

T LayerNorm FFN T T

 



 

 

 (31) 

After obtaining the first layer representations 1
tC  and 1

tT , they are spliced and passed through the FFN module, 

which is used as the input information for the global attention as shown in Equation (32): 

 
1 1 1

1 1 0

[ : ]

( ( ) )

t t t

t t t

U C T

U LayerNorm FFN U H



 
 (32) 

(3) Global attention 
In order for the model to capture the global dynamic information from 0F , the global attention is set as shown in 

Equation (33): 

 

1 1 1 1 0 0

1 1 1 1 1

1 1 1
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t t t

t t t

Q K V U W F W F W

H LayerNorm Attention Q K V U

H LayerNorm FFN H H



 

 

 (33) 

After two layers of attention, the hidden layer representation 1
tH  is obtained. In the specific model training 

process, the number of attention layers is set to L , then the final hidden layer representation is obtained as LH . 
(4) Loss function 
The lyrics generation task in this chapter is a typical autoregressive generation, which adopts the negative 

log-likelihood as the loss function, as shown in equation (34) [17]: 

 
1

log ( | )
n

NLL t t
t

P y y


 L  (34) 

where n  is the number of samples. 

IV. Experimental design 
IV. A. Data sets and data preprocessing 
The dataset used in this chapter is the open-source Chinese lyrics dataset MusicLyricChatbot, which has been 
used in previous studies. The raw data of MusicLyricChatbot contains the lyrics of 140,694 songs, separated by 
lines. The vast majority of the lyrics in this dataset are in Chinese, and a small number of lyrics in other languages 
such as English, Japanese, and Korean are also included. In order to fit the tasks in this chapter, the dataset is 
cleaned and preprocessed in the following steps: 

(1) Remove non-Chinese lyrics 
The lyrics containing non-Chinese characters are matched and removed using regular expressions, and it 

should be noted that this operation also removes Chinese lyrics containing a small number of other languages. As 
the research in this chapter involves the processing of rhymes in lyrics, the mixed rhymes of multiple languages 
have some complexity in the determination, in order to simplify the task, this chapter only retains the lyrics that are 
entirely in Chinese in the data. 
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(2) Remove punctuation and other irrelevant characters 
The lyrics themselves are written on a line-by-line basis, and the separation between sentences does not need 

to be recognized by punctuation marks, so this chapter removes all punctuation from the data. 
(3) Remove data of too short a length 
There are some too short lyrics in the dataset, which are usually invalid data, so this chapter removes the lyrics 

in the dataset that are too short in length (the number of sentences is less than 4). 
(4) Sentence-level rhyming annotation 
In order to achieve rhyme-enhanced lyrics generation, this chapter pre-labeled the rhyming feet of each lyrics 

data automatically, rather than just letting the model implicitly learn the rhyming rules during the training process. 
Lyrics are a special form of poetry, and the rhyming rules in lyric writing are more similar to those of poetry. In this 
chapter, the Chinese New Rhyme (fourteen rhymes), which is currently commonly used in the literary world, is 
chosen as the reference for rhyme labeling. Specifically, for the last word of each line of the lyrics, the open-source 
pinyin conversion tool pypinyin is utilized to obtain the pinyin rhyme of the word and align it to one of the 14 types of 
rhymes [18]. 

 
IV. B. Performance evaluation 
IV. B. 1) Objective assessment 
(1) Entropy distribution 

Two nonlinear features, their association dimension and Kolmogorov entropy, are extracted from the generated 
music of four emotions: excitement, calmness, tension and sadness, and Fig. 3 shows the Kolmogorov entropy 
distribution of the generated music. 

The difference of different emotion music in the two nonlinear features of association dimension and Kolmogorov 
entropy is obvious, especially the sad emotion, in the interval of embedding dimension 2~18, the Kolmogorov 
entropy distribution is in [1854.0724,2551.8948], which indicates that the music generated by the emotion-guided 
DCGAN model designed in this paper has a certain effect of emotion expression. 

 

Figure 3: The Kolmogorov entropy distribution of music 

(2) Music Quality 
In order to verify the validity of the model proposed in this paper, the model proposed in this paper was 

compared with the Transformer -XL model, the CEG-Transformer model, and the CP Transformer model. Eight 
pieces of music for each of the four emotions of excitement, calmness, tension and sadness were generated using 
these four models. The 32 pieces of generated music were evaluated objectively against the music in the original 
dataset in terms of pitch, tempo, and structure to obtain the mean data of the different models on the 10 evaluation 
metrics. Finally, the indexes of generated music and the indexes of music in the original dataset are made 
differences respectively, and the difference results of the evaluation indexes of music generated by different 
models and real data are obtained as shown in Table 1. 

