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Abstract Aiming at the energy efficiency optimization difficulties caused by the multi-component coupling and 
hierarchical structure of industrial robot electrical drive systems, this paper proposes a multilevel genetic algorithm 
(MGA) co-optimization method. First, an improved dq-axis motor model integrating iron loss, saturation effect and 
temperature influence is established to define a multi-constraint optimization problem with the objective of 
minimizing the total energy consumption of the system (covering the motor, inverter and transmission loss). Second, 
a hierarchy-dependent genetic coding scheme is designed to express the variable structure design space through 
hierarchical description with prefix tagging method, and the adapted genetic operators are developed. In ZDT1/3/4 
tests, the MGA improves the hypervolume (HV) by 3.3%~6.2% compared with the conventional GA, increases the 
independent solution ratio by 4.5%~7.1%, and reduces the generation distance (GD) and inverse generation 
distance (IGD) by up to 72% (e.g., the IGD of ZDT4 is reduced from 0.0304 to 0.0084). In the drive system layout 
optimization, the convergence speed of MGA is improved by a factor of 2.7 over GA with objective function values 
of 4.394 and 4.311, respectively. Based on the multi-electrical aircraft load management experiments, the system 
achieves 98.66% energy efficiency under healthy working conditions, 35kW load shedding by priority optimization 
when the main generator fails, and a 21-fold improvement in the computational efficiency of the hierarchical control 
strategy (23.41 seconds vs. 8.35 minutes for a single layer). 
 
Index Terms industrial robot, electrical drive, multilevel genetic algorithm, multi-constraint optimization 

I. Introduction 
Electrical drive systems play an increasingly important role in industry, transportation and daily life. In the production 
process of industrial robots, the electrical drive system, as a core component, has a direct impact on the overall 
performance and market competitiveness of industrial robots [1], [2]. In addition, improving the energy efficiency of 
electrical drive systems not only reduces operating costs, but also reduces carbon emissions, which is important 
for realizing sustainable development [3], [4]. Traditional optimization methods are often difficult to cope with the 
complexity and nonlinear characteristics of electrical drive systems, while genetic algorithms, as a kind of heuristic 
optimization method with powerful global search capability and adaptability to complex problems, provide new 
possibilities to solve this challenge [5]-[8]. 

Genetic algorithm can effectively avoid local optimum by simulating the biological evolution process and using 
population search and stochastic operation [9]. It does not depend on the specific mathematical model of the 
problem and can deal with all kinds of optimization problems, and this flexibility is especially suitable for complex 
engineering problems [10], [11]. In addition, the genetic algorithm has good parallelism and computational efficiency, 
is insensitive to the initial conditions and parameter settings, and has strong fault tolerance, and this robustness is 
particularly important in practical engineering applications [12]-[14]. Therefore, through the design and validation of 
innovative algorithms, it is expected to develop an optimization technique that can significantly improve the energy 
efficiency of the system, and provide a theoretical basis and practical guidance for the intelligence and high 
efficiency of electrical drive systems. 

