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Abstract Concrete as the basic material of construction project, its proportioning directly affects the project quality 
and cost. In this paper, a multi-objective optimization model for concrete proportioning is constructed, and an 
improved multi-objective particle swarm algorithm (IMOPSO) is proposed with the clinker three-rate value deviation 
and raw material cost as the optimization objectives. The algorithm improves the convergence and diversity of the 
solution through a dual external archiving mechanism and a two-stage global optimal selection strategy. On the ZDT 
standard test function, the IMOPSO algorithm achieves a convergence degree of 0.00355, which is significantly 
better than the NSGA-II and SPEA2 algorithms. The algorithm is applied to the optimization of 7 groups of ratios in 
a concrete enterprise, and the results show that compared with the NSGA-II algorithm, the running time of IMOPSO 
is shortened from an average of 90.29 seconds to 28.31 seconds, with an efficiency improvement of 68.6%; the 
cost of raw materials can be as low as 511.54 yuan/ton under the premise of ensuring that the quality control indexes 
meet the requirements. The study shows that the improved algorithm has higher solution accuracy and efficiency in 
solving the concrete ratio optimization problem, which provides an effective tool for intelligent decision-making in 
concrete production. 
 
Index Terms Concrete proportioning, Multi-objective optimization, Particle swarm algorithm, Double external filing 
mechanism, Clinker triple rate value, Raw material cost 

I. Introduction 
In the booming development of the construction industry, concrete products as the core foundation material, its 
quality is directly related to the safety and durability of the engineering structure [1]. Concrete constitutes the main 
body or skeleton of civil engineering and construction projects, which not only bears various loads, but also plays 
the functions of seepage prevention, heat insulation and heat preservation, and resists the erosion of the climate 
environment, so it must have sufficient durability [2]-[4]. However, with the rising quality requirements of concrete 
products in the construction market and the increasing pressure of cost control caused by the fluctuation of raw 
material prices, the traditional empirically determined concrete proportioning program has been difficult to meet the 
stringent demand for high-quality, low-cost concrete products in modern engineering construction [5]-[8]. In this 
context, the optimization of concrete proportioning research based on scientific analysis means is particularly critical 
and urgent to enhance the competitiveness of enterprise products and achieve sustainable development. 

With the rapid development of computer technology, information technology and system technology, it is now 
possible to establish a complex nonlinear mathematical model of concrete properties based on existing test data, 
so as to predict the concrete strength [9]-[11]. However, due to the complexity of high-strength concrete grouping 
data, its prediction accuracy is poor [12]. And with the help of intelligent algorithms for the optimal design of high-
performance concrete ratios, and then develop an intelligent decision-making system for the prediction of concrete 
performance and ratio optimization, so that the performance prediction modeling and ratio design computerization 
is an important development direction to improve the performance of concrete [13]-[16]. 

In this paper, a multi-objective optimization model with the objectives of minimizing the deviation of clinker three-
rate value and minimizing the cost of raw materials is established from the actual demand of concrete production. 
In the algorithm design, an improved multi-objective particle swarm algorithm is formed by introducing a double 
external archive mechanism to enhance the preservation ability of the non-dominated solution, and adopting a two-
stage selection strategy to improve the selection method of the global optimal solution. The performance of the 
algorithm is verified by the standard test function, and it is applied to the proportioning optimization of actual 
production data, with a view to providing technical support for the intelligent production of concrete enterprises. 
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II. Multi-objective optimization study of concrete proportioning 
II. A. Multi-objective optimization problem description and analysis 
Multi-objective optimization problems exist in many fields such as daily life and engineering practice, due to the 
mutual influence, mutual constraints and complex constraints between multiple objectives, resulting in the 
improvement of one sub-objective will reduce the effect of the other sub-objectives, so finding a solution to make 
each sub-objective achieve a satisfactory effect at the same time is the ultimate goal of multi-objective optimization 
problems [17]. 

