
International Journal for Housing Science and Its Applications 
Publish August 10, 2025. Volume 46, Issue 4 Pages 5067-5079 

5067 

 
https://doi.org/10.70517/ijhsa464349 
 
 

Feature extraction and quantitative analysis of smart wearable 
exercise data based on CNN 
Rong Zhu1,* 
1 Shandong Vocational College of Science and Technology, Weifang, Shandong, 261053, China 

Corresponding authors: (e-mail: 13371099307@163.com). 
 
 

Abstract The main advantages of smart wearable devices are their convenience and real-time nature, making them 
a great potential for the quantitative management of daily sports activities. In this study, a sports pattern recognition 
model based on smart wearable devices is proposed, which aims to recognize and classify different sports activities 
by collecting accelerometer and gyroscope sensor data, combined with feature extraction and classification 
algorithms. First, pre-processing operations such as denoising and normalization are performed on the collected 
data, and time domain features such as variance and peak are used for feature extraction. Then, Particle Swarm 
Optimization Support Vector Machine (PSO-SVM) model is used for training and classification. The experimental 
results show that the PSO-SVM model has a significant advantage over the traditional GS-SVM model in action 
recognition. Specifically, the average recognition rate of 14 sports actions is 94.55%, and the recognition rate of 
each sport is more than 85%. In addition, the training time of PSO-SVM is also significantly shortened compared to 
GS-SVM. Based on these results, this paper demonstrates that the proposed model has higher accuracy and 
practicality in practical applications, especially in the quantitative management of daily sports activities. The findings 
provide strong support for the application of smart wearable devices in the field of health management. 
 
Index Terms Smart Wearable Devices, Sports Pattern Recognition, Particle Swarm Optimization, Support Vector 
Machines, Feature Extraction, Classification Models 

I. Introduction 
The construction of a higher level of public service system for sports is an important cornerstone for accelerating 
the construction of a strong sports country, and also an important element in promoting the common prosperity of 
all people to make more obvious and substantial progress [1]. At present, the scientific and technological revolution 
led by the innovation-driven development strategy provides stronger scientific and technological support for sports 
development. Accompanied by the development of domestic information technology, sports and information 
technology are gradually integrated to promote the development of intelligent sports, and the quantitative 
management of the user's daily sports activities is also one of the important practices of intelligent sports 
development. Intelligent technology can use a variety of sensors with high technology to achieve an all-round 
perception of people's movement, and then flexibly use a variety of modern information technology means to 
process and analyze the collected information, so as to realize the intelligent service and management of sports, 
which largely makes up for the shortcomings of the development of digital sports [2]-[5]. 

Among them, the emergence of smart wearable devices boosts the management of sports activities for all people 
in the direction of scientific and intelligent development [6]. Smart wearable devices are electronic devices with 
intelligent functions that can be worn or worn on the human body [7]. As an electronic device that can realize the 
real-time detection of sports data, directional quantitative development of guidance programs, sports scene human-
computer interaction and other functions, it is increasingly widely used in sports [8]-[10]. Smart wearable devices 
provide hardware support for user sports, and their main function in sports is to monitor the body condition and 
provide data analysis [11]-[13]. At the same time, smart wearable devices can provide personalized services 
according to the individual differences of different wearers, which facilitates the formation of targeted training 
programs and improves the scientific and targeted nature of sports training [14]-[16]. Under the new situation, the 
exploration of the application path of smart wearable devices in sports management has become a popular research 
topic nowadays. 

This study is divided into three parts: first, the smart wearable device is used to collect motion data, and the data 
are preprocessed using methods such as filtering and normalization to ensure high quality data; Second, the time-
domain features of the sports data are extracted, including variance, peak, interquartile spacing and other features, 
to form a high-dimensional feature vector; third, the PSO-SVM model is used for training and testing, and the 
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effectiveness and advantages of the model are verified through experiments. The experimental results show that 
the proposed method exhibits high accuracy in the recognition of different sports categories, especially in the 
quantitative management of daily sports activities, which has a wide range of application prospects. 

II. Human motion pattern recognition model based on smart wearable devices 
With the popularity of wearable devices such as smart watches and bracelets, it is of great significance to use them 
in the field of human behavior recognition and decode human behavioral activities from them to realize the 
recognition of human movement patterns for applications such as the quantitative management of daily sports 
activities. 
 
