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Abstract Wind power, as an important part of clean energy, plays a key role in the global energy transition. However, 
wind turbines operate in harsh environments for a long time, and equipment failures occur frequently, which 
seriously affects power generation efficiency and economic benefits. Aiming at the difficulty of fault identification 
under complex working conditions of wind turbines, this study proposes a multi-dimensional anthropomorphic 
condition monitoring method based on CEEMDAN-TCN. The method firstly adopts fully adaptive noise ensemble 
empirical modal decomposition to decompose the signals of the unit operation data to eliminate the modal aliasing 
phenomenon, and then utilizes time-domain convolutional network to predictively model the decomposed intrinsic 
modal components and combines with adaptive crag analysis to realize the fault feature extraction. The 
experimental results show that the proposed method triggers the alarm 2 h 17 min, 55 min, and 1 h 13 min ahead 
of time compared with CNN, LSTM, and GRU models, respectively, in gearbox fault warning, and the prediction 
accuracy is significantly improved. In the pitch system fault diagnosis, the pitch power ratio in the fault state crosses 
the range of 0.5-2.0, while the normal state is only 1.0-2.0. The method effectively solves the problem of 
misjudgment and omission of the traditional method through deep mining of spatio-temporal correlation information, 
and provides a reliable technical support for the intelligent operation and maintenance of wind turbines. 
 
Index Terms Machine Learning, Multi-dimensional Mimicry, Condition Monitoring, Fault Identification, CEEMDAN-
TCN, Adaptive Cliffiness 

I. Introduction 
As a renewable energy source, the use of wind energy for power generation can not only reduce the consumption 
of resources and alleviate China's resource constraints, but also greatly reduce the pollution caused by the 
environment, and make a great contribution to the promotion of China's energy consumption structure [1]-[3]. Wind 
turbine is the core equipment for wind power generation, which mainly converts kinetic energy into mechanical 
energy, and then converts mechanical energy into electrical energy [4], [5]. However, due to the location of mostly 
some remote areas and high mountains, the harsh natural environment, variable wind speeds and the unstable 
long-term impact of external loads on the internal components of the wind turbine can easily cause failures, 
especially the main failures of the three parts of the gearbox, generator, and inverter [6]-[9]. Therefore, wind turbine 
condition monitoring and fault identification are of great significance for its safe and stable operation. 

Detection as well as fault diagnosis of wind turbines is a crystallization of artificial intelligence through the 
integration of several systems such as computer systems, electrical systems, control systems, etc. Numerous wind 
farms in China can be integrated into a single monitoring system, and in a single monitoring system it can be 
detected whether or not the power plants across the country are operating normally [10]-[13]. We need to collect 
fault data, develop generator set components suitable for power generation under local environmental conditions 
according to different conditions in different regions, effectively solve the occurrence of faults fundamentally, improve 
the service life of parts, increase the cycle of power generation, and combine advanced technology to improve the 
accuracy of monitoring technology, so that the occurrence of faults can be dealt with in a timely manner, and China's 
monitoring and fault diagnosis technology for generator sets can be improved to a greater extent [14]-[17]. 

In this study, a multi-dimensional anthropomorphic condition monitoring model is constructed by integrating signal 
decomposition technology and deep learning method, which realizes real-time health assessment of key 
components of wind turbine. Firstly, the CEEMDAN algorithm is used to adaptively decompose the complex unit 
operation signal, effectively eliminate the modal aliasing problem and extract the intrinsic modal components of 
different frequency features, then use the parallel computing advantage of TCN network and the long-term 
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dependence modeling ability to predict and analyze each component, and finally combine the adaptive kurtosis 
analysis method to realize the accurate extraction and classification and identification of fault features, so as to 
establish a complete technical system from data preprocessing to fault diagnosis. 