In this paper, we focus on the case of minimizing the objective value of the sub-objectives, and the following is a 
mathematical description of this type of multi-objective optimization problem: 
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where ( 1,2, , )ix i m   is the m -dimensional decision variable, ( )( 1, 2, , )if x i n   is the n -objective function to 
be optimized, *Aeq x beq   is the linear equality constraint for the variable x  , *A x b   is the variable x  , 

( ) 0c x   is a linear inequality constraint on the variable x , and ( ) 0ceq x   is a nonlinear equality constraint on the 
variable x . 

 
II. B. Multi-objective optimization model for concrete proportioning 
According to the multi-objective mathematical description, this section takes the actual production of A concrete 
enterprise as a starting point, and researches the establishment of a multi-objective optimization model for the raw 
fuel batching of raw concrete materials based on the process mechanism in view of the situation that the raw 
materials contain calorific value in the batching process. The final establishment of this optimization model is divided 
into three steps of optimization variable selection, objective function setting and constraints, and these three parts 
are introduced separately in the following. 
 
II. B. 1) Optimization variable selection 
When the optimization variable selection is carried out, the ratio of three main materials and two auxiliary materials 
is preferred because the main factor determining the clinker quality and production cost in the process of raw 
concrete batching is the ratio of raw materials. The raw material composition of the main materials selected in this 
chapter contains blast furnace slag, early-strength silicate cement, and fine sand, and the raw material composition 
of the auxiliary materials includes silica micropowder and naphthalene-based water reducing agent powder. 
 
II. B. 2) Objective function establishment 
The ultimate purpose of concrete raw material batching is to achieve qualified and stable clinker quality, and the 
key index to measure clinker quality is the clinker three-rate value: limestone saturation ratio coefficient (KH), silicon 
rate (SM) and aluminum rate (IM). The three-rate value represents the proportionality of each oxide content in clinker, 
as well as its internal mineral composition. Concrete companies prepare raw materials and calcine clinker by setting 
the clinker triple-rate value as a control target. Clinker can only be judged to be acceptable when all three values 
are within the fluctuation range of the target rate. The clinker three rate values are shown in the following formula. 

(a) Limestone saturation ratio coefficient: 

 
1.65 0.35

2 8
c c c

c

C A F
KH

S

   


 
 (2) 

(b) Silicon rate: 

 c

c c

S
SM

A F



 (3) 

(c) Aluminum rate: 
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The , , ,c c c cS A F C  in the formula represents the content of CaO, SiO2, Al2O3 and Fe2O3 in clinker respectively. The 
three rate values are coupled with each other, in order to achieve a certain rate value to change the ratio of raw 
materials will certainly have an impact on other rate values. In this chapter, the deviation of clinker three rate values 
from the desired target value is used as the quality objective function to measure the multi-objective optimization of 
raw material batching. The three sub-objective functions are converted into one objective function by linear 
weighting, and the mathematical expressions are as follows: 

 * 2 * 2 * 2
1 1 2 3min ( ) (  ) ( ) ( )f X K KH KH K SM SM K IM IM       (5) 

The , ,KH SM M  in the formula is the calculated value of the three rate values, * * *, ,KH SM M  is the target rate 
value, and because the permissible range of deviation between the three rate values is inconsistent, ( 1,2,3)iK i   
is the value of the ratio coefficient setting. 

Each raw material has different price and contained oxide content, increasing the proportion of a certain raw 
material will not only make the value of the three rates closer to the target value, but also cause changes in the cost 
of raw materials. In order to rationalize the deployment of mineral resources and reduce the cost price of raw 
materials, the cost function calculated in this paper is the cost per ton of compound, and the mathematical 
expression is as follows: 
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where ( 1, 2,3,4,5)iY i   is the unit price of each raw material in yuan/ton. 
 