II. A. Human motion action recognition 
II. A. 1) Data acquisition 
In the data acquisition phase, the sensors in the wearable device convert the information it senses about the human 
body's movements into electrical signals that can be easily transmitted, stored and processed according to specific 
rules. In addition to the wearable device as the hardware base, the data acquisition also requires an application on 
the smartphone or a web page on the computer as the console of the data acquisition process. Since the inertial 
sensors in the wearable device contain three-axis accelerometers and three-axis gyroscopes, the raw sensor data 
collected by the wearable device will contain three-axis acceleration data and three-axis angular velocity data. 

The set consisting of the categories of sports actions used for recognition can be denoted as 1 2{ , , , }nM m m m  , 

where 1m , 2m ,  , and nm  each represent an action. 

 
II. A. 2) Data pre-processing 
Data preprocessing refers to denoising or standardizing the raw sensor data collected. 

The purpose of denoising is to remove the components of the original sensor data that have nothing to do with 
the action itself, and the sources of noise include the irregular jitter produced by the human body during movement 
and the measurement error of the sensor equipment itself, etc. The existence of these noise components in the 
original sensor data will have an impact on the recognition effect of the action. 

Normalization (also known as normalization) operation is a crucial part of action recognition. After normalization, 
the effect of the scale between acceleration and angular velocity data is eliminated, and the data from each axis will 
be of the same order of magnitude, thus reducing the effect of the above factors on the accuracy of action recognition. 
Commonly used normalization operations include Z-score normalization and min-max normalization. 

The Z-score normalization uses the mean and standard deviation of the raw sensor data to process the data into 
data that satisfies a standard normal distribution (mean zero, standard deviation one). Assuming that the vector X  
represents the raw sensor data from an inertial sensor for a particular axis, the data obtained after the normalization 
operation is: 

 
X X

X
S

   (1) 

where X  and S  are the mean and standard deviation of the original sensor data X , respectively. 
The min-max normalization, also known as divergence normalization, is based on the principle of mapping the 

original sensor data into values located in the [0,1]  closed interval with the help of linear transformations: 

 
min

max min

X
X

 


 (2) 

where max  and min  are the maximum and minimum values in the original sensor data X  respectively. When 
using this method, if new data need to be added to the data X  , then max   and min   may change, and the 
normalization results change accordingly. 

Indicators of the choice of the two standardization methods: when using distance as a measure of similarity 
between data or when PCA techniques are needed to assist in classification or clustering tasks, Z-score 
standardization is appropriate; whereas when distance, covariance, or data not obeying a normal distribution are 
not used, min-max standardization or other standardization methods are more appropriate. 

A segment of inertial sensor data of duration ( {1,2, , )T T t   ) can be represented after pre-processing 
operations such as denoising and normalization as (the original text does not give the complete form of the 
representation here): 



Exploring the Application of Smart Wearable Devices in Quantitative Management of Daily Physical Activity 

5069 

 

1 1 1 1 1 1

( , , , , , )

x y z x y z

x y z x y z

t t t t t t
x y z x y z

A A A G G G

D A A A G G G

A A A G G G

 
 

   
  
 

       (3) 

Among them, the column vectors xA , yA  and zA  are obtained by preprocessing a piece of sensor data from 

the accelerometer X , Y  and Z  axes with a duration of T , respectively. The column vectors xG , yG , and zG  

are obtained by preprocessing a piece of sensor data from the gyroscope X , Y , and Z  axes with a duration of 

T , respectively. t
xA , t

yA , and t
zA  represent the data values of data xA , yA , and zA  at time t , respectively. t

xG , 

t
yG , and t

zG  represent the data values of data xG , yG , and zG  at time t , respectively. 

 
II. A. 3) Data slicing 
Due to the large number of actions performed continuously by the exerciser during data acquisition, a segment of 
sensor data with a duration of T  will likely contain multiple actions. For more convenient labeling and feature 
extraction, a single data segment used to feed into the model to recognize an action should contain fewer action 
data sample points. Therefore, after the data preprocessing operation, the data D   obtained from the 
preprocessing operation needs to be sliced into a series of data segments S : 

 1{ , , }kS s s   (4) 

where the data segment is  represents a piece of data that lasts from moment ,i startt  to moment ,i endt . 

