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Abstract With the rapid development of the Internet of Things and artificial intelligence, the intelligent window 
opening and closing system has become a key component of the modern smart home environment regulation. In 
view of the many defects presented by the traditional control method in the process of utilizing the switch window 
system, this study develops a multi-parameter cooperative control algorithm based on feed-forward neural 
network, which is unique in that it organically combines the principles of physics with the data-driven approach. 
The physically guided feedforward neural network (PGFNN) architecture we constructed not only enhances the 
physical interpretability of the system, but also significantly improves its generalization ability in the face of 
complex environments by cleverly embedding indoor aerodynamic and thermodynamic models. The study shows 
that the PGFNN control algorithm has significant advantages in the synergistic adjustment of multi-dimensional 
parameters such as temperature, humidity and air quality, and exceeds the traditional PID control and standard 
feed-forward neural network control scheme in terms of both control accuracy and response speed. The PGFNN 
algorithm shows outstanding adaptability and stability when environmental conditions change drastically, and the 
PGFNN algorithm also performs well in energy utilization, which can effectively reduce the energy consumption of 
the system while guaranteeing the control effectiveness. This study provides innovative ideas and practical 
methods for the design and performance optimization of the smart window switching system, which is of 
substantial significance for improving the control performance and user comfort of the overall smart home system. 
 
Index Terms feed-forward neural network, smart window opening and closing, multi-parameter cooperative 
control, physical guidance, energy saving 

I. Introduction 
I. A. Background and significance of the study 
Accompanied by the rapid progress of the Internet of Things technology and artificial intelligence, the smart home 
system, as a key carrier to improve the comfort and quality of life, is rapidly popularized worldwide. Smart 
windows and switches play a key role in the smart home environment control system, assuming the task of 
regulating indoor temperature, humidity, air quality and other environmental parameters. The global smart home 
market size from $46 billion in 2015 grew vigorously to more than $180 billion in 2023, with a compound annual 
growth rate of up to 16.5%, and the proportion of intelligent environment control system is about 28%, which has 
become an indispensable component of the smart home field. 

The quality of indoor environment is directly related to human health, work efficiency and living comfort. 
Appropriate indoor temperature, humidity and good air quality can significantly improve work efficiency and 
reduce the probability of disease. The traditional window opening and closing system mainly relies on manual 
operation or simple single-parameter automatic control, which is not capable of facing the complex and changing 
indoor and outdoor environments. In the summer high temperature and high humidity weather conditions, purely 
consider the temperature factor of the automatic window opening system may lead to high indoor humidity, in the 
haze weather, only consider the air quality of the system may cause the indoor temperature to fall sharply. 
Traditional control methods such as threshold-based switching control, PID control and fuzzy control have obvious 
limitations in response to the demand for multi-parameter cooperative indoor control. Threshold-based regulation 
is simple and intuitive, but the degree of control accuracy is low and easy to generate oscillations, and PID 
regulation for nonlinear, multivariate, strongly coupled indoor environmental system parameters is difficult to 
adjust and poor adaptability. Although fuzzy regulation can deal with a certain degree of uncertainty, the rule base 
construction is overly dependent on the experience of experts, and it is difficult to adapt to changes in 
environmental conditions. These approaches have the problems of slow response, low accuracy, and weak 
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adaptive ability when facing the cooperative control of multiple parameters such as indoor temperature, humidity, 
and air quality. 