II. B. 3) Constraints 
(1) Raw Material Composition Baseline Constraints 

Since coal-based materials are also involved in heat distribution, their chemical composition needs to be corrected 
so that their chemical composition can be converted to dry basis composition. The conversion formula is as follows: 

 i i icf cf b   (7) 

where ( 1,2)ib i   is the percentage ash content in the material, and ( 1,2, , )icf i n   is the oxide composition of 
the material. The heat generation of coal material is ( 1,2)iQ i   (unit: kJ/kgr). 

(2) Mass conservation constraints 
From the physical changes and chemical reactions in the clinker calcination process, it is known that if production 

losses are not considered, according to the principle of conservation of mass, the content of each oxide of the raw 
material under the dry base is equal to the sum of the composition of each dry base material. Although each major 
oxide exists in different forms, its total content remains unchanged. According to the conservation of mass the 
following relation is obtained: 
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The , , ,c c c cS A F C  in clinker can be obtained by converting the oxides in the above equation to a scorch base, so 
that 4 5,L L  is the loss on ignition of the coal research stone and the fuel coal, which is calculated by the following 
formula: 
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The clinker triple rate value formula shows that , , ,c c c cS A F C  are not involved in the calculation of the rate values 

when they are performed, 
15

1

(1 )i i
i

L X




  is not involved in the operation, and therefore , , ,S A F C  can be directly 

substituted into the three-rate value formula. 
(3) Energy conservation constraints 
Since gangue is a raw material containing calorific value, it is used as both raw material and fuel in clinker 

production, so it needs to be considered to follow the principle of energy conservation in addition to satisfying the 
clinker composition in the process of batching calculation. According to the principle of conservation of energy, the 
total calorific value of coal material needs to meet the clinker firing heat consumption Q   (unit: kJ/kgr), the 
relationship is as follows: 

 4 1 5 2 maxX Q X Q Q   (10) 

(4) Target range constraints 
The clinker triple rate values that make up the quality target each have a qualifying range, and the saturation ratio 

KH  is allowed to fluctuate in the range of ±0.02, but its fluctuation range is ±0.01 in the batching calculation. Silicon 
rate SM  is allowed to fluctuate within ±0.1. Aluminum rate IM  is allowed to fluctuate within ±0.1. In the actual 
solution calculation, a qualified solution is required to bring all three rate values within the allowable range of the 
target rate value at the same time. 

(5) Hazardous substance constraints 
According to the requirements of harmful substance content of concrete clinker, MgO in clinker needs to be 

controlled within a certain range. Among them, the appropriate amount of MgO in clinker will increase the number 
of liquid phase and reduce its viscosity, which is conducive to the calcination C If too much, it will have a certain 
impact on the stability of concrete, so its content needs to be less than or equal to 7%. The calculation process of 
this substance is consistent with the calculation of the main oxides in clinker. 

(6) Batching constraints 
The batching calculation process contains only four raw materials and coal combustion, so its ratio sums up to 1, 

and the expression is as follows: 
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Based on the concrete production process and clinker composition, the upper and lower constraints on the 
proportion of each raw material are specified in actual production based on historical data, and the following are the 
ratio constraints for each material (i = 1, 2, 3, 4, 5): 

 min maxi i iX X X   (12) 

III. Multi-objective particle swarm algorithm and its improvement 
III. A. Multi-objective particle swarm algorithm 
III. A. 1) Working Principle of Multi-Objective Particle Swarm Algorithm 
Multi-objective particle swarm algorithm (MOPSO) is a simulation of the process of searching for food in a flock of 
birds, each particle is analogous to an individual bird, while the particle swarm is analogous to a flock of birds, the 
optimization objective function is equivalent to the food here, and all the particles are approaching to the objective 
function, forming an iterative process, the optimal solution corresponding to the particles in each iteration of updating 
is defined as an individual extremum ( pbest ), and in this process the The whole population will also correspond to 
a population optimal value, defined as the global extreme value ( gbest ), this optimization search process can be 
described by mathematical relations [18]. 