 
II. A. 4) Feature extraction 
Feature selection and feature extraction are a pair of interrelated but vastly different steps. The task of the feature 
extraction step is to extract feature vectors from the original sensor data segments that are representative of the 
data segments, while the task of the feature selection is to eliminate useless feature vectors from the set of feature 
vectors described above. Here, the feature extraction step and the feature selection step are connected to form a 
feature extraction and selection model  , and the feature vectors obtained from the data fragment is  extracted 
by the model   can be represented as: 

 ( , )i iF D s   (5) 

All the extracted features constitute the feature space. The first N  feature vectors iF  (where 1, 2, ,i N  ) and 

their corresponding labels im  are selected to form the training dataset 1{( , )}N
i i iF m  , and the remaining feature 

vectors and their corresponding labels collectively form the test dataset v . 
 
II. A. 5) Model Training and Action Recognition 
Action recognition belongs to the classification task, which is accomplished through two phases: the model training 
phase and the model testing phase. 

The goal of the model training phase is to learn an optimal model that can be used to recognize actions using the 
labeled action data in the training dataset. In the model training phase, an optimization algorithm is used to update 
the model parameters   so as to maximize the recognition accuracy of the model on the training dataset  , and 
finally the classification model   is obtained. 

And the goal of the model testing phase is to recognize the unlabeled action data in the test dataset using the 
action recognition model learned in the model training phase. In the model testing phase, i.e., the action recognition 
phase, the model   maps the feature vector iF  in the test dataset v  to each action jm M  with confidence 

 ,j iP m F  : 

  , ( , ),j i i jP m F F m M     (6) 

Eventually, the action ˆ jm  corresponding to the largest confidence level maxP  is identified as the action to be 

predicted: 
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  ˆ argmax ,
j

j j i
m M

m P m F 


  (7) 

In the step of feature extraction and selection, the test data set formed at last contains label information 
corresponding to the action data. The above action recognition result can be compared with its corresponding label 
in the test data set, and if it is consistent, it is recognized correctly, otherwise it is recognized incorrectly. 

 
II. B. Human Movement Action Feature Extraction 
In order to extract the time-domain features of the motion sensor, it is necessary to filter the raw data of the sensor 
to remove the noise and burrs in the original signal. In this paper, median filtering and smoothing filtering are used 
to preprocess the data, and the median filtering process is carried out once every 5 data points, and let 1 2, nx x x  

be a sample of the sensor data x , and the mathematical model of smoothing filtering is [17]: 

 2 1 1 20.01 0.01 0.9 0.03 0.05i i i i i ix x x x x x         (8) 

II. B. 1) Feature extraction 
Among the three-axis MEMS acceleration sensor signals and three-axis MEMS angular velocity sensor signals 
acquired by the inertial measurement unit, different feature quantities can be extracted from each axis data. Feature 
extraction has a great impact on the accuracy of multi-motion pattern recognition. The extraction of time-domain 
features is of low computational complexity and short time-consuming, and in this paper, we finally select a variety 
of time-domain features suitable for systems with high real-time requirements. 
 
II. B. 2) Extraction of Acceleration Sensor Time Domain Features 
(1) Variance 

Variance is the extent to which the data deviates from the mean, the larger the variance, the greater the deviation 
of the data, i.e., the tester carries out a larger range of actions in the behavioral pattern. When describing the 
volatility of the data, the variance and the standard deviation have the same function, but the standard deviation 
needs to open the root sign of the variance, and the amount of arithmetic is larger than the variance. The combined 
acceleration is the scalar sum of the three-axis acceleration, which is more stable than the data of a single axis and 
will not be limited by the way the sensor is worn, so the combined acceleration variance is used in this paper for the 
recognition of standing and running. The formula for the combined acceleration is shown below: 

 2 2 2
x y zA a a a    (9) 

where, A  is the combined acceleration of three-axis acceleration; xa , ya , za  are the accelerometer three-axis 

data, respectively. 
Let 1 2, nx x x  be a sample of the angular velocity sensor data x , the variance formula is shown below: 

 2

1

1
( )

n

i
i

Var x x
n 

   (10) 

where, Var  is the variance; x  is the mean of the n  observations of the sample. 
(2) Quartile Spacing 
Quartile spacing is also one of the characteristics used to measure the strength of signal variation, which is not 

affected by anomalous signals and peaks. The data xa  of accelerometer x -axis is arranged from smallest to 

largest as 1 2, , , nb b b , and 1 2, , , nb b b  are divided into four, and the quartile spacing is the difference between the 

third quartile and the first quartile, which is calculated by the formula shown in the following equation: 

 3 1IQR Q Q   (11) 

where, IQR  is the interquartile spacing; 1Q  is the first quartile; 3Q  is the third quartile. 