The values of the seven objective evaluation indexes of PR, PE, PH, SC, EBR, SI_mid and SI_long for the music 
generated by this paper's model are 4.5698, 0.2485, 0.0455, 0.0198, 0.0969, 0.0866, 0.0966, respectively, which 
are the closest with the music in the original dataset, which indicates that the model proposed in this paper 
generates better music than the other three models. 
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Table 1: Different models generate the differences between music and real data 

Model 
The indicators of pitch 

PR PSR PE PH 

CP Transformer 5.3545 0.1056 0.3422 0.2969 

Transformer-XL 10.8948 0.0645 1.0988 0.7485 

CEG-Transformer 9.3645 0.0785 1.0636 0.7796 

This model 4.5698 0.1348 0.2485 0.0455 

Model 
Rhythmic indicators 

/ 

SC EBR GS 

CP Transformer 0.0869 0.0966 0.2249 

Transformer-XL 0.2458 0.1048 0.2136 

CEG-Transformer 0.2348 0.1038 0.2148 

This model 0.0198 0.0969 0.2496 

Model 
Music structure index 

/ 

SI_short SI_mid SI_lomg 

CP Transformer 0.0698 0.0966 0.1069 

Transformer-XL 0.0769 0.1248 0.1345 

CEG-Transformer 0.0848 0.1349 0.1386 

This model 0.0636 0.0866 0.0966 

 
(3) Pitch and note density 
Pitch is an important perspective to reflect the information of a piece of music, by considering the proportion of 

the pitch of each note of the sequel track generated by the model, the similarity between the generated music and 
the original sample in the information dimension of pitch can be considered. 50 sample music sequences were 
used as input to the model, and three word embedding methods were used to compose the same samples in the 
input, and after that, a statistical average was made for all the used song categories are statistically averaged. 
Figure 4 shows the pitch frequency distribution, the higher pitch ratio of the original sample sequences used is 
maintained at 70 to 80, and the pitch ratios of the three modes of compositions also show this trend, which 
indicates that overall the three encoding modes are able to restore the original sample repertoire at this level of 
pitch better. However, considering from the perspective of standard deviation, the model in this paper is closer to 
the original samples in almost all the pitch values compared to CP Transformer and Transformer-XL, and the 
difference between the two pitch values between 70 and 80 is 0.01146 and 0.00693, which indicates that the model 
in this paper is better for modeling the integration of dataset sequences and better facilitation of extracting pitch 
information from the input samples. 

 

Figure 4: Pitch frequency distribution 

Popular music tends to have a relatively stable rhythmic and harmonic melodic repetitive structure both before 
and after this track, and the overall note density trend over time is relatively stable. It is therefore of great interest to 
consider the stability of the note density of model compositions over time. In this paper, 50 samples are used to 
compute note density, defined as the number of notes per window size of 5 seconds in the temporal sense, given a 
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series of identical original samples, composed with models trained on three different word embeddings and their 
statistical averages calculated. Figure 5 shows the change in note density, the pre-composition period of the model 
in this paper contains a stable note density, which is stable around 10.5 until 15 time windows. However, as time 
passes, the overall note density slips over time, which indicates that the melodic stability of the model composition 
is difficult to be ensured over a longer period of time when the original input samples are used to generate music 
using the model of this paper. The model compositions using CP Transformer and Transformer-XL have stable 
note densities on the overall timeline given by the samples, but the CP model has a relatively large change in note 
densities for each short-term time interval, so in comparison, this proposed paper has the advantage of maintaining 
stable note densities over a long period of time while having a more small standard deviation, which also reflects 
the objective level that the model trained in this paper composes more stable rhythms and more melodic layering, 
which is more in line with the characteristics of a piece of music. 

 

Figure 5: Change in note density 

IV. B. 2) Subjective assessment 
From the music generated by the four models, namely the model in this paper, the Transformer-XL model, the 
CEG-Transformer model, and the CP Transformer model, as well as from the original dataset, five pieces of music 
each, for a total of 20 pieces of music, were selected as evaluation data. To enhance the professionalism of the 
evaluation experiment results, 50 non-music professionals and 30 music professionals were invited to score and 
evaluate the music. To analyze the results more intuitively, the scores were weighted. In order to highlight the 
importance of emotion in the scores, weights were assigned to the five evaluation indexes of harmony, rhythm, 
pleasantness, fluency and musical structure according to the weight of 2:2:3:2:1, and the weighted scores of each 
model were calculated. At the same time, the ratings of professionals and non-professionals were assigned in the 
ratio of 6:4, and the final total score of each model was calculated as shown in Table 2. 

According to the weighting calculation method described above, the music generated by the model in this paper 
has the highest score and is closest to the music in the dataset, with a total score of 4.3485. 