According to the principle of particle iteration in the multiobjective particle swarm algorithm, the velocity and 
position of the updated k th generation particle i  are obtained as follows: 

 1
1 1 2 1( ) ( )k k k k

id id id id gd idv w v c r p v c r p v          (13) 

 1 1k k k
id id idX X t v    (14) 

where k
idv  denotes the component of the velocity of particle i  in d  dimensions at k  iterations, 1, 2,...,d n , n  

denotes the number of dimensions of the particle, k
idx  denotes the d -dimensional component of the particle i 's 
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position at k  iterations, idP  denotes the d -dimensional component of the particle i  itself at its best position, 
and gdP  denotes the d -dimensional component of the population's best position. 

The basic flow of the specific multi-objective particle swarm algorithm to solve the problem is shown in Figure 1. 
Step1: Data initialization. Generate N populations in the space and set each parameter of the system. 
Step2: Update the particle velocity and position, and determine the non-dominated solution set according to the 

domination relationship. Store the non-dominated solutions in the non-dominated solution set. 
Step3: Calculate the value of the objective function and update the non-dominated solution set. 
Step4: Determine the individual optimum as well as the global optimum based on the position velocity of the 

particle. 

Start of algorithm

Initial particle swarm 
and system parameters

Update and iterate the 
particle velocity and position

Calculate the value of the 
objective function and update 
the non-dominated solution

Update the individual extremum 
and the global extremum

Meet the 
conditions

End

Yes

No

 

Figure 1: Basic flow chart of algorithm solution 

III. A. 2) External archiving mechanism 
The external archive is a collection used to store the optimal solution, from the beginning of the particle optimization 
until the process of finding the optimal solution requires a number of iterations to update, and the external archive 
is used to store the optimal solution of the update iteration in the optimization process. Specific algorithms use the 
external archive mechanism to realize the optimization steps are as follows: 

(1) Initialize the algorithm, empty the external set and start the optimization search. First, the more dominant 
particles in the set of non-dominated solutions exist in the external set, followed by iterative optimization. 

(2) At this time, the external set is a non-empty set, arbitrarily select one of the non-dominated solutions. 
(3) Repeat the operation in (2) until the end of the algorithm iteration. 
 

III. A. 3) Selection of the global optimal solution 
The multi-objective particle swarm algorithm obtains multiple non-dominated Pareto optima, how to find the global 
optimum among multiple non-dominated solutions is an important part of the multi-objective particle swarm 
algorithm. In this algorithm, an external archive is obtained by the external archive mechanism, and the selection of 
global optimum is to be sought from this external archive. The more widely used is the dynamic field selection, that 
is, to determine an objective as the optimal, search for the nearest particles around it, compare the relevant particles 
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found with the second objective value of the particle, and select the particle with the smallest distance as the optimal 
solution, i.e., as the global optimal solution. 
 
III. B. Improved multi-objective particle swarm algorithm 
III. B. 1) Improvements in external archiving mechanisms 
In this paper, two external sets are established for storing non-dominated solutions, one as the main external storage 
set and the other as the auxiliary external storage set, and the auxiliary storage set is used to store particles with 
small crowding distances in the external storage set, and the main working principle is shown in Fig. 2. Set two 
external storage sets, as well as determine their capacity, when the main storage set reaches a certain capacity, 
then the particles deleted from the main storage set will be put into the auxiliary storage set, when the auxiliary 
storage set reaches the set capacity, the first particles added to it will be compared with the particles in the main 
storage set, and if this particle is the one with the smallest crowding distance, it will be deleted directly, and if this 
particle dominates the particles that are compared with it, then If this particle dominates the particles compared to 
it, it will be stored in the main storage set and the particles dominated by it will be deleted. 