(3) Peak 
Peak value is used to describe the intensity of the signal change in a cycle, there are positive and negative, the 

larger the peak value, the greater the amplitude of the movement. The peak size of the three axes of the 
accelerometer represents the movement of the tester in different directions, such as forward, backward, left and 
right, respectively. The moment the tester falls forward, the peak data of the accelerometer in the x -axis is larger 
than that of the daily mode, and the change of the peak value of the three axes of the accelerometer can be used 
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to recognize the specific way of the tester's fall. The peak value is simpler to calculate and can truly reflect the 
behavioral pattern of the tester, this paper adopts the peak value as the feature quantity to identify the sprawling 
and lying down. 

 
II. B. 3) Extraction of time-domain features of the angular velocity sensor 
(1) Mean value 

Mean value is an indicator to reflect the intensity of change in a set of data, its advantage lies in the ability to 
make full use of the characteristics of the data, and the calculation is simple, the calculation is small, the 
shortcomings are susceptible to the influence of extreme data. The formula for the mean value is shown below: 

  1 2
1

nM x x x
n

     (12) 

where, M  is the mean; n  is the number of samples; ix  is the sample data. 

(2) Skewness 
Skewness is used to measure the direction and degree of data skewness. Let 1 2, nx x x  be a sample of angular 

velocity sensor data x , then the skewness of angular velocity sensor data x  can be estimated as: 

 
3

3

( )

( 1)( 2)

i
s

s

n x x
k

n n d




 


 (13) 

In Eq. (13): sk  is the skewness; ix  is the sample observation; n  is the number of samples; x  is the average 

of n  observations of the sample; sd  is the sample standard deviation. 

Aiming at the problem of the difficulty of recognizing the motion action, this paper adopts the mean, variance and 
skewness of the angular velocity sensor as the feature parameters of the secondary recognition while the 
acceleration quartile spacing is selected as the feature parameter. 

 
II. C. Classification of human locomotor movements 
II. C. 1) Feature Fusion 
In order to amplify the difference of information characterizing different actions, feature fusion can be carried out to 
amplify the difference by fusing the features with higher intensity of information characterizing the actions, and finally 
realize action recognition. When fusing features, the most important thing is to judge the distinguishability of the 
fused features. And judging the distinguishability can be solved by quantifying an index, commonly used indexes 
are relative entropy, Sammon's stress, Davies-Boulding clustering index (DBI), etc., and among them, DBI has the 
strongest intuition, so this topic chooses to adopt DBI indexes for evaluating the fusion of features. 

When using DBI index for evaluation, there are mainly the following steps: 
(1) Define a decentralized value iS : 

 

1

i
1

1
q qn

j i
j

S X A
n 

 
  
 
 
  (14) 

Eq. (14) represents the degree of dispersion of the data, where jX  represents the j  data point in the i  class, 

iA  represents the center of the i  class, the values of q  have 1 and 2, and when q =1 represents the mean 
value of each point to the center point; q =2 indicates the standard deviation from each point to the center point, 
and in order to better measure the degree of data dispersion, q =2 is selected for this topic. 

(2) Define the value of a distance ijS : 

 

1
2 2

ij
1

n

ki
k

D a akj k


 
  
 
 
  (15) 

kia  denotes the value of the k th attribute at the center point of the i th class, and ijD  is the distance between 

the center of the i th class and the k th class. 
(3) Define a value of similarity ijR  by the value of dispersion and the value of distance: 
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 ij
i j

ij

s s
R

D


  (16) 

(4) The DBI   index is obtained by calculating and selecting the maximum value in ijR   and averaging the 

maximum similarity values for each class: 

 
1

1
(max)

N

ij
i

DBI R
N 

   (17) 

The above is the calculation process of DBI index, and in the definition, the larger the value of DBI index 
represents the larger the similarity, so its representative significance is smaller. 

 
II. C. 2) Classification Methods for Support Vector Machines 
SVMs dealing with multiclass problems need to be constructed from a single classifier to a multiclassified one. There 
are two methods, direct and indirect. Direct modification of the objective function is the direct method; the 
combination of multiple is the indirect method. The indirect method is mainly categorized into one-to-one (OVO) and 
one-to-many (OVR). 