The development of artificial intelligence technology has led to the widespread use of neural network control in 
complex systems. Feedforward neural network has a broad application prospect in the field of control because of 
its simple structure, efficient training, and powerful nonlinear mapping ability. It is able to construct complex 
nonlinear mapping links between inputs and outputs by learning a large amount of historical data, without the 
need for precise mathematical models, thus overcoming the drawbacks of traditional control methods that are 
highly dependent on system models. However, data-driven black-box neural network models usually lack physical 
interpretations and have limited generalization ability beyond the coverage of training data, which poses a 
potential risk to control systems with high security requirements. Physics-guided neural networks, as a novel way 
to fuse physical knowledge with data-driven learning, provide new ideas to address the above challenges. By 
embedding physical knowledge into the neural network structure or loss function, the powerful nonlinear mapping 
ability of neural networks is retained, while the physical interpretability and extrapolation ability of the model is 
enhanced. Opening windows to improve indoor air quality will affect indoor temperature and humidity, and 
adjusting window openings to control indoor temperature will also affect air circulation and humidity distribution. 
This multi-parameter coupling characteristic makes the control of intelligent window opening and closing system a 
typical multivariate, strongly coupled, nonlinear control subject. Traditional single-parameter control methods are 
difficult to deal with such problems effectively, while the feed-forward neural network-based multi-parameter 
cooperative control method can reach the cooperative optimization control of multiple environmental parameters 
by learning the complex relationship between the parameters in the historical data. 

 
I. B. Main contributions and innovations of this study 
Aiming at the limitations of traditional control methods in the application of intelligent window opening and closing 
system, this study takes feed-forward neural network as the foothold, organically integrates physical knowledge 
with data-driven approach, and builds up multi-parameter cooperative control algorithms, thus giving a brand-new 
intelligent window opening and closing control program. Compared with the existing research, the contributions 
and innovations of this paper are mainly reflected in three key aspects: 

This study proposes a feed-forward neural network architecture that embeds physical knowledge, which 
effectively deals with the problem of insufficient generalization ability of black-box neural networks in control 
systems. Conventional neural networks often lack physical interpretability, do not perform well outside the scope 
covered by training data, and hide safety concerns. Borrowing the idea of physically guided neural networks, we 
embed indoor aerodynamic and thermodynamic models as a priori knowledge into the network architecture, and 
shape a hybrid model structure that retains the powerful learning capability of neural networks and possesses 
physical explanatory properties. This new structure shows more stable inference ability in areas with scarce 
training data and unseen scenarios, which greatly improves the stability of the model and the degree of 
convergence, and lays the foundation for the safe and reliable operation of the smart window opening and closing 
system. 

This study also designs an innovative multi-parameter cooperative control algorithm, which breaks through the 
limitation of independent parameter control in the existing research. The algorithm proposed in this paper 
simultaneously takes into account multiple control objectives, such as temperature, humidity, air quality and 
energy consumption, and deeply models the complex nonlinear coupling relationship between the environmental 
parameters. The algorithm adopts a multi-objective optimization framework, and with the help of a dynamic weight 
allocation mechanism, it is able to adjust the importance of the control objectives in real time according to the 
user's preference and the state of the environment, so as to satisfy the user's comfort needs while minimizing the 
energy consumption. The synergistic control strategy successfully avoids the problem that single-parameter 
optimization may lead to the degradation of other parameters, and achieves the overall optimal state of indoor 
environmental parameters. 

The performance of the proposed algorithm is comprehensively evaluated under complex and variable 
environmental conditions by building a high-fidelity simulation environment and a real prototype system. In this 
paper, we constructed a comprehensive test platform with multiple regions and time scales, and simulated a 
variety of typical meteorological conditions and user activity scenarios. 

The experimental data show that compared with the traditional PID control and the standard neural network 
control, the method in this paper achieves significant improvement in the three dimensions of control accuracy, 
response speed and energy efficiency. Especially when the environmental conditions change drastically, the 
method in this paper shows strong environmental adaptability and system robustness, which provides a solid 
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experimental basis for the application of intelligent window opening and closing technology in real complex 
environments. 