II. Construction of wind turbine condition monitoring model based on multi-dimensional 
mimicry 

II. A. Wind turbine mechanism and SCADA system 
Wind turbines are devices that convert wind energy into electrical energy, and because of their more complex 
construction, they are highly susceptible to abnormal failures. In order to ensure their smooth operation at high 
altitude, the manufacturing process, material structure, and control strategy of wind turbines are extremely critical, 
so in order to better diagnose and monitor the failures of wind turbines, it is particularly important to have an 
understanding of the structure and mechanism. In addition, most of the wind farms have been managed by installing 
SCADA systems, which store a large amount of historical data information for fault diagnosis. This paper briefly 
describes the mechanism of wind turbines and SCADA systems as a basis for research on fault diagnosis. 
 
II. A. 1) Introduction to wind turbines 
(1) The main structure and principle of wind turbines 

The internal structure of wind turbine mainly contains blades, hubs, gearboxes, generators, nacelles, towers and 
so on. It includes nine key components, including “wind wheel system, tower, nacelle, transmission system, 
generator, pitch system, yaw system, hydraulic system and control system”. 

The working principle of wind turbine is the process of energy conversion, wind energy through the impeller into 
mechanical energy to complete the first conversion, and then the energy through the transmission system in the 
main shaft, gear box and flexible coupling to the generator, the generator will eventually be converted into 
mechanical energy to complete the second conversion of energy, and finally through the transformer and other 
appropriate equipment to the power grid feed. 

(2) Classification of wind turbines 
According to the classification of grid-connected: divided into off-grid and grid-connected two types, the difference 

between the two is whether or not they are directly connected to the grid, off-grid type independent operation and 
do not access the grid, applicable to the place where the power consumption is relatively small, the scope of 
application is small. 

 
II. A. 2) Common forms of failure of wind turbines 
(1) Common Failure Forms 

Wind turbine structure is complex, and most of the wind farms are built in remote areas, the natural conditions 
are relatively harsh, by the rain, snow, wind and sand and other extreme weather, coupled with the design height of 
the tower is rising, it is very susceptible to gusts of wind brought about by the impact of the load, as well as a variety 
of loads generated during operation. Wind turbine failure types are more, roughly divided into two categories, one 
is mechanical failure, the other is electrical failure. 

(2) Wind turbine blade icing failure 
Blade icing includes two kinds of icing in the cloud and precipitation icing, and icing in the cloud can be divided 

into two kinds of freezing rain and freezing fog, while precipitation icing is mainly divided into freezing rain and snow 
and frost. This paper mainly through the deep learning method, fully utilizes the wind turbine data collected in the 
SCADA system to analyze and model, and finally completes the diagnosis of icing faults. 

 
II. A. 3) Introduction to SCADA systems 
At present, most of the wind farms have installed SCADA system [18] to maintain and manage the data of the wind 
turbines in the wind farm, especially for large wind farms with hundreds of units, the application of this system greatly 
improves the management efficiency. The SCADA system mainly consists of the wind turbines in the wind farm, the 
upper computer, the lower computer, the communication line, the data acquisition and the monitoring equipment, 
etc. The data acquisition equipment in the wind farm will obtain the operating information of the units in real time. 
The data acquisition equipment of the wind farm will make timely and accurate acquisition of the operation 
information of the wind turbine in real time, and the collected data include wind speed, power, blade angle, blade 
speed and acceleration, temperature, etc., which can be generally categorized into two major categories, namely, 
discrete quantity and continuous quantity. 

Discrete quantity refers to the two different states represented by 0 and 1, and is mainly collected from the 
generator, yaw, lubrication and hydraulic system; while continuous quantity refers to the numerical values in a 
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continuous period of time to show the trend of the unit's performance, including the temperature, speed and pressure 
of the unit's key position and other parameters. 

The most important role of the monitoring center is to monitor the operating status of the unit and to provide 
alarms for faults, and to provide timely alarms to the manager of the electric field when faults occur. 

In this paper, based on SCADA data and under the premise of analyzing the mechanism of wind turbine, the data 
set is preprocessed and features are extracted, and a model is built using the deep learning method to realize timely 
and accurate early warning of faults. 