This paper proposes and constructs a cooperative optimization methodology system based on multilevel genetic 
algorithm (MGA), aiming to achieve the global energy efficiency optimization of industrial robot electrical drive 
system under the severe engineering constraints. An underlying physical model that accurately reflects the energy 
flow and constraints of the system is firstly established as the optimization basis. The model innovatively integrates 
key factors such as iron loss (through parallel iron loss resistors), saturation effect (dq-axis inductance expressed 
as a nonlinear function of current), and temperature effect (correction of permanent magnet remanence and stator 
resistance), which significantly improves the prediction accuracy of the model under complex operating conditions. 
Second, for the inherent hierarchical structural characteristics of the system (e.g., component selection, 
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substructure configuration), a matching multilevel genetic coding scheme is designed to effectively express and 
manipulate the structurally variable design space. The technique employs a hierarchical description and prefix 
labeling method to accurately describe the tree-like hierarchical structure of the system. Individuals are then 
represented as selected gene sequences, where each gene represents a design variable for a selected substructure. 
Finally, genetic operators adapted to this coding scheme are designed to ensure that the optimization process 
efficiently searches for feasible solutions with different structural complexities. The selection operator employs 
league selection to retain superior individuals by randomly comparing their fitness. The crossover operator is 
designed with full consideration of the hierarchical dependence of genes, when two parent individuals exchange a 
certain substructure, all the genes of the offspring under them must be exchanged as a whole as well, which ensures 
the structural integrity of the offspring. The operation of the mutation operator starts from the highest level of the 
hierarchical structure and proceeds down the hierarchy. Mutation may change the parent gene, which causes all 
child genes under it to be reset or reselected to fit the new parent structure, thus effectively exploring the design 
space for different structural complexities. Together, these operators guarantee the optimization-seeking ability of 
MGA in complex hierarchical problems. 

II. Construction of cooperative optimization method for electrical drive system based on 
multilevel genetic algorithm 

II. A. 2.1 Motor Modeling and Optimization Objective Definition 
In order to accurately assess the energy efficiency of an electrical drive system, an accurate motor model was first 
developed in this study. A modified d q -axis model is adopted, which not only considers the basic electromagnetic 
relationship, but also incorporates factors such as iron loss, saturation effect and temperature influence. Specifically, 
iron loss is introduced by connecting an iron loss resistor in parallel in the d q  -axis equivalent circuit; the 
saturation effect is described by expressing the d q -axis inductance as a nonlinear function of the current; and 
the temperature effect is mainly manifested in the variations of permanent magnet spurs and stator resistance, and 
temperature coefficients are employed to correct these parameters. This comprehensive modeling approach 
enables a more accurate prediction of motor performance and losses under various operating conditions. 

Based on this, the optimization objective and constraints are defined. The optimization objective is to minimize 
the total system energy consumption, including motor losses (copper, iron, and mechanical losses), controller losses 
(switching losses, conduction losses), and drive train mechanical losses. This multi-objective optimization problem 
can be expressed as 

 modmin ( )cu fe a inv traneJ p p p p p dt      (1) 

Here, aP  is the copper loss; foP  is the iron loss; avchP  is the mechanical loss of the motor; invP  is the inverter 
loss: uranP  is the transmission system loss. The constraints include (1) the motor temperature rise does not exceed 
the allowable value maxT T ; (2) the output torque meets the load requirements e loalT T ; (3) the system stability 
meets the requirements: the real part of all the poles should be negative: and (4) the currents and voltages do not 
exceed the rated values ,ranl randI I V V  . This comprehensive definition of the objective function and constraints 
ensures that the optimization results not only improve energy efficiency, but also satisfy various requirements in 
practical engineering. 

 
II. B. 2.2 Characterization of multilevel gene coding 
Based on the above precise motor model and multi-objective and multi-constraint optimization problem definition, 
an optimization algorithm that can effectively deal with its inherent hierarchical structure and variable dependencies 
is urgently needed to achieve the global optimization of the electrical drive system of industrial robots. However, 
traditional optimization coding methods are difficult to adapt to such complex design spaces, which leads to the 
need for multilevel genetic coding techniques. 

Traditional coding methods are generally expressed in terms of one- or multi-dimensional matrices, which are not 
applicable in design problems with multi-level structures. Design problems with multilevel structures usually have 
many different structures layered at the same sublayer with multiple options, and some structures have some lower 
level structures ...... These different levels of structure and the existence of inheritance and crossover relationships, 
different levels of the design variables change will certainly make its related design variables with the change. In 
this way, the crossover and mutation operations of traditional methods become infeasible in multilevel design 
problems. Therefore, we propose a genetic coding technique with multiple levels. 