Suppose there are 4 classes of samples categorized according to OVO and OVR respectively. As shown in the 
figure it can be seen that for the classification of 4 classes of samples OVO requires 6 classifiers while OVR requires 
only 4. However, it is not comprehensive enough to consider only the number of classifiers, but also the amount of 
computation of each classifier. In the training of OVR classifiers need all the data involved in training, when more 
than one classifier test results are positive, but also consider their pre-confidence, while OVO each time only two 
types of according to the training, so a comprehensive comparison of the OVO classifiers of the arithmetic is smaller. 

Because this paper will be nine action classification, sample data is more, so the comprehensive consideration 
of processing speed and accuracy of the problem finally chose the classification method of OVO. 

 
II. C. 3) Optimization of Support Vector Machines by Particle Swarm Algorithms 
As can be seen from the previous section, SVM classification performance is mainly dependent on g  and C . g : 
the construction of the kernel function; C   the value of the penalty factor, g   affects the distribution of high-
dimensional spatial data, and the parameter C   mainly mediates the empirical risk and confidence range. 
Therefore, in order to improve the classification ability of SVM it is necessary to optimize these two parameters and 
find the best combination of them. 

In the search for the optimal combination of the two parameters, there are mainly grid methods based on cross-
validation and algorithms such as genetic algorithms and particle swarm algorithms. These three methods can find 
the optimal parameters, but the grid method search time is too long, especially for the large amount of data in this 
topic, so this topic mainly uses the faster search speed of genetic algorithm (GA) and particle swarm algorithm 
(PSO) two methods for the search of the two parameters of the search for the optimal, after the experimental 
validation of the optimization of PSO on the SVM is known to make the classifier better, so the next step is to only 
introduce the optimization principles of PSO optimization principle for SVM [18], [19]. 

PSO, is designed by simulating the feeding behavior of bird flocks. This model compares the birds in the flock to 
a volume-less and mass-less particle, and the best position in space is found by searching, competing, and 
coordinating, which has the advantages of simplicity, searching the whole globe, fast speed, and insensitivity to the 
size of the population. 

(1) The basic PSO algorithm is as follows: 
Let the particle population size be N , the number of iterations M , and the particle dimension S -dimensional, 

then the coordinates of particle ( 1,2, , )i i N    can be written as 1 2( , , , )i i i isx x x x   , and substituting the 

coordinates into the objective function to calculate the fitness, which will in turn select the optimal position of the 
particle individual 1 2( , , , )i i i isp p p p    and the global optimal position 1 2( , , )g g g gsp p p p   . 1 2( , , , )i i i isv v v v   

is the particle velocity, and its product with time is the distance traveled, and let ( )f x  be the objective function for 

minimizing this particle swarm for adaptation: 

 
1

1
1 1

, ( ) ( )

, ( ) ( )

k k k
id id idk

id k k k
id id id

p f x f p
p

x f x f p




 

  


 (18) 
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p f p f p
p

p f p f p




 

  
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 (19) 

Each particle gets a new position and velocity in the new (1,2, , )d S  -dimensional subspace, which can be 
updated as: 

 1 1k k k
id id idx x v    (20) 

 1 *
1 1 2 2( ) ( )k k k k k k

id id id id gd idv v c r p x c r p x       (21) 

In Eq. (20), ( 1, 2, , 1)k k M   is the current iteration number, k
idp  is the optimal position of the particle history 

of i , while k
gdp  is the optimal position of the particle swarm, *  is the inertial weight, which can be used to control 

the velocity of the particles, and 1c , 2c  are the acceleration constants. which can influence the individual and 

global learning factors; 1 2, [0,1]r r  , and so on, iterating until the fitness is satisfied, then the search for the optimal 

end, you can get the optimal parameters after the search. 
The above is the basic algorithm structure of PSO, when PSO optimizes SVM, it is necessary to reconstruct the 

PSO-SVM classifier, and optimize the two parameters C  and g , so as to get the smallest error of a group of 
parameters to make the best classification effect. The specific steps are shown below. 