 
II. B. Acquisition and Processing of Key Data for Wind Power Systems 
II. B. 1) Data collection 
In this section, the raw operational data from February to April 2024 for a particular wind turbine in a wind farm in 
Sichuan is analyzed. In the process of data collection, the data reaches tens of thousands or even hundreds of 
thousands. If every data is used as an analysis sample, it will take a long time, so it is very necessary to sample the 
data. In this paper, the systematic sampling method is adopted to carry out. There are dozens of wind turbine 
operation data such as time, average active power, wind speed, turbulence intensity, etc. Since this paper studies 
the mining of temperature data, the data related to temperature is selected for analyzing and mining. The extracted 
data are time, wind speed, average active power, air temperature, gearbox speed, gear oil temperature, gearbox 
inlet temperature, gearbox bearing temperature, and nacelle temperature. 
 
II. B. 2) Data quality analysis 
(1) wind power introduction 

The output power of the wind turbine is related to the size of the wind speed at the hub height, air density, the 
diameter of the wind wheel, the wind energy utilization factor, transmission efficiency and mechanical efficiency, and 
the relationship between power and each variable is: 

 
30.5 p t gP SV C   (1) 

where P  denotes the output power of the wind turbine, kW;   denotes the air density, 3/kg m ; S denotes the 
wind turbine swept area, 2m ; pC  denotes the wind energy utilization coefficient, generally between 0.2 and 0.6, 
with a maximum of 0.55; t  denotes the mechanical efficiency of the wind turbine drive unit; g  denotes the 
mechanical efficiency of the generator. V  denotes the hub height wind speed, /m s ; Eq. (2) denotes the wind 
turbine swept area, and Eq. (3) is the final wind power calculation method: 
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8 p t gP D V C    (3) 

The proportionality between the energy obtained from the wind and the energy contained in the wind is known as 
the Bates power coefficient. 

(2) Analysis of outliers 
Wind turbines are greatly affected by climate, and wind speed and air temperature will affect their power 

generation capacity. 
Icing: the wind turbine studied in this paper is constructed in a wide area, the air humidity difference is large, every 

winter, the temperature is lower than 1 ℃, the blade will freeze, the unit relative to the sunny state power generation 
capacity is greatly reduced, at this time, wind speed, temperature, power and other data can be regarded as 
anomalies, can be eliminated. 

Wind speed: wind turbine generator in the range of 2.5m/s-28m/s can be normal generator, lower than 2.5m/s 
when the unit is in standby mode, 15m/s to meet the conditions of full generation, the generator output power of 
1550kW, the maximum instantaneous power can be up to 1590kW, the wind speed of more than 15m/s and less 
than 28m/s generator continues to maintain the output power in the 1550kW, when the wind speed is greater than 
or equal to 28m/s, the generator cuts out and the unit stops running. Therefore, in the theoretical power calculation, 
the power can not be increased with the increase of wind speed has been increased. 

Power: When drawing the wind speed power curve, when the wind speed is more than 5m/s, the corresponding 
power value differs greatly from the theoretical value. 
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II. B. 3) Data pre-processing 
(1) Data screening 

When the temperature of the wind farm studied in this paper is lower than 1°C, the blades are basically in the 
icing state, so the data with the temperature lower than 1°C can be excluded. After screening, the data were 
transformed from a table of 7925×10 to a table of 6473×1 with 10 variables. Variables in the data that were below 
1°C were eliminated. 

(2) Outlier processing 
Theoretical power can be calculated based on the wind speed in the raw data, and the wind speed and power in 

the raw data can be fitted to a curve, and since it is a smoothing process for the cluttered data, the smoothing spline 
interpolation method is used. The fitted curve is evaluated by the following three metrics to evaluate it. 

Sum Square Error SSE: This metric calculates the sum of the squares of the errors between the fitted data and 
the points corresponding to the original data:  

 2
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i

SSE w y y

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where iw  is the weight, iy  is the actual power, and ˆ iy  is the estimated power. 

Root Mean Square RMSE: This metric calculates the fitted standard deviation of the regression system: 
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where iw  is the weight, iy  is the actual power, and ˆ iy  is the estimated power. 

Coefficient of Determination:The goodness of a fit is indicated by the variation of the data, which is determined 
by two other metrics, SSR and SST.SSR:The sum of squares of the difference between the mean of the predicted 
data and the mean of the original data. I.e: 
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where iw  is the weight, ˆ iy  is the estimated power, and iy  is the mean power. 