In the following, we explore multilevel genetic coding through a simple mechanical product design problem with 
a multilevel structure: 
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The schematic of a mechanical product with multilevel structure is shown in Fig. 1, this product consists of three 
building blocks A, B, and C. Among them, building block A has three optional designs, A1-1, A1-2, and A1-3; building 
block B has two optional designs, B1-1 and B1-2: building block C has four optional designs, C1-1, C1-2, C1-3, and 
C1-4. Among them, B1-2 has lower-price level sub-structures x, y; sub-structure x in turn has two optional designs, 
x1-1, x1-2, and sub-structure y has two optional designs, y1-1, y1-2; among them, y1-2 has lower-level optional 
designs, a1, a2, a3, a4. 

C1-1 C1-2 C1-3 C1-4

B1-1
B1-2

x y

A B C

A1-1 A1-2 A1-3

a1 a2 a3 a4

y1-1 y1-2x1-1 x1-2

 

Figure 1: Schematic diagram of mechanical products with multi-level structure 

Based on this mechanical system, we provide a detailed description of the multilevel genetic code. In the first 
step, the first layer is identified first, this system consists of three substructures A, B and C. In the third step, we are 
going to divide the first level of structure at a lower level, where structure A has three optional designs, structure B 
has two optional designs and C has four optional designs. We describe them (3, 2, 4) and define that all the optional 
designs of the substructures are denoted by (), and these optional designs constitute our second level of structure. 
B1-2 has two substructures of lower order x, y. In the third step, identify the substructure of lower order in the second 
level of the structure, where x has 2 optional designs and 2 has two optional designs. At this point we describe it as 
(2, 2), and since it belongs to the second optional design in the substructure B1-2 of layer 1, we add the prefix 1, 2- 
in front of (2, 2), which is used to indicate that it is the second optional design in the substructure B1-2 of layer 1, 
and this is the third layer of the structure that we want to look for: step 4, analyze the third layer of the structure, 
and find the lower-order structure of y1-2 having the options, and these four options make up our fourth level of 
structure. At this point we describe it as 1, 2-2, 2-(4). 

When facing more general mechanical systems, if a sub-structure has N lower substructures, each of which in 
turn has j iX   ( j  is the number of layers in which it is located, 1,2,...,i N ) for an optional design, we denote it 
as 1 2( , ,...)j jX X  . If this substructure is the t th optional design belonging to the s th level of substructures, we 
prefix 1 2( , ,...)j jX X    preceded by the prefix ,s t   . When there are higher level substructures, we add more 
prefixes in front of them to indicate the positional relationship of the current substructure. 

Once all the structures in the system are described, we can use point nodes to describe the location of all the 
structures. If a node A is located on top of another node B, call this node A the parent of node B, and call B the child 
of node A. This way we can get the multi-level information of this mechanical product clearly and connect the nodes 
with lines. In this way, we can get the multi-level information of this mechanical product and connect the nodes with 
lines. This method is called the structural description method of the multilevel structure system. 

After defining the structural description method of the system, we need to define the individual description method. 
If an individual of our previous example is shown in Fig. 

In this example, A1-3, B1-2 and C1-1 are selected as the design substructure of the first level, denoted as [3, 2, 
1], and the definition [] denotes the selected design substructure among all the optional designs of the substructure. 
This selected substructure is a design variable in the ontology and is defined as a gene. A complete system has an 
infinite number of selected substructures, i.e., the structure of a multilevel system is represented by a set of genes. 
In the substructure of B1-2 we select x1-1, y1-2 as its selected design, denoted as [1, 2], which belongs to the 2nd 



Research on multilevel genetic algorithm in optimization of combined electrical drive system for industrial robots 

4919 

design substructure of the 1st level, at this point we add the prefix 1, 2- before |1, 2|. Similarly, the last gene in this 
individual is denoted as 1, 2-2, 2-[2]. 