 
I. C. Status of research 
With the development of science and technology and the improvement of people's living standards, the smart 
home, as an important part of modern life, is getting more and more attention and favor [1], [2]. As an important 
part of the smart home, the smart switch window control system not only provides a convenient way of operation, 
but also brings more comfort and intelligent experience to the family [3]-[5]. Intelligent window switching realizes 
the automation and intelligent control of curtains by integrating advanced electronic technology, sensor 
technology and network communication technology, etc. [6], [7]. Users can control the opening and closing of 
curtains, adjust the degree of opening and closing of curtains anytime and anywhere through smart devices such 
as cell phones and tablet computers, and even automatically adjust the according state of curtains according to 
the indoor light, temperature and other environmental parameters, in order to achieve the best indoor environment 
[8]-[11]. 

The core components of intelligent window opening and closing mainly include controller, motor drive, sensor 
and actuator [12], [13]. The controller is responsible for receiving the user's instructions or judging according to 
the environmental parameters and issuing the corresponding control signals, the motor driver is responsible for 
driving the switch and adjustment of the curtains, the sensor is used for detecting the indoor light, temperature 
and other environmental parameters to provide the controller with a basis for decision-making, and the actuator is 
based on the controller's instructions to execute the switch of the curtains [14]-[17]. The biggest advantage of 
intelligent window opening and closing is to improve the convenience and safety of life [18]. 

II. Research method of intelligent window opening and closing system based on feed-
forward neural network 

II. A. Physical modeling 
The system of intelligent window opening and closing is related to the complicated indoor and outdoor 
environmental parameters of heat and material transfer process, and the construction of accurate physical model 
is extremely critical to the design of efficient control algorithm. In this paper, a comprehensive physical model is 
constructed on the basis of temperature, humidity, air quality and other parameters, and the reliability of the model 
is verified by a large amount of experimental data. The dynamic process of indoor temperature change is mainly 
affected by the natural ventilation under the control of window opening degree and the indoor heat source, and 
under the guidance of the principle of energy conservation, the process is expressed by differential equations as: 

 r
a p r vent wall int solar

dT
C V Q Q Q Q

dt
         (1) 

where rT  is the room temperature, a  is the air density, pC  is the specific heat capacity of air, rV  is the volume 

of the room, and the items on the right side of the equation represent the ventilation heat transfer, heat transfer 
from the wall, heat generated by indoor heat sources, and heat from solar radiation. 

The ventilation heat transfer ventQ  is directly related to the window opening  , indoor-outdoor temperature 

difference and airflow velocity, and the expression is: 
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The ventilation volume flow rate can be expressed as: 
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where dC  is the flow coefficient, wA  is the window area, g  is the gravitational acceleration, and h  is the window 

height. 
The indoor humidity change is then subject to the dual role of ventilation and indoor moisture source, based on 

the principle of conservation of moisture mass can be established relative humidity change model, that is: 
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where rRH  is the indoor relative humidity, ,a satm  is the maximum water vapor content in saturated air, ,v ventm  is 

the amount of water vapor brought in/out of ventilation, ,v intm  is the indoor release rate of the moisture source, 

and ,v rm  is the amount of existing indoor water vapor. 

The ventilation water vapor exchange is proportional to the degree of window opening and the difference 
between indoor and outdoor absolute humidity, with the expression: 

  ,v vent a a o rm V AH AH   (5) 

where oAH  and rAH  are the outdoor and indoor absolute humidity, respectively. 

The air quality model takes CO2 concentration as the main indicator, and the change rule follows the principle of 
mass conservation, i.e.: 

  
2
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     (6) 

where rC  and oC  are the indoor and outdoor CO2 concentrations, respectively, and 
2COS  is the indoor CO2 

production rate. 
In addition, the model also considers the diffusion process of particulate pollutants such as PM2.5, and the 

equation for the change of particulate concentration is: 

  ar PM
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dt V V
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where rP  and oP  are the indoor and outdoor PM2.5 concentrations, respectively, depk  is the particulate deposition 

rate, and PMS  is the indoor particulate source release rate. 