SST: the sum of squares of the difference between the raw data and the mean: 

 2

1

( )
n

i i i
i

SST w y y

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where iw  is the weight, iy  is the actual power, and iy  is the average power. 

The coefficient of determination R-square is the ratio of SSR to SST: 

 1
SSR SST SSE SSE

R square
SST SST SST


      (8) 

The fitted curve neutralizes the variance 1.046 08SSE e  , and although it does not converge to 0, the curve is 
closer to the actual result. 

Residual: uses the difference between the actual power and the estimated value as the observed value of the 
error: 

 ˆi i iy y    (9) 

where i  is the residual, iy  is the actual power, and ˆ iy  is the estimated power. 

The nonparametric residuals, let the estimated value equal the average of the bootstrap values. To wit: 
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where ix  is the new data generated, X  is the average of this row of data, and 1000n . 

At this point the nonparametric residuals can be expressed as: 

 i i iy X    (11) 

where i   is the new residual, iy   is the actual power, and iX   is the average of the i  th row of the newly 

generated data set. 
To detect outliers, use the  inormplot   statement to see if the new residuals exist. The first step in processing 

these outliers is to first find the outliers, which can be accomplished by absolute value processing, using the abs() 
statement to make the residuals all positive: 

 i i ia y X   (12) 

where ia  is the absolute value of the new residuals, iy  is the actual power, and iX  is the average of the i th 

row of the newly generated data set. 
The threshold value can determine the outliers in the original data: 
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where th  is the threshold, iy  is the actual power, and iX  is the average of the i th row of the newly generated 

data set. 
 
II. C. CEEMDAN-TCN based condition monitoring model for generator sets 
II. C. 1) Fully adaptive noise ensemble empirical modal decomposition 
Empirical Modal Decomposition (EMD) is a new method of time-frequency analysis, the method is based on the 
variation of the data itself, which is only related to the sampling frequency, and it is very effective in dealing with 
non-smooth and non-linear signals. However, the method has a more important drawback, which is the modal 
aliasing problem. In order to suppress the phenomenon of modal aliasing, ensemble empirical modal decomposition 
(EEMD), complementary ensemble empirical modal decomposition (CEEMD) [19], and CEEMDAN have been 
successively proposed. Compared with other methods, CEEMDAN adds finite adaptive white noise at each 
decomposition, which solves the problem of difficult component alignment and minimizes the noise residual in the 
final reconstructed signal. Therefore, in this paper, CEEMDAN is used to decompose the complex PDI curves of 
the unit to obtain simple intrinsic modal components (IMFs) with different frequency characteristics, which reduces 
the difficulty of prediction. The steps of the CEEMDAN algorithm implementation are as follows: 

(1) Gaussian white noise ( )in t   is added to the original signal ( )x t   to get the noise-containing signal 

0( ) ( )ix t n t , 0  is the noise coefficient, the noise-containing signal is decomposed into n  components by EMD, 

and the first 1 ( )IMF t   is obtained by taking the mean value of the decomposed modal components, the The 

expression is: 

 1 1
1

1
( ) ( )

n
i

i

IMF t IMF t
n 

   (14) 

where 1 ( )iIMF t  is the first-order modal component obtained from the i th decomposition. The residual signal is 

11 ( ) ( ) ( )r t x t IMF t  . 

(2) Repeat the first step with 1 ( )r t  as the original signal to obtain the second eigenmode component 2 ( )IMF t  

with the expression: 

 2 1 1 1 1
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
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where 1E  is the first order IMF operator obtained by decomposition. At this time, the residual signal is expressed 

as 22 1( ) ( ) ( )r t r t IM F t  . 
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(3) Repeat the above steps until the EMD stopping condition is satisfied, at which point the original signal ( )x t  
is: 

 
1

( ) ( ) ( )
k

i i
i

x t IMF t r t


   (16) 

where k  is the highest order obtained from the decomposition. 
 