We generalize this approach to the general design problem. If a substructure has N lower level substructures and 
a bi design is chosen from its optional designs, this is denoted as a gene [b1, b2, ...]. If this gene belongs to the t-
th selected design of the s-th level substructure when the gene [b1, b2, ...] preceded by the prefix s, t-. More prefixes 
must be added to the genes when there is a higher level of substructure for this substructure. In this way a complex 
individual with a multilevel structure is represented. If a gene A is located one level above another gene B, the 
footnote A is the parent gene of B, and B is the child gene of A. 

 
II. C. 2.3 Genetic operators for multilevel genetic algorithms 
Having defined a genetic coding scheme capable of accurately describing the multilevel design variables and their 
dependencies for industrial robot drive systems, the design of matching genetic manipulation operators is required 
to ensure that genetic algorithms can efficiently search and optimize in non-fixed-length, hierarchically-associated 
solution spaces defined by structural variability. Therefore, the design of selection, crossover, and mutation 
operators adapted to multilevel genetic coding is detailed below. 
 
II. C. 1) 2.3.1 Selection of operators 
The league selection algorithm is used in the system, and its basic idea is: randomly select a certain number of 
individuals (usually 2) from the group, select the one with the highest fitness as the next generation of individuals, 
and repeat the execution until the number of selected individuals reaches a predetermined value. 
 
II. C. 2) 2.3.2 Intersection operators 
Since the design state space is represented by multiple levels of gene coding, access to lower level gene design 
variables is dependent on higher level gene design variables. When the higher-level gene design variables change, 
the lower-level design variables must also change, and individual gene lengths may also change. The crossover 
operation, i.e., interchanging the corresponding genes between two individuals, is a process whereby when the 
selected genes of one substructure are exchanged with another, all the corresponding exchange operations in the 
next generation follow accordingly. The process of crossover operation is shown in Figure 2. 

Cross start

i=1

The i-th 
gene is the 

same?

Gene exchange is carried 
out based on probability

The secondary gene structure 
of the exchange house

Conduct genomic 
crossover

i=n?

return

i=i+1

Yes

No

No
Yes

Exchange

No 
exchange

 

Figure 2: Flowchart of cross-operation 
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II. C. 3) 2.3.3 Variational operators 
In mutation operation, mutation starts from the highest level of the multilevel structure. The mutation operation is 
invoked in the same way as the crossover operation, acting in the subgenome, and the process of the mutation 
operation is shown in Figure 3. 

Mutation

i=1

Carry out the mutation of the i-th gene 
based on the mutation probability

Initialize all secondary 
gene structures

Variation operations 
of subgenomes

i=n?

return

i=i+1

Mutation completed

The mutation is 
incomplete

No
Yes

 

Figure 3: Flowchart of variation operation 

III. Hierarchical genetic algorithm performance validation and industrial robot drive 
system optimization experiments 

Based on the above constructed multi-level genetic algorithm method system, in order to verify its practical 
effectiveness in industrial robot electrical drive system optimization, this chapter will carry out multi-dimensional 
experimental validation: firstly, quantitatively assess the performance advantage of the algorithm through the 
standard test function, and then apply it to the drive system layout optimization, and finally, combine with the 
simulation of the typical working conditions to verify the practicality of the project. 
 
III. A. 3.1 Based on improved multilevel genetic algorithm test 
In this chapter, a multilevel genetic algorithm is used to solve the electrical drive system optimization problem, and 
the superiority of the proposed multilevel algorithm is demonstrated through test functions. 
 
III. A. 1) 3.1.1 Evaluation of performance indicators 
In order to test the performance of the multilevel genetic algorithm, the test basis functions ZDT1, ZDT3 and ZDT4 
are used to test the performance of the algorithm in this chapter. 