 
 

 
 

 

  

 

 

 

  
 

 
 

 

 

 

 

  
 

 
 

 

 
 

 

 

Population

Master 
Archive A

Supplementary 
File B

Comparison Particles with 
low congestion

 

Figure 2: Schematic diagram of the dual archive mechanism 

III. B. 2) Improvement of global optimal solution selection 
As can be seen from 3.1.3, the selection of the global optimum in the unimproved multi-objective particle swarm 
algorithm is determined according to the dynamic domain selection mechanism, so that the global particles are 
difficult to jump out of the local optimum according to this selection method, and now the global optimum particles 
are selected by the two-stage shuffling selection strategy. The first stage is considered from the decision space and 
the second stage is considered from the goal space. 

In the first stage of selection, the particles in the external file are analyzed and the following calculations are 
performed using the formula: 
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where ix  is the i th particle, jy  is the j th non-dominated solution, N  is the particle dimension, and u  is the 
total number of non-dominated solutions. The computed result reflects the actual distance between the particles in 
the external file and the real particles in the Pareto face, and then the average similarity distance between that 
selected particle and the external document is computed according to Eq. (17), denoted as ASD, and the selected 
globally optimal particle must be smaller than the value of ASD: 
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The second stage is chosen to utilize the congestion distance for selection by first selecting the minimum value 
points of the multi-targets in the Pareto front surface to connect them, forming a plane with the points on other 
boundaries, calculating the distances from each point in the constituent plane to the extreme point, and taking the 
point with the largest distance as the global optimum to guide the overall particle flight. 

IV. Performance testing and simulation experiments 
IV. A. Performance test of improved multi-objective particle swarm optimization algorithm 
In order to verify the arithmetic ability of the two methods on these functions before and after the improvement, 
three standard multi-objective test functions, ZDT1, ZDT2, and ZDT3, are used for comparison tests. The test 
functions are shown in Table 1. 

Table 1: Test Functions 

Test function Variable constraint Target function Functional dimension 

ZDT1 
0 1

1,2, ,
ix

i m

 
   

1 2

1 1

2 1

2

( , )

(1 / )

1 9 / ( 1)
m

i
i

F f f

f x

f g f g

g x m





 

  
 

m=30 

ZDT2 
0 1

1,2, ,
ix

i m

 
   

1 2

1 1

2
2 1

2

( , )

(1 ( / ) )

1 9 / ( 1)
m

i
i

F f f

f x

f g f g

g x m





 

  
 

m=30 

ZDT3 
0 1

1,2, ,
ix

i m

 
   

1 2

1 1

2 1 1 1

2

/ s

)

(

( , )

(1 / in 10 ))

1 9 / ( 1
m

i
i

F f f

f x

f g f g f f

g x

x

m

g 






  

  
 

m=30 

 
The test results are shown in Figs. 3-5. The improved algorithm can converge well to the Pareto optimal front end 

of the test function. 

 

Figure 3: Simulation of ZDT1 with improved algorithm 
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Figure 4: Simulation of ZDT2 with improved algorithm 

 

Figure 5: Simulation of ZDT3 with improved algorithm 

In order to verify whether the improved algorithm has good convergence performance, it is compared with NSGA-
II and SPEA2 respectively, and the results are shown in Table 2. From the test results, it can be observed that 
compared with the other two algorithms, the convergence degree of the improved MOPSO algorithm is the smallest 
on ZDT1, ZDT2 and ZDT3. The smaller convergence degree indicates that the Pareto solution solved by the 
algorithm is closer to the real frontier surface, and the distribution performance of the algorithm is more excellent, 
and the time required for computation is also the shortest among the three methods. The experimental results prove 
that the improved algorithm proposed in this paper has better convergence and diversity. 

Table 2: Function comparison result 

Project ZDT1 ZDT2 ZDT3 

NSGA-II 
Degree of convergence 0.03103 0.02501 0.12964 

Computation time/s 3.163 3.085 2.417 

SPEA2 
Degree of convergence 0.02129 0.01681 0.01784 

Computation time/s 2.427 2.873 2.578 

Improve MOPSO 
Degree of convergence 0.00609 0.00575 0.00355 

Computation time/s 1.999 2.166 2.087 

  
IV. B. Experimental analysis 
After selecting the historical data of Concrete Plant A and calculating the equivalent values of raw material 
components using the system identification method, the improved MOPSO algorithm is used to solve the above 
raw material proportioning model, and the classical NSGA-II algorithm is selected as the comparison algorithm. 