(2) PSO-SVM algorithm is as follows: 
a) Particle swarm initialization: because of finding the two optimal parameters C  and g , the particle swarm is 

2-dimensional, so that [0.1,100]C  , [0.1,1000]g  , so that the size of the population is chosen to be 50, and the 
number of iterations is 100, so that the particle swarm is initialized, and the velocity and position are updated as: 

 0 min max min(0,1)( )ij j j jv v r v v    (22) 

 0 min max min(0,1)( )ij j j jx x r x x    (23) 

The superscript on the left side of the equation denotes the generation of the swarm, the subscript ij  denotes 

the i  particle j -dimensional position, and i  takes a natural number from 1 to 50, 1j   or 2. max (1000,100)jx  , 

min (0.1,0.1)jx  , max max0.6*j jv x , min max
j jv v  . 

b) Select the fitness function: take the fitness value of the parameter as 1err CV  , CV is the recognition rate 
of the action under the parameter, and err  is the error rate of the action. The PSO takes the same value of fitness 
as that of the GA, which is the error rate. 

c) Calculate the fitness value. 
d) Determine the global optimal position again based on the individual optimal position determined first. 
e) Parameter update: The parameters of Eqs. (24) and (25) are updated by deriving the position from (4): 

 1 1k k k
ij ij ijx x v    (24) 

 1 *
1 1 2 2( ) ( )k k k k k k

ij i ij ij ij gj ijv v c r p x c r p x       (25) 

 

max min min
min*

min

max

( )*( )i
i avg

avgi

i avg

f f
f f

f f

f f

 





     
 

 (26) 

*
i  is the adaptive weight coefficient of the i th particle and min 0.4  , max 0.9  , which is calculated as (26). 

Let 1 1.2C   and 2 1.7C  , and then the execution of (3) to (5) is repeated successively according to the loop 

condition, and finally the termination condition is reached. 

III. Daily physical activity quantitative management application practice 
In this chapter, the human movement pattern recognition model based on smart wearable devices proposed in this 
paper will be applied to the quantitative management of daily sports activities to explore its practical application 
performance. 
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III. A. Experimental design 
III. A. 1) Experimental Objects 
A total of 8 healthy testers were invited to participate in this experiment. The testers were not allowed to do strenuous 
exercise recently and were guaranteed to have enough sleep to ensure that they could efficiently complete the 
acquisition task during the action data collection process. The testers will perform running, jumping rope, push-ups, 
deep squats, pull-ups, basketball dribbling, soccer passing, badminton long jump, standing long jump, flat support, 
boxing straight punch, hurdles, bicycle pedaling 14 types of sports movements, numbered from 1 to 14 in order. 
 
III. A. 2) Experimental data collection 
In this paper, we use the program developed by Android Studio to record multiple acceleration data changes of real-
time smart wearable devices. Based on the frequency of daily human activities and the fact that the smart wearable 
device in this study needs to be placed on the wrist where the frequency of movement is high, the sampling interval 
in this study is chosen to be 30ms. 

When the user clicks on the “Record” button, all the data displayed on the screen starts to be automatically 
generated into a txt file and stored in the device. When the recording is completed, click the stop button to finish the 
recording, and automatically change the line in the txt text to distinguish and wait for the next recording. In order to 
prevent unnecessary acceleration caused by the user's redundant movements at the beginning and end of data 
collection, the data collected in the first 2s and the last 2s were discarded and not considered. The moment when 
the experimenter clicked the “Record” button was recorded at the same time as the motion states were recorded, 
so that the motion states of the recorded data could be distinguished during data processing. 

One-half of each type of motion state was randomly selected as the training set, and the remaining one-half as 
the test set, so as to ensure that the data in the training set and the test set did not overlap with each other. Each 
data set has 9 feature values (corresponding to F1~F9). 

 
III. B. Visualization of experimental data 
The distribution of eigenvalues of all sports action samples obtained in MATLAB is specifically shown in Fig. 1. 
Figures (a) to (g) correspond to the accelerometer sensor mean, accelerometer sensor variance, accelerometer 
sensor peak, gyroscope sensor mean, gyroscope sensor variance, gyroscope sensor peak, and covariance values, 
respectively. The acceleration sensor mean value in the figure can better avoid the influence of single data on the 
results, and the peak specificity of different sports actions is stronger, the behavioral pattern is distinguished 
obviously, which is convenient for the analysis of the experimental results data later. 

  

(a)Mean of acceleration sensor (b)Acceleration sensor variance 
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(c)Peak acceleration sensor (d)Gyroscope sensor mean value 

  

(e)Gyroscope sensor variance (f)Gyroscope sensor peak 

 

(g)Covariance value. 