The optimization objectives of ZDT1, ZDT3 and ZDT4 are shown in equations (2)-(4): 

 

1 1

1
2

2

min ( )

min ( ) 1

1

( ) 1 9
1

. .0 1, 1,2, ,30

m
i

i

i

F x x

F
F x G

G
ZDT

x
G x

m

s t x i





         
   

   


 (2) 



Research on multilevel genetic algorithm in optimization of combined electrical drive system for industrial robots 

4921 

 

1 1

1 1
2 1

2

min ( )

min ( ) 1 sin(10 )

3

( ) 1 9
1

. .0 1, 1, 2, ,30

m
i

i

i

F x x

F F
F x G F

G G
ZDT

x
G x

m

s t x i








         
   

   


 (3) 

 

 

1 1

1
2

2
1 1

1 2

1 1

min ( )

min ( ) 1

4

( ) 1 10( 1) 10cos 4

. .0 1, 10 10, 2, ,10

m

F x x

F
F x G

G
ZDT

G x m x x

s t x x i







         
        


      


 (4) 

For the optimization results of the multilevel genetic algorithm, the following four metrics are selected in this 
chapter to evaluate the performance of the algorithm. 

The first metric is the hypervolume metric (HV).HV is the space surrounded by the nondominated solution and 
the reference point obtained by the algorithm. It is expressed as the area enclosed by the reference point and the 
nondominated solution in the two-dimensional objective, and as the Euclidean volume of the space enclosed by the 
reference point and the nondominated solution in higher dimensions. The larger this metric is, the closer the entire 
set of nondominated solutions is to the coordinate axis, i.e., closer to the Pareto front, which represents better 
algorithmic performance.The HV is computed as shown in Equation (5): 
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where   - Leberger measure, S  - the set of non-dominated solutions, iv  - the hypervolume formed by the non-
dominated solution set and the reference point 

The second metric is the proportion of independent solutions, the number of independent solutions in the final 
solution set as a proportion of the entire population size for the same population size. This metric evaluates the 
repeatability of the solution set, so the larger this ratio is, the greater the diversity of the resulting solution set, i.e., 
the better the performance. The proportion of independent solutions is calculated as shown in equation (6): 
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where independentN  - number of independent solutions, populationN  - population size 
The third metric is Generation Distance (GD), which is the average minimum distance from each point in the 

solution set to a point in the true Pareto boundary, as shown in equation (7): 
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The fourth metric is the Inverse Generation Distance (IGD), which is the average distance between each point in 
the true Pareto boundary to its nearest solution, as shown in equation (8): 
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The pair of metrics GD and IGD both describe the distance of the solution set from the true Pareto frontier, the 
difference being that one starts from the solution set and the other finds the distance to the other side from a uniform 
set of points on the true Pareto frontier. Both metrics are such that the shorter the distance, the closer the solution 
set is to the true Pareto solution set, i.e., the better the algorithm performs. 
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III. A. 2) 3.1.2 Comparison of performance test results 
For the traditional genetic algorithm GA and multilevel genetic algorithm MGA tested performance metrics are 
compared as shown in Table 1. 

Table 1: Comparison of algorithm performance tests 

Test function HV Rindependent GD IGD 

GA MGA GA MGA GA MGA GA MGA 

ZDT1 0.5713 0.5902 53.48% 58.95% 0.0253 0.0119 0.0249 0.0053 

ZDT3 4.2641 4.5261 56.21% 60.68% 0.0374 0.0236 0.0765 0.0434 

ZDT4 3.5253 3.7075 54.56% 57.93% 0.0257 0.0141 0.0304 0.0084 

 
From the comparison in Table 1, it can be clearly found that the multilevel genetic algorithm MGA shows better 

performance than the traditional genetic algorithm GA in all the ZDT series of test functions. In the hypervolume 
metric HV, MGA is 0.5902, 4.5261 and 3.7075 in ZDT1, which are about 3.3%, 6.2% and 5.2% higher than GA's 
0.5713, 4.2641 and 3.5253, respectively, indicating that its solution set is closer to the Pareto frontier and has a 
wider coverage. Among the independent solution ratios, the solution set diversity of MGA is significantly higher 
(ZDT1: 58.95% vs. 53.48%; ZDT3: 60.68% vs. 56.21%; ZDT4: 57.93% vs. 54.56%).The generation distance GD 
and the inverse generation distance IGD are lower than that of GA across the board for MGA.For example, in ZDT4, 
the GD decreases from 0.0257 to 0.0141, a decrease of 45%, and IGD decreases from 0.0304 to 0.0084, a decrease 
of 72%, which verifies that the MGA solution set has a higher degree of closeness to the true Pareto frontier. 