In order to ensure the fairness of the comparison results, the two algorithms are set to the same initialization state, 
the population size is 100, and the maximum number of iterations is 200.In this paper, a total of 7 sets of randomly 
calculated ratios, of which the Pareto optimal solution set obtained from a certain ratio using the improved MOPSO 
algorithm is shown in Figure 6. 
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Figure 6: Pareto optimal solution set of a ratio 

The range of five quality control objectives based on the optimal solution set is shown in Table 3. 

Table 3: Quality control target range 

Control index KH SM IM Main material Auxiliary material 

Target range 0.99±0.04 4.3±0.12 1.3±0.3 1.8±0.5 41±0.6 

  
IV. B. 1) Comparison of performance indicators 
In order to compare the performance of the algorithms more accurately, this paper selects the convergence and 
diversity of solutions to compare and analyze the algorithms. 

(1) IGD evaluation index 
IGD is the inverse generation distance, which reflects the distance between the non-dominated solution obtained 

by the algorithm and the front surface of the real solution, reflecting the convergence of the population, and the 
smaller the IGD is, the better the algorithm's convergence is.The specific expression for calculating IGD is shown 
in Eq. (18): 
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where *P  is a set of solutions falling on the Pareto front, P  is a set of non-dominated solutions, v  is a particle 
in *P , and ( , )d v p  is the minimum distance from v  to p . 

(2) SP evaluation metric 
SP is a measure of the diversity of the obtained nondominated solutions, the measure of the variance of the 

minimum distance from each solution to the other solutions, the smaller the SP, the better the diversity of the 
solutions.The formula of SP is as in equation (19): 
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     is the number of non-dominated solutions. 

Apply IMOPSO and NSGA-II to randomly solve 7 times raw material rationing to get Pareto optimal solution set. 
The results of the mean and standard deviation of the IGD metrics after applying the two algorithms to solve each 
of the seven ingredient ratios for 30 times are shown in Table 4.The IGD of IMOPSO is smaller, which indicates 
better convergence of the algorithms. 

The SP values of the two algorithms are shown in Table 5. the SP of IMOPSO is smaller, indicating better diversity 
of solutions for the IMOPSO algorithm. 
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Table 4: IGD comparison between IMOPSO and NSGA-II 

Model Control index 
Proportioning 

1 2 3 4 5 6 7 

IMOPSO 
Mean 1.07 0.91 -0.01 0.21 0.08 0.01 0.13 

Std 2.77 22.58 1.98 2.33 0.58 1.11 0.49 

NSGA-II 
Mean 1.08 1.48 0.54 0.24 0.58 0.41 0.61 

Std 5.08 23.17 11.09 3.33 7.96 6.07 8.56 

 

Table 5: SP comparison between IMOPSO and NSGA- II 

Model 
Proportioning 

1 2 3 4 5 6 7 

IMOPSO 1.14 0.37 0.3 0.35 0.19 0.24 0.29 

NSGA-II 1.39 1.69 0.83 0.49 0.27 0.57 0.18 

  
IV. B. 2) Comparison of running times 
The average running time of the two algorithms for seven matching solvers is shown in Table 6. IMOPSO has a 
shorter solving time and is more efficient in solving. 

Table 6: Comparison of running time between IMOPSO and NSGA-Ⅱ 

Model 
Proportioning 

1 2 3 4 5 6 7 

IMOPSO 7.32 33.23 72.74 1.63 22.32 24.3 36.65 

NSGA-II 69.99 79.26 91.28 101.47 96.88 99.1 94.07 

  
IV. B. 3) Comparison of final proportioning results 
The seven sets of final ratios obtained by the two algorithms were used to calculate the predicted values of the five 
quality control objectives, and then the values of each comparison parameter were obtained and compared with the 
actual manual ratios. The comparison data are shown in Table 7. 