Figure 1: Distribution of eigenvalues of sports action samples 
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III. C. Experimental results and analysis 
The feature vectors F1, F2, F3, F4, F5, F6, F7, F8, F9 obtained by fusion according to the separability index are 
sequentially inputted into the two classifiers PSO-SVM adopted in this study and GS-SVM as a comparison to carry 
out parameter optimization, model training, and classification for action recognition, and the resulting results of the 
average test recognition rate under different feature fusion vectors are shown in Table 1. 

From the table, it can be seen that with the increase of the number of fused features: 
(1) In terms of the average recognition rate of the 14 types of upper limb actions, PSO-SVM is larger than GS-

SVM; both classifiers show a trend of increasing and then decreasing, and when the feature fusion vector is F6, 
both GS-SVM and PSO-SVM have the largest average recognition rate of the 14 types of actions at this time, and 
the highest average recognition rate of GS-SVM and PSO-SVM classifiers are respectively 91.82% and 94.55%; 
after reaching the maximum recognition rate, with the increase of the number of fusion features, the recognition 
rates of both classifiers appear to decline. although F9 contains a total of 10 relatively high separability features in 
the time domain, frequency domain, time-frequency domain, and entropy features, the recognition results of F9 are 
not ideal, and even the effect is the worst, which means that it is not the case that the higher the number of fusion 
features, the higher the recognition rate. 

(2) The training time of both trainers shows a growing trend; the training time of PSO-SVM is much better than 
that of GS-SVM. 

Table 1: Average test recognition rate under different feature fusion vectors 

Fusion feature vectors SVM type Training time(s) Test average recognition rate(%) 

F1 
GS 885 88.13 

PSO 797 88.57 

F2 
GS 1141 88.93 

PSO 878 89.91 

F3 
GS 1310 89.64 

PSO 956 91.52 

F4 
GS 1671 90.09 

PSO 1111 91.88 

F5 
GS 2440 90.45 

PSO 1316 92.41 

F6 
GS 2865 91.82 

PSO 1433 94.55 

F7 
GS 3859 90.63 

PSO 1658 90.36 

F8 
GS 4427 89.02 

PSO 1700 88.75 

F9 
GS 4421 86.88 

PSO 2973 87.32 

 
In order to further consider the recognition rate of each action, the recognition rates of 14 kinds of actions under 

different fusion features are collated, and the collation results are specifically shown in Table 2. It can be seen that 
when F6 is used as an input feature, the recognition rate of individual actions at this time are all higher than 82%, 
there is no phenomenon that a certain action has a lower recognition rate, and the number of action categories with 
a recognition rate higher than 90% is more than the rest of the features as input features. 

Table 2: Recognition rate of 14 kinds of actions under different fusion feature vectors 

Action category SVM type 
Fusion feature vectors 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

1 
GS 88.77 88.59 91.45 89.84 93.82 95.11 91.11 89.81 87.39 

PSO 89.98 92.42 93.94 96.33 97.39 96.24 93.81 88.84 92.46 

2 
GS 96.25 96.19 94.87 96.41 95.04 96.37 90.11 91.19 91.36 

PSO 97.39 97.53 97.48 94.93 93.94 93.65 91.24 88.77 91.14 

3 
GS 84.98 83.68 81.34 82.43 80.16 82.63 84.83 83.63 78.63 

PSO 81.08 81.45 83.55 86.19 85.06 88.86 85.14 85.05 78.74 

4 GS 87.35 86.29 84.95 88.67 86.35 91.09 87.31 85.04 87.39 
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PSO 84.96 83.82 87.42 92.56 94.84 92.31 86.23 86.31 86.3 