All in all, MGA outperforms GA in terms of multi-objective optimization ability (coverage, diversity, convergence), 
and the advantage is especially more significant when dealing with complex nonlinear problems. 

Meanwhile, Fig. 4 demonstrates the comparison of the solution sets of the two algorithms for the three test basis 
functions. 

 

Figure 4: The solution sets of two algorithms for three test basis functions 
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Whether it is ZDT1, ZDT3 or ZDT4 under the three middle test basis functions and four metrics, the solution set 
obtained by the multilevel genetic algorithm is closer to the coordinate axes than the traditional genetic algorithm, 
i.e., it has better performance. 

 
III. B. 3.2 Electrical drive system layout optimization test 
After verifying the theoretical advantages of the algorithm in standard test functions, its applicability to practical 
engineering problems needs to be further examined. In this section, the MGA is applied to the layout optimization 
of electrical drive systems to compare its difference with the traditional GA in terms of iterative convergence and 
solution quality. 

After completing the coding of the operating elements, the construction of the mathematical model, and the 
calculation of the relevant data. Input the data into the genetic algorithm and set the relevant control parameters, 
and use MTLAB software to solve the problem, and the running environment is c language. For the design of this 
interface layout, the relevant parameters of the genetic algorithm are set as follows: population size NIND=100, 
crossover rate PC=0.8, mutation rate Pm=0.090, generation gap GGAP=0.90, and the maximum number of 
iterations GENMAX=200. The two algorithms were run for 20 times respectively, and the optimization results of the 
traditional genetic algorithm and the multi-level genetic algorithm were compared, and the iterative convergence 
curves are shown in Figure 5. 

 

Figure 5: Comparison of the iterative curves of GA and MGA 

From the running results, we can find that in the same layout optimization problem, the objective function value 
of GA is 4.311, while the objective function value of MGA is 4.394, and the optimization result of GA is better than 
MGA, while the solution speed of MGA is better than that of GA, and we also therefore validate that we conclude 
that at the initial stage, GA is slow in finding the optimum, but has a strong global searching ability, and MGA is able 
to search for the optimum quickly at the initial stage, and therefore also easy to cause the optimization to fall into 
local optimum. 

 
III. C. 3.3 Simulated Load Experiments under Different Operating Conditions 
In addition to static layout optimization, the dynamic load management capability of the electrical drive system is 
crucial. For this reason, in this section, the effectiveness of the proposed method in dynamic load scheduling and 
energy efficiency control is verified through simulation experiments by combining the typical working conditions of 
the V-tail system of a multi-electric airplane. 

The main working conditions studied in the simulation experiments are (1) a normal power system with healthy 
loads and (2) a healthy load but the main generator fails. Next, each case is described in detail and the results are 
analyzed. 

 



Research on multilevel genetic algorithm in optimization of combined electrical drive system for industrial robots 

4924 

III. C. 1) 3.3.1 Normal power system with healthy loads 
Example 1: In task phase 1, all loads need to be powered according to the task requirements. The total power 
requirement of the electrical system is 72.84 kW, all of which is provided by the main generator. In task phase 2, 
loads 2 and 6 are stopped as required by the task. Before 0.3 s, the values of S1-S9 are all 1, indicating that the 
switching state of all loads is closed. After 0.3 s, the values of S2 and S6 are all 0, indicating that the switches of 
loads 2 and 6 are disconnected. 