II. C. 2) Time-Domain Convolutional Networks 
TCN is a network structure for sequence data, and its main feature is to utilize the idea of convolutional neural 
network to process time series data. Compared with the traditional recurrent neural network, the convolutional layer 
of TCN can be computed in parallel, which improves the speed of the model to process long time series, and at the 
same time, the model can capture the long term dependencies that exist in the sequence, which alleviates the 
gradient vanishing and gradient explosion problems faced by recurrent neural networks to a certain extent. Due to 
its outstanding performance, TCN is widely used in wind power prediction, electric load prediction, rolling bearing 
remaining life prediction, and lithium-ion battery remaining life prediction. In this paper, TCN is used to predict the 
components obtained from decomposition. 
 
II. C. 3) CEEMDAN-TCN based prediction models 
The model utilizes CEEMDAN to decompose the PDI curves of pumped storage units to obtain multiple IMFs, and 
then a TCN network [20] is used to predict each IMF separately, and finally, the predicted values of the IMFs are 
reconstructed to obtain the prediction results of the deterioration trend. The TCN model used is set up as a three-
layer model, with each layer containing a two-layer inflated convolution, weight normalization, ReLU activation 
function, and Dropout block. The expansion coefficient of the inflated convolutional network in each convolutional 
block is 2 1n  and n  is the n th layer of the TCN model. 

In order to verify the accuracy of the proposed method for the prediction of unit PDI curves, the mean square 
error (MSE), root mean square error (RMSE), and mean absolute error (MAE) are used to quantitatively evaluate 
the prediction results, assuming that x  and x   are the true and predicted values, respectively, and the formulas 
for the three evaluation indexes are as follows: 
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II. D. Based on wind turbine condition and fault diagnosis 
Adaptive Kurtosis method for different signal conditions, for different fault history data and normal data indicators 
for comparison, so as to derive a specific characterization, in order to further fault nodes of the fault when the 
domain of time to analyze, which will produce a different analysis of the indicators. Through experiments in the 
short-time Fourier transform (STFT) through the application of the spectral crag method concluded that the spectral 
crag method can effectively determine the noise unstable signal. This method can analyze the frequency bands 
after time-frequency domain processing in detail and determine the location of the largest frequency band. 

Combined with the autoregressive model through the autoregressive signal prediction not only can effectively 
determine the faulty signal path and crag value faults in the time domain of the correlation data, for the residual 
signal can be a timely response. 

(1) Principle of autoregressive model 
The application of autoregressive model features determine the sum of input and output relationship, thus 

realizing linear analysis, due to the autoregressive model application can be predicted and evaluated on the complex 
channel, so as to guarantee the fault response rate. Since the autoregressive model is due to time change has a 
close feature coverage, by analyzing the mathematical model, the intrinsic structure of the data in the sequence will 
be better understood, which will allow the minimum variance to be predicted effectively. We assume that x  to 
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obtain a stable signal sequence is to be achieved by the zero mean, if its length is taken as: N  , and the 
autoregressive model order is expressed as p, therefore, we can express the autoregressive model of y as: 

 
1

p

k i i k k
i

y a x 


    (20) 

For the analysis of the non-stationary signal link and the stable signal link, the residual value difference between 
the two is more obvious, most of the more obvious residual values in the non-normal or faulty data acquisition in 
the noise signal can be obviously collected. 

(2) Optimal order determination 
Cliff as a relative statistical index, mainly based on the unit vibration signal distribution characteristics for real-

time monitoring, usually due to the vibration signal distribution characteristics of the absence of quantitative outline, 
belongs to the time domain indicators. For this reason, for the given discrete vibration signals, the coefficient of crag 
can be defined in terms of K  as follows, which can be obtained as Eq: 
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ix   primarily represents the discrete vibration signal, x  represents the signal at the sampling average, N  
represents the sampling duration, and 2   represents the signal standard deviation. The magnitude of faults 
occurring in the system can be represented by utilizing the magnitude of the cliff value. 

For the characteristic vectors of the electronic control system, which can be constructed from statistical 
characteristic parameters, the identification of the spectral magnitude values can be realized by real-time monitoring 
of these signal links relative to the time-domain signals. Combined with the vibration signals, multiple frequency 
band index parameters in the time domain can be assembled to realize the analysis of the characteristics of the 
electronic control system. 