Table 2: Subjective music effect evaluation weighted rating results 

Model Professionals Nonprofessional General evaluation 

Real data 4.5458 4.7489 4.5846 

CP Transformer 3.7885 3.9485 3.8588 

Transformer-XL 2.6998 2.9485 2.7496 

CEG-Transformer 3.5459 3.7496 3.5966 

This model 4.2998 4.4488 4.3485 

 
In order to verify the superiority of the models in this paper, the MUT MIDI dataset and the Lakh MIDI dataset are 

used to train CP Transformer, Transformer-XL, CEG-Transformer, and the models in this paper, respectively, in this 
section. Finally, given the trained models with the same start notes, music generation is performed, and five 
musical compositions generated by each of the four models under the two datasets are used as test samples. And 
the experts were invited to score, and the specific scoring results are shown in Table 3. 
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In the models proposed in this paper, whether it is the LakhMIDI dataset or the MUT MIDI dataset, the results 
generated by the models in this paper are higher than the index scores of the CP Transformer and Transformer-XL 
models on the whole, which indicates the effectiveness of the models in this paper. The mean scores of the 
proposed model in the two databases are 7.7419 and 8.3089, respectively, and the highest scores in the four 
indexes of completeness, music form, audibility and smoothness, which indicate that the quality of the improved 
model has been qualitatively improved. It also visualizes that the MUT MIDI dataset proposed in this paper has 
certain advantages over other datasets when performing music-related tasks. From the subjective evaluation, the 
model proposed in this paper does have a great improvement in the overall performance, but from the local 
performance, the rhythmic and melodic aspects still need to be further improved. 

Table 3: Quiz score 

Database Index CP Transformer Transformer-XL CEG-Transformer This model 

Lakh MIDI 

Rhythm 5.5478 6.2489 5.2699 7.1985 

Melody 5.0485 5.9486 7.0499 6.2452 

Integrity 6.5458 7.1698 5.6498 8.1685 

Music Form 7.0486 7.4985 8.0496 8.1969 

Audibility 7.0044 6.1248 6.2985 8.4958 

Fluency 7.5966 7.3458 5.7599 8.1465 

MUT MIDI 

Rhythm 6.2456 7.0499 5.7498 7.3485 

Melody 8.7665 8.7498 7.9485 8.9663 

Integrity 6.8485 7.3969 5.6936 8.0448 

Music Form 7.3485 7.8496 8.2488 8.3485 

Audibility 7.0458 6.6469 6.7485 8.5969 

Fluency 7.6486 7.9798 5.5695 8.5485 

V. Conclusion 
The AI music generation and manual creation interaction optimization model guided by topological sorting in this 
study achieves significant performance improvement in multiple dimensions. The objective evaluation results show 
that the proposed model achieves 0.0969, 0.0866, and 0.0966 in the three key indexes of EBR, SI_mid, and 
SI_long, respectively, which are all better than the comparison methods, proving the superior performance of the 
model in terms of the structural integrity of music and rhythmic stability. Through the training and validation of 
140,694 lyrics data, the model successfully realizes rhyme-enhanced lyrics generation, which effectively solves the 
deficiencies of traditional methods in emotional expression and metrical control. 

The experiments are tested with 50 sample music sequences, and the results show that the topological network 
structural characterization method can accurately capture the correlation relationship between musical elements, 
providing a reliable theoretical basis for chord generation. The application of deep convolutional generative 
adversarial network combined with unilateral label smoothing and feature matching techniques significantly 
improves the stability and diversity of music generation. The emotion-guided diffusion model achieves precise 
emotion control through the cross-attention mechanism, which makes the generated music more infectious in 
expressing specific emotions. The introduction of the layered attention mechanism further enhances the rhythmic 
and emotional consistency of lyrics generation, providing a more complete solution for AI music composition. This 
research lays an important foundation for the development of intelligent music composition technology, and is of 
great significance in promoting the application of artificial intelligence in the field of artistic creation. 

Funding 
This research was supported by the Second Batch of 14th Five-Year Plan Undergraduate Teaching Reform 
Projects in Zhejiang Province in 2024: Exploration and Practice of Digital Teaching System for Music Design and 
Production Major Empowered by Artificial Intelligence. 

References 
[1] Civit, M., Civit-Masot, J., Cuadrado, F., & Escalona, M. J. (2022). A systematic review of artificial intelligence-based music generation: 

Scope, applications, and future trends. Expert Systems with Applications, 209, 118190. 
[2] Wang, L., Zhao, Z., Liu, H., Pang, J., Qin, Y., & Wu, Q. (2024). A review of intelligent music generation systems. Neural Computing and 

Applications, 36(12), 6381-6401. 
[3] Giuliani, L., De Filippo, A., & Borghesi, A. (2023). Towards Intelligent Music Production: A Sample-based Approach. In CEUR 

WORKSHOP PROCEEDINGS (Vol. 3519, pp. 50-59). CEUR-WS. 



Topological ordering-guided optimization model and empirical analysis of the interaction between AI music generation and human composition 

4641 

[4] Dash, A., & Agres, K. (2024). Ai-based affective music generation systems: A review of methods and challenges. ACM Computing 
Surveys, 56(11), 1-34. 

[5] Liu, W. (2023). Literature survey of multi-track music generation model based on generative confrontation network in intelligent 
composition. The Journal of Supercomputing, 79(6), 6560-6582. 

[6] Gupta, S., Marwah, S., & Briskilal, J. (2022). AI Music Generator. Journal of Pharmaceutical Negative Results, 13. 
[7] Casini, L., Marfia, G., & Roccetti, M. (2018, September). Some reflections on the potential and limitations of deep learning for automated 

music generation. In 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 
27-31). IEEE. 
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