The power supply and total power consumption of all loads are shown in Fig. 6. The red line in the figure indicates 
the generator output power and the blue line indicates the total power of all loads. Before 0.3s, the average power 
provided by the generator is PG = 72.53 kW, of which the sum of all the loads consumes Pi = 71.56 kW, and the 
rest of the power is mainly dissipated in the transmission process. However, the losses are small and the efficiency 
reaches 98.66%. In task phase 2, the total generator output and total load consumption are PG=56.48kW and 
Pi=55.64kW respectively, and the efficiency reaches 98.51%. A small oscillation occurs at 0.3s off loads 2 and 6, 
which is determined by the combination of the rectifier gain and time constant settings in the GCU control law. 

 

Figure 6: The output power and power consumption of the load in Example 1 

III. C. 2) 3.3.2 Failure of the main generator with a healthy load 
Calculation example 2: Assume that the main generator fails at 0.15s and the primary AC bus is taken over by a 
40kW APU. The task requirements of the loads are kept the same as in arithmetic example 1, i.e., task phase 1 
before 0.3s and considered task phase 2 after that. 

The electrical power consumed by all loads and the total power are shown in Fig. 7. The red line in the figure 
indicates the generator output power and the blue line indicates the total power of all loads. During the normal 
operation of the main generator, its output power can meet the total power demand of all loads. After 0.15s, the 
synchronous generator output power cannot meet the total power demand of the current task due to the APU taking 
over the power grid, which requires 35kW load shedding. 

For loads with the same power demand, the lower the priority the earlier they are load shed. For example, for 
loads 4, 5 and 6 with the same power demand, loads 4 and 5 are load shedding before load 6 because their preset 
priorities are 1, 2 and 3, respectively. For loads with the same priority, the order of load shedding is mainly related 
to the shedding power demand. For example, loads 3, 4 and 7 all have a preset priority of 1 and a power demand 
of 3.8, 15 and 11.5 kW, respectively, and when compared with the load shedding power demand, it is known that 
load shedding load 3 cannot alleviate the overload of the current power generation equipment; after optimization 
calculations, load shedding is selected for both loads 4 and 7. 

Setting the simulation time to 0.3 s, the single-layer and layered control give the same optimized control results 
when the sampling time of the single-layer control is Ts = 3 × 10-5s. However, the average computation time for the 
single-layer load control structure but the single-layer simulation is 8.35 minutes, while the average time for the 
latter is 23.41 seconds. The optimization layer is clocked slower than Ts and hence is able to reduce the amount of 
computation and the number of iterations of the optimization process, which effectively saves the computation time. 
It can be seen that the proposed architecture shows the ability to improve computational efficiency. 
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Figure 7: The output power and power consumption of the load in Example 2 

IV. Conclusion 
The multilevel genetic algorithm (MGA) proposed in this paper effectively solves the multilevel collaborative 
optimization problem of the electrical drive system of industrial robots, which is embodied in 

Algorithm performance superiority: in ZDT1/3/4 standard test, MGA compared with the traditional GA hypervolume 
(HV) is improved by 4.9% on average, up to 6.2%; the proportion of independent solutions is improved by 5.4 
percentage points, such as ZDT3 from 56.21% to 60.68%; the generation distance (GD) and inverse generation 
distance (IGD) are reduced by a maximum of 72%, and the IGD of ZDT4 from 0.0304 to 0.0084, verifying its strong 
adaptability to complex nonlinear problems. 

In the drive system layout optimization, the convergence speed of MGA is improved by 2.7 times compared with 
GA, and the objective function value is 4.394 vs. 4.311 for GA. In the dynamic load management experiments, the 
system achieves an energy efficiency of 98.66% under the healthy working condition, and the main generator failure 
achieves a precise load shedding of 35kW (48% of the demanded power) through the priority strategy, and the 
hierarchical control compresses the computation time from 8.35 minutes to 23.41 seconds, which improves the 
efficiency. The hierarchical control compresses the computation time from 8.35 minutes to 23.41 seconds, improving 
efficiency by 21 times. 
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