Based on the analysis of different frequency band signal sequences in the time domain, the maximum peak, 
mean and average amplitude levels can be calculated by using the following statistical indicators with scales: 

a) Maximum Peak 
The maximum peak is analyzed for the maximum value expressed in the time domain of the signal. The maximum 

peak reflects the relationship between the strength and size of the signal in the time domain, which is described 
and expressed as follows: 

 ˆ max(| ( ) |)x x n  (22) 

b) Mean Value and Average Magnitude 
The mean value as a component value in the signal analysis process is mainly derived from the time domain 

signal estimation. It can be expressed as follows: 
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In the above equation, N  denotes the number of sequence points of the discrete signal. 
The expression for the average amplitude is: 
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III. Multi-dimensional mimetic wind turbine condition monitoring and fault identification 
analysis 

III. A. Wind turbine gearbox condition monitoring model validation and analysis 
In order to verify the effectiveness of the proposed method, SCADA monitoring data collected from an actual wind 
farm is used in this paper. The dataset used is from the SCADA monitoring system of a wind turbine at a wind farm 
in Shaanxi, China, with a time range of 2 MW rated power of the wind turbine under test.The SCADA system that 
comes with the wind turbine at the wind farm was alarmed on February 4, 2024 at 10:24:00, and after on-site 
maintenance by the maintenance personnel, it was found that the wind turbine's gearbox had a fault of a damaged 
temperature-control valve, and the system under which it belonged was the gearbox The system was lubricated 
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and cooled, and the system was subsequently maintained for 45 days and 14.5 hours for this purpose. In this 
section, the first 100,000 minutes of the alarm time node of this turbine are extracted for instance validation, where 
the first 60,000 minutes of data are the training set and the last 40,000 minutes are the test set. Before utilizing this 
data for instance validation, it is necessary to select the monitoring variables that can represent the wind turbine 
operation status through SCADA data variable selection. Since most of the monitoring quantities cannot be directly 
used in the wind turbine gearbox, this paper selects the monitoring quantities that are closely related to the status 
of the gearbox, and discards the rest of the monitoring quantities. The further selected monitoring variables of the 
SCADA system for wind turbine gearboxes are shown in Table 1. 

Table 1: Further selected fan gear box SCADA system monitoring variable 

Serial number Variable name 

1 Generator torque 

2 Gear case cooling water temperature 

3 Reactive power 

4 Work ratio 

5 Generator speed 

6 No power 

7 Dynamo power 

8 Instantaneous wind speed 

9 Generator winding maximum temperature 

10 Engine direction 

11 The speed axis of the gearbox is high 

12 Instantaneous wind 

13 The rear end temperature of the gearbox 

14 1 # blade Angle 

15 Gear box oil pool temperature 

16 Wind speed 

17 Gear box inlet oil temperature 

18 Ambient temperature 

19 Gear box inlet pressure 

20 Engine room temperature 

21 Gear housing pump outlet pressure 

22 Engine vibration effective value 

 
Data cleaning and restoration work was performed on the 22 parameter data screened. The data cleaning work 

cleans the missing, duplicated, and abnormal data, and the data repair work is to repair the cleaned data with single 
values. Then after that, the repaired data are divided into data samples. The self-attention-improved CEEMDAN-
TCN constructed in this paper constructs the training samples by sliding-window sampling with 26-minute timeseries 
lengths and one-minute sliding steps for a training set with a total length of 60,000 minutes. In each constructed 
sample with a chronological length of 25 minutes, the 22 parameter data of the first 24 minutes are used as inputs, 
and the 22 parameter data of the last one minute are used as labels. The samples are divided for the test set in the 
same way as the training set. Finally, the training learning rate is set to 0.002, the number of training rounds is 110, 
and the training batch is 450, and the condition monitoring model is trained based on the divided training samples, 
and the model parameters are updated with the reverse gradient with the model prediction and the labeled mean 
squared construction loss. 

In order to verify the superiority of the wind turbine gearbox condition detection method proposed in this chapter, 
this paper chooses “convolutional neural network CNN, long and short-term memory neural network LSTM and 
gated neural network GRU” as the control group, and compares the monitoring results with the method in this paper. 