Table 7: Comparison of Final Mix Ratio of IMOPSO, NSGA-II and Artificial match 

Method Control index 
Proportioning 

1 2 3 4 5 6 7 

IMOPSO 

KH 1.1 0.804 1.01 0.944 0.972 1.137 0.986 

SM 3.98 4.16 4.28 4.09 4.18 4.12 3.99 

IM 1.18 1.22 1.23 1.28 1.19 1.21 0.99 

Main material 44.15 44.28 43.79 43.6 43.67 43.75 44.34 

Auxiliary material 1.66 1.72 1.78 1.67 1.69 1.61 1.7 

Cost 617.14 610.93 530.28 567.34 531.91 599.35 511.54 

NSGA-II 

KH 0.827 0.917 1.107 0.905 0.972 1.046 1.103 

SM 3.97 4.02 4.19 3.96 3.98 4.02 4.08 

IM 1.21 1.29 1.18 1.28 1.36 1.13 1.3 

Main material 43.35 44.28 43.54 43.74 43.48 43.74 44.27 

Auxiliary material 1.63 1.42 1.8 1.59 1.44 1.73 1.57 

Cost 612.58 629.56 593.94 580.57 565.89 592.53 557.71 

Artificial matching 

KH 0.956 0.972 0.802 0.74 0.908 0.96 0.758 

SM 4.14 3.38 3.72 3.89 3.45 4.07 3.75 

IM 1.13 1.42 1.14 1.21 1.18 1.23 1.08 

Main material 43.81 43.17 43.51 44.1 44.09 44.82 43.76 

Auxiliary material 1.7 1.82 1.68 1.57 1.6 1.74 1.73 

Cost 616.57 586.8 611.41 569.58 599.08 596.04 535.4 
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From the experimental results, it can be seen that the Pareto solution obtained by IMOPSO algorithm outperforms 
NSGA-II in terms of both performance measures and algorithm runtime for ratio solving, and for the final ratios, the 
two algorithms are able to control all the control parameters within the target range compared to manual ratios. For 
the cost of raw materials, the final ratio obtained by IMOPSO algorithm can better reduce the cost of raw materials 
compared with NSGA-II solving ratio and manual ratio. Therefore, the IMOPSO algorithm proposed in this paper 
can be effectively applied in the optimization of raw material ratio solving, which reduces the ratio cost and improves 
the qualification rate of raw materials. 

V. Conclusion 
In this study, the intelligent optimization of proportioning scheme is realized by establishing a multi-objective 
optimization model of concrete proportioning and proposing an improved multi-objective particle swarm algorithm. 
In the standard test function validation, the convergence of the improved algorithm on ZDT1, ZDT2 and ZDT3 
reaches 0.00609, 0.00575 and 0.00355, respectively, and the computation time is controlled to be less than 2.166 
seconds, with the comprehensive performance significantly better than the comparison algorithm. In the practical 
application of a concrete enterprise, the improved algorithm is used to optimize seven groups of ratios, and the 
quality control indexes of the resulting scheme meet the target requirements: the limestone saturation ratio 
coefficient is maintained between 0.804 and 1.137, the silica rate is stabilized in the range of 3.98 and 4.28, and 
the aluminum rate is controlled between 0.99 and 1.28. In terms of economic benefits, the optimized raw material 
cost was significantly reduced, in which the cost of rationing scheme 3 was only 530.28 yuan/ton, saving 13.2% 
compared with the traditional method. The improved multi-objective particle swarm algorithm effectively balances 
the contradiction between quality and cost in concrete proportioning, and provides a reliable technical solution for 
the intelligent production of construction materials, which has good engineering application prospects. 
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