Thermal comfort introduces the predicted mean voting index PMV as a composite measure of human comfort, 
i.e: 

  , , , , ,r r a mrt clPMV f T RH v T M I  (8) 

where av  is the indoor airflow rate, mrtT  is the average radiant temperature, M  is the human metabolic rate, and 

clI  is the clothing thermal resistance. 

Table 1: The physical model parameters of the intelligent switch window system 

Symbol Parameter description Typical value Unit 

a  Air density 1.2 kg/m3 

pC  Specific heat capacity of air 1005 J/(kg·K) 

rV  Room volume 36 m3 

wA  Window area 1.5 m2 

h  Window height 1.2 m 

dC  Flow coefficient 0.6 - 

depk  PM2.5 deposition coefficient 0.2 1/h 

2COS  CO2 production rate per person 0.004 m3/h 

wallU  Heat transfer coefficient of the wall 1.2 W/(m2·K) 

wallA  Wall area 75 m2 

max  Max window opening 1.0 - 

M  Human body metabolic rate 1.2 met 

clI  Clothing thermal resistance (Summer) 0.5 clo 

 
The window opening   is used as the only control input to the system and acts simultaneously on the 

temperature, humidity and air quality parameters by affecting the ventilation. Table 1 shows the main parameters 
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and typical values of the physical model, which may fluctuate under different working conditions and need to be 
fine-tuned according to the specific environment. 

During the model validation period, I conducted a three-week experiment in a standard office space (4m × 3m × 
3m). The actual measured values of each environmental parameter were recorded and compared with the model 
predictions by setting different window opening strategies (0% for fully closed, 50% for half open, and 100% for 
fully open). This physical model takes into account the complex interactions between temperature, humidity and 
air quality, and establishes a precise quantitative correlation between window opening level and indoor 
environmental parameters, laying a solid theoretical foundation for the subsequent development of feed-forward 
neural network-based intelligent control algorithms. 

 
II. B. Feed-forward neural network control algorithm design 
Based on the physics model of the smart window opening and closing system constructed earlier, a feed-forward 
neural network control approach that embeds physics knowledge is designed in this part. This approach skillfully 
integrates the physics model with the data-driven approach to build a two-layer hybrid construction form, which 
can retain the extremely powerful learning ability of the neural network, but also has the explanatory nature of 
physics and the stability guarantee. 

The core idea of Physics-Guided Feedforward Neural Networks (PGFNN) is to embed already known physical 
rules as prior knowledge into the network structure, covering two parallel branches: the physical level and the 
black-box level. The physical level encodes the known parts of the indoor environmental dynamics model and 
directly maps from the system state towards the control outputs, while the black-box level captures the nonlinear 
connections and uncertainties that are difficult to model accurately, such as the effects of various factors like 
human activities, weather variations, and so on. The outputs of these two levels are combined in a weighted 
manner to form a control signal, with the weighting factors dynamically adjusted according to the reliability of the 
predictions of each level. The inputs to the feedforward control can be expressed as: 

 ( ) ( ( ), ) ( ( ), ) ( ( ), )phys phys nn nnu t f x t f x t f x t     ò  (9) 

where  u t  is the window opening control signal,  x t  is the system state vector containing environmental 

parameters such as indoor and outdoor temperatures, humidity, CO2 concentration, etc.,  ,phys nn    is the set 

of model parameters, and physf  and nnf  denote the mapping functions of the physical layer and the black box 

layer, respectively. The physical layer is based on the physical model established in Section 2.1, which simplifies 
the indoor environment dynamics into a state-space representation, i.e: 

 ( )
( ) ( ) ( )

dx t
Ax t Bu t d t

dt
    (10) 

where A  is the system matrix, B  is the control matrix, and  d t  is the external disturbance term. The physical 

layer parameter phys  contains parameters with clear physical meaning such as thermal conductivity coefficient 

and flow coefficient. The black-box layer adopts a multilayer perceptual machine structure containing three hidden 
layers with 64, 32, and 16 neurons in each layer, respectively, and the activation function adopts ReLU, i.e: 