The monitoring results of the four methods are shown in Fig. 1, where (a) to (d) represent the method of this 
paper, the CNN network model, the LSTM network model and the GRU network model, respectively. From the figure, 
it can be seen that the monitoring results of the proposed method in this paper are bounded by a certain time point, 
before which the value is always between the upper threshold UCL and the lower threshold LCL, which means that 
the wind turbine gearbox is in good operating condition during this period and will not trigger an alarm; after this 
time point, the value rises rapidly and crosses the upper threshold UCL in a short time, after which the value is 
always greater than the upper threshold UCL and will not fall back to the lower threshold UCL. UCL and will not fall 
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back below the lower threshold UCL, and the alarm is continuously triggered. However, the CNN and LSTM and 
GRU exceed the upper threshold UCL for the first time at a certain point in time, triggering an alarm, and after a 
period of time the alarm continues to fall back to below the upper threshold UCL and the alarm is canceled; after 
that, the value will exceed the upper threshold UCL for the second time at a certain point in time, triggering an alarm, 
which will continue to be triggered until the alarm time that comes with the SCADA system. The reason for the above 
phenomenon is that the model proposed in this paper fully exploits the spatio-temporal correlation information, and 
compared with the traditional CNN neural network and the time series models such as LSTM and GRU, this model 
has a better ability to discriminate between the abnormal and normal data, so there will not be any misjudgement 
and omission of judgment. 

  

(a)This method (b)CNN network model 

  

(c)LSTM network model (d)GUR network model 

Figure 1: Monitoring results of four methods 

The first time when different models exceeded the upper threshold and alarm occurred is shown in Table 2, the 
first time when the threshold was exceeded by the self-attention improvement CEEMDAN-TCN proposed in this 
paper is March 25, 2024 at 10:22 p.m. As seen in the table, the proposed method of this model is earlier than the 
GRU time-dependence mining model by 1 hour and 13 minutes, earlier than the LSTM time-dependence mining 
model by 55 minutes, and 2 hours and 17 minutes earlier than the CNN time-dependent mining model. This indicates 
that this model is more capable than the other three models in fitting the normal operation state and discovering 
abnormal data, which verifies the superiority of the method proposed in this paper. From the above comparison 
experiments, it can be seen that the SCADA monitoring model proposed in this chapter can successfully warn the 
abnormal faults of the wind turbine gearbox before the alarm of the maintenance system, and the alarm time of this 
model is earlier than that of the traditional deep learning model, which suggests that the method proposed in this 
paper can evaluate the health of the wind turbine gearbox more effectively by mining the spatial and temporal 
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correlation information in the monitoring data of the wind turbine gearbox. The proposed method in this paper can 
more effectively assess the health of wind turbine gearboxes by mining the temporal and spatial correlation 
information in the monitoring data. 

Table 2: For the first time, it is more than the upper threshold 

Experimental method Alarm time 

CNN On March 25, 2024, 12:39 

LSTM On March 25, 2024, 11:17 

GRU On March 25, 2024, 11:35 

This method On March 25, 2024, 10:22 

 
III. B. Adaptive Kurtosis Analysis 
III. B. 1) Pitch system failure analysis 
(1) Graphical analysis 

The abnormal and normal relative power ratios are discussed. The results of the analysis of the normal relative 
power ratio are shown in Fig. 2, where (a) to (c) represent the original signal, adaptive Kurtosis analysis and Fourier 
transform, respectively. The results show that although there is no obvious pattern in the numerical changes of the 
normal values, there are no cases that suddenly show great differences, and the trend of changes is more stable. 

  

(a)Primary signal (b)Adaptive kurtosis analysis 

 

(c)Fourier transform 

Figure 2: Normal relative power ratio analysis results 
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The anomalous relative power ratio analysis is shown in Fig. 3, where (a)~(c) represent the original signal, 
adaptive Kurtosis analysis and Fourier transform, respectively. As far as the relative power ratio of the anomalies is 
concerned, the original data obviously show a sharp increase in the four time periods, and the difference with the 
time periods before and after is large, which is obviously a deviation of its data from the normal data, so the data of 
the anomalous time periods can be analyzed as a basis for judging the data in comparison with the real values. 