5 
GS 92.69 94.98 96.17 95.06 96.44 93.87 92.32 93.64 91.08 

PSO 96.2 96.28 96.37 97.56 94.95 95.13 94.87 90.2 88.71 

6 
GS 87.46 91.07 91.08 93.94 93.76 92.63 94.97 91.4 89.97 

PSO 86.17 92.5 92.37 94.83 92.36 95.1 91.15 91.1 88.56 

7 
GS 76.28 78.66 77.59 81.31 77.42 81.45 83.95 79.89 75.05 

PSO 74.93 79.8 83.75 84.91 82.41 82.85 82.36 80.15 74.9 

8 
GS 96.39 94.9 92.4 93.59 92.53 97.6 93.81 93.92 90.02 

PSO 98.87 97.54 97.44 94.91 93.94 95.07 92.49 91.38 90.16 

9 
GS 90.1 91.12 94.84 87.69 85.15 80.84 84.96 81.14 78.63 

PSO 91.11 93.7 92.65 84.9 89.89 89.94 86.05 83.76 82.38 

10 
GS 91.41 92.55 93.84 92.45 93.56 93.39 92.36 89.84 88.58 

PSO 91.41 90.19 91.39 90.09 92.48 96.59 96.2 89.92 91.06 

11 
GS 89.99 91.13 92.55 93.9 95.17 93.87 94.82 94.94 91.05 

PSO 91.4 90.16 91.2 92.3 93.72 97.46 93.61 95.06 90.17 

12 
GS 87.56 88.63 89.92 91.08 92.3 94.99 96.07 92.66 88.55 

PSO 88.58 92.54 93.76 92.69 94.86 95.13 92.47 96.09 91.44 

13 
GS 82.33 81.34 87.55 87.57 92.59 91.43 91.3 88.55 87.41 

PSO 87.44 85.03 92.68 91.29 92.45 92.51 87.48 87.51 87.57 

14 
GS 82.55 85.14 86.29 87.61 92.36 83.71 89.94 89.95 89.85 

PSO 80 86.11 87.39 92.51 95.04 97.3 91.05 88.95 88.68 

 
In order to further visually compare the recognition rate of each action in GS-SVM and PSO-SVM for the F6 fusion 

feature vector inputs, the test classification results are plotted specifically as shown in Figure 2. From the figure, it 
can be seen that the PSO-SVM used in this paper has a single recognition rate of more than 85% and a recognition 
rate of 90% for 13 actions, while the recognition rate of GS-SVM is lower than 85% for four actions, such as action 
3, action 7, action 9, and action 14, and the PSO-SVM is lower than the GS-SVM only in the recognition rate of two 
actions, such as action 2, action 8, and so on. 

 

Figure 2: Comparison of action recognition rate under F6 fusion feature 

Therefore, considering the training time, the average recognition rate of 14 kinds of actions, the recognition rate 
of single kinds of actions and other factors, the PSO-SVM classifier adopted in this paper was proved to have the 
optimal performance through comparative analysis, and the optimal fusion feature F6 was used as the final input 
feature, and the test recognition of 14 kinds of actions was specifically shown in Table 3. Compared with other 
feature types such as time domain and entropy features, the average action recognition rate of multi-feature fusion 
adopted in this paper is the highest 94.55%, which significantly improves the performance of action recognition 
types and can better meet the diverse needs in the quantitative management of daily sports activities. 
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Table 3: Comparison of recognition rate of different features 

Type of characteristics Average action recognition rate(%) 

Horizon 92.6 

Frequency domain 89.08 

Time-frequency domain feature types 91.06 

Entropy characteristics 86.68 

Multi-feature fusion 94.55 

 
Overall, the human movement pattern recognition model based on smart wearable devices proposed in this paper 

can play a better role in the quantitative management of daily sports activities and has good application effects. 

IV. Conclusion 
In this paper, the proposed method of sports pattern recognition based on smart wearable devices adopts the 
particle swarm optimization support vector machine model to classify the sports data efficiently. In the experiments, 
14 different sports activity data are used and the PSO-optimized SVM model shows better performance than the 
traditional GS-SVM model. With the input of the optimal feature fusion vector F6, the PSO-SVM model achieves an 
average recognition rate of 94.55%, which is significantly better than other feature fusion methods. Especially in 
terms of action recognition accuracy, PSO-SVM shows high accuracy in the recognition of multiple motion types. 

Specifically, among the 14 types of motions, the PSO-SVM model's recognition rate exceeds 85% for 13 types of 
motions, and the recognition rate of several of these motion categories exceeds 90%. In addition, the training time 
of PSO-SVM is relatively short, which further improves the usefulness of the model. In the experiments comparing 
different feature fusion methods, the multi-feature fusion-based approach demonstrated more excellent 
performance, especially when dealing with motion patterns with large differences, the fused features significantly 
improved the recognition effect of the model. 

In summary, the smart wearable device-based exercise pattern recognition method can be effectively applied to 
the quantitative management of daily physical activities with high recognition accuracy and strong application 
capability, providing new ideas and methods for personalized health management. 
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