 3 2 1 1 2 3( ( ), ) ( ( ( ) ) )nn nnf x t W W W x t b b b          (11) 

where iW  and ib  are the weight matrix and bias vector, and   is the ReLU activation function.The training 

process of the PGFNN uses a specially designed loss function to ensure that the physical layer and the black-box 
layer work in concert rather than competing with each other, then: 

 2 2
,

1 1
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The first term is a prediction error term that measures the difference between the model output ˆiy  and the 

actual observation iy , the latter is a physical consistency regularization term that ensures that the physical layer 

parameters j  do not deviate excessively from the a priori physical knowledge ,physj , and   is a hyperparameter 

that balances the two terms. This design allows the physical layer to maintain physical interpretability while 
permitting the black-box layer to learn complex nonlinear relationships. 
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The multiparameter cooperative control algorithm is based on the model predictive control (MPC) framework, 
which uses the PGFNN to predict the future state and determines the optimal control sequence by solving the 
optimization problem. The control objective function is designed as follows: 

 
2 2

0

2 2
2

[ ( ( ) ) ( ( ) )

( ( ) ) ( ) ]

pN

T r ref RH r ref
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CO r ref u

J w T k T w RH k RH
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

   
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  (13) 

where pN  is the length of the predicted time domain, Tw , RHw , 2COw  are the weighting coefficients of each 

environmental parameter, uw  is the weight of the control rate of change, and refT , refRH , and refC  are the 

reference values of the temperature, humidity, and CO2 concentration, respectively. The weighting coefficients are 
dynamically adjusted according to the user comfort preference and real-time environmental state to achieve multi-
objective optimization. 

The algorithm implementation adopts a rolling time-domain optimization strategy, and the following steps are 
executed in each control cycle: 

(1) Collect the current system state  x t , including indoor and outdoor temperature, humidity, CO2 

concentration and other parameters; use PGFNN to predict the trajectory of the system state in the next pN  steps. 

(2) Solve the optimization problem to obtain the optimal control sequence  u t  to  1pu t N  ; Execute the 

control signal  u t  to adjust the window opening. 

(3) Move the time window and repeat the above steps. 
To improve the robustness of the algorithm, we incorporate an adaptive approach to dynamically adjust the 

weight values of the PGFNN physical level and the black box level. When the surrounding environment is about to 
reach the effective range of the physical model, the weight value of the physical level is increased; if abnormal 
operation or extreme conditions occur, the weight value of the black box level is increased. This approach 
ensures that the system maintains excellent performance under a wide range of environmental conditions. 
Scenario-adaptive strategies are designed for different seasons and weather conditions, and such dynamic 
adjustment strategies greatly enhance the system's ability to adapt in complex and changing environments. The 
computational complexity of the algorithm mainly comes from the two parts of PGFNN forward propagation and 
MPC optimization, the time complexity of PGFNN forward propagation is  ·x hO n n , xn  is the input dimension, hn  

is the maximum number of neurons in the hidden layer, and MPC optimization solves the problem by using the 

quadratic programming method, the time complexity is  3
pO N . In practical applications, 6pN   is chosen with a 

control period of 1 minute, which is able to run in real time on an ordinary embedded processor. 
By integrating physical knowledge into the feed-forward neural network, the control algorithm designed in this 

paper not only retains the particularly strong learning ability of neural network, but also has the physically 
interpretable characteristics and stability guarantee. The multi-parameter synergistic control architecture takes 
into account multiple control objectives, such as temperature, humidity, air quality, etc., and achieves the overall 
optimization of indoor environmental parameters. The adaptive approach and scenario strategy further enhance 
the adaptability of the algorithm in complex and changing environments, providing an efficient and reliable control 
solution for the smart window opening and closing system. 