  

(a)Primary signal (b)Adaptive kurtosis analysis 

 

(c)Fourier transform 

Figure 3: Abnormal relative power ratio analysis results 

(2) Failure parameter analysis of electrical variable pitch system 
The relative power ratio of the electrical pitch pitch control system is shown in Fig. 4. The results show that in the 

normal state, the pitch power ratio of the system is smaller than that in the fault state, and the majority of the pitch 
power ratio is mainly concentrated in the range of 1.0-2.0; whereas in the fault state, the majority of the pitch power 
ratio crosses a larger range, and it floats between 0.5-2.0. Thus, it can be seen that the pitch power ratio in the 
faulty state has a large deviation from that in the normal state. 
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Figure 4: Relative power ratio of the control system 

The parameter index of relative power ratio is shown in Table 3. It is not difficult to see that the fault data and 
normal data have significant differences in the mean, variance, crag, pulse and other indicators, according to which 
can be used as a basis for fault diagnosis. 

Table 3: The parameters of the power ratio 

Index Normal data Failure data 

Mean 0.0486 1.9377 

Variance 0.0011 0.0480 

Mean square amplitude 0.0618 1.9511 

Peak 0.2745 2.7235 

Mean amplitude 0.0491 1.9402 

Mean square value 0.0040 3.8103 

Sheer indicator 1.8986 -1.9463 

Peak index 4 4.4200 1.3951 

Waveform index 1.2751 1.0082 

Pulse index 5.6355 1.4038 

 
III. B. 2) Failure analysis of main control PLC system 
(1) Graphical analysis 

The abnormal and normal relative power ratio is discussed, and the relative power ratio under normal and fault 
condition is shown in Figure 5. Through the graphic obvious comparison, it can be clearly seen that under normal 
operation, the ratio of relative power are able to be in the presentation, while the fault data has exceeded the normal 
data change interval, can not be shown, and the relative power under the fault data is generally lower than the 
normal data. 

 

Figure 5: Relative power ratio analysis results 

(2) Electrical main control PLC fault parameter analysis 
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Relative power ratio parameter indicators are shown in Table 4. It can be seen that the fault data and normal data 
in the average value, crag, peak and pulse and other indicators have significant differences, according to which can 
be used as a basis for fault diagnosis. 

Table 4: Relative power ratio parameters 

Index Normal data Failure data 

Mean 0.0843 1.7088 

Variance 0.0251 0.0731 

Mean square amplitude 0.1872 1.7000 

Peak 1.3401 3.0909 

Mean amplitude 0.0985 1.7838 

Mean square value 0.0371 3.2723 

Sheer indicator 15.0034 -1.8263 

Peak index 4 7.3356 1.1350 

Waveform index 1.8940 0.7828 

Pulse index 12.2402 1.2203 

IV. Conclusion 
In this study, the multi-dimensional anthropomorphic condition monitoring method based on CEEMDAN-TCN shows 
excellent performance in wind turbine fault identification by analyzing and verifying the actual operation data from 
February to April 2024 of a wind farm in Sichuan. The method successfully realizes the early warning of the gearbox 
temperature control valve damage fault, with the alarm time of 10:22 on March 25, 2024, which has obvious time 
advantage over the traditional deep learning model. In the fault diagnosis of pitch system, the pitch power ratio in 
normal state is mainly concentrated in the interval of 1.0-2.0 with small change amplitude, while the ratio fluctuates 
greatly in the range of 0.5-2.0 in the fault state, and there are significant differences between the two states in the 
statistical indicators such as the mean value, variance, and craginess, which provide a reliable basis for the fault 
diagnosis. The proposed signal decomposition and deep learning fusion strategy effectively solves the problem of 
misjudgment and omission of traditional methods under complex working conditions, and improves the accuracy 
and robustness of abnormality detection by fully exploiting spatial and temporal correlation information. This 
technical solution provides new ideas for intelligent operation and maintenance of wind turbines, and has important 
engineering application value in reducing maintenance costs and improving power generation efficiency. 
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