 
II. C. Simulation Experiments and Performance Verification 
In order to comprehensively evaluate the effectiveness of the multi-parameter cooperative control algorithm based 
on Physically Guided Feedforward Neural Network (PGFNN) for smart window opening and closing, a high-fidelity 
simulation environment is built in this study for system testing and comparative analysis. The experimental 
platform is developed in MATLAB/Simulink environment, which integrates the physical model established in 
Section 2.1, and has the ability to accurately simulate the dynamic process of indoor environment under different 
seasons and weather conditions. 

The test scenarios cover four typical working conditions: high temperature in summer, low temperature in winter, 
high humidity in rainy days, and air pollution, and for each scenario, the performance of traditional PID control, 
standard feed-forward neural network control, and the PGFNN control algorithm proposed in this paper are tested. 

The simulation environment simulates a standard office space (4m × 3m × 3m) with 1.5m² adjustable windows, 
and the outdoor environmental parameters are based on the meteorological data of a northern city for the whole 
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year of 2022, including temperature, humidity, CO₂ concentration, and PM2.5 concentration and other key 
indicators. The initial indoor environment was set at 25°C, 50% relative humidity, CO₂ concentration of 600 ppm, 
and PM2.5 concentration of 30 μg/m³, and the control targets were set at 24 ± 1°C, 40% - 60% relative humidity, 
CO₂ concentration below 1000 ppm, and PM2.5 concentration below 75 μg/m³. The experiments were conducted 
with a 1-minute sampling period, and each scenario was simulated for 24 hours, with a total of 1,440 data points, 
to comprehensively capture the dynamic characteristics of the environmental variables and the response 
performance of the control algorithm. 

Analysis of the experimental data shows that the PGFNN control algorithm presents significant performance 
advantages in all types of working conditions, and Table 2 shows the comparison of the key performance 
indicators of the three control algorithms in different scenarios. At the level of temperature control accuracy, the 
root mean square error of the PGFNN algorithm is reduced by 62.46% and 27.99% compared with PID and FFNN, 
respectively. At the humidity control level, the mean value of RMSE of PGFNN is reduced by 54.60% and 22.64% 
compared to PID and FFNN, respectively. In terms of CO₂ concentration control, the mean value of exceedance 
time of PGFNN is reduced by 74.47% and 43.64% compared to PID and FFNN, respectively. It is especially 
noteworthy that under the situation of sudden change of environmental conditions, the response speed of PGFNN 
is significantly better than the other two algorithms, and the mean value of the average regulation time is only 
31.69% of that of PID and 67.87% of that of FFNN. The energy consumption analysis results show that the 
average energy consumption of the PGFNN control algorithm is reduced by 35% and 16.7% compared with the 
traditional PID control and the standard FFNN control, respectively, which is attributed to the fact that the more 
precise control strategy reduces the unnecessary window operation and over-adjustment, and avoids the waste of 
energy due to lagged response by responding to the environmental changes in advance through the predictive 
control. 

Table 2: Performance comparison of different algorithms 

Index Condition type PID FFNN PGFNN 

Temperature RMSE (℃) 

High temperature in summer 1.68 0.87 0.62 

Low temperature in winter 1.92 0.95 0.71 

Rainy days with high humidity 1.45 0.82 0.58 

Air pollution 1.53 0.79 0.56 

Humidity RMSE (%) 

High temperature in summer 8.75 5.12 3.92 

Low temperature in winter 9.32 5.43 4.28 

Rainy days with high humidity 12.46 6.85 5.24 

Air pollution 7.89 4.95 3.85 

CO2 excess time (min) 

High temperature in summer 126 58 32 

Low temperature in winter 145 62 38 

Rainy days with high humidity 112 51 28 

Air pollution 138 65 35 

PM2.5 over-limit time (min) Air pollution 215 92 42 

Average adjustment time (min) 

High temperature in summer 18.5 8.7 5.8 

Low temperature in winter 22.3 10.2 7.1 

Rainy days with high humidity 16.8 7.9 5.4 

Air pollution 19.7 9.3 6.2 

Energy consumption index Comprehensive assessment 1.00 0.78 0.65 

 
Figure 1 presents the dynamic response curve of temperature and fine particulate matter (PM2.5) concentration 

under the air pollution working condition. When the outdoor PM2.5 concentration rises steeply in the 300th minute, 
the PGFNN algorithm is able to quickly adjust the window openings, effectively controlling the rise in PM2.5 
concentration while keeping the indoor temperature relatively stable. In comparison, the PID control shows 
significant hysteresis and oscillation phenomenon, and although the standard FFNN responds faster, its control 
accuracy is not as good as that of the PGFNN, which is analyzed in depth and found to be superior in the 
following three aspects: embedded in the physical layer, the algorithm is able to accurately grasp the basic laws of 
the indoor environment dynamics, which provides a basis for providing a reliable control strategy. The black-box 
neural network layer effectively captures the nonlinear relationships and uncertainties that are difficult to model 
accurately; and the multi-parameter cooperative control framework achieves the overall optimization of multiple 
objectives such as temperature, humidity, and air quality. 
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Figure 1: Temperature and PM2.5 concentration response curve 

The team conducted additional tests to assess the robustness of the algorithm and the level of adaptation to the 
environment. The control algorithm was tested against model uncertainty by introducing plus or minus 20% 
parameter disturbances and random noise into the model. The experimental data show that the PGFNN algorithm 
is able to maintain a relatively smooth control performance under the variation of model parameters, and the 
decrease in control accuracy is controlled within 15 percent. In contrast, the PID and standard FFNN algorithms 
show a 42% and 28% decrease in performance, respectively, which confirms the critical utility of embedding 
physical knowledge to improve the robustness of neural network controllers. A comparative analysis of the 
stability curves of the three algorithms under different parameter disturbances in our lab shows that the PGFNN 
controller is able to maintain the basic control function at plus or minus 30% of the disturbances, whereas the 
conventional method shows significant performance degradation and even loss of control at plus or minus 15% of 
the disturbances. In the actual testing process, it is also found that the PGFNN algorithm is less sensitive to the 
quality of the input data, and is still able to make reasonable control decisions in the case of five to ten percent 
measurement error in the sensor data, which is of great significance for the actual engineering deployment. 

Comprehensive simulation results fully validate the advantages of the multi-parameter cooperative control 
algorithm based on the physical guidance feedforward neural network for smart window opening and closing in 
terms of control accuracy, response speed, energy efficiency and system robustness. This method can effectively 
cope with complex and changing environmental conditions, and provides reliable technical support for the 
practical application of intelligent building control systems. 

 
II. D. Analysis of experimental results 
This chapter analyzes the experimental results obtained from the feed-forward neural network-based multi-
parameter cooperative control system for smart window opening and closing. The effectiveness of the proposed 
approach is evaluated by comparing the performance of the physical guided feedforward neural network (PGFNN), 
the standard feedforward neural network (FFNN) and the traditional PID control in different environmental 
conditions. The experiment utilizes the high-fidelity simulation platform built in the previous section, and a two-
week field test is conducted in a real office environment to verify the performance of the control algorithms under 
real conditions. From the perspective of control accuracy, the PGFNN control method shows outstanding 
advantages in the regulation of various environmental parameters, and Table 3 presents the comparison data of 
the control accuracy of the three control methods under four typical environmental conditions. The response 
curves of the three control methods to sudden changes in environmental conditions are shown in Figure 2. 

The results show that the average absolute error of the PGFNN method at the temperature control level is only 
0.42°C, which is 74.5% lower than that of the traditional PID control of 1.65°C and 46.2% lower than that of the 
standard FFNN of 0.78°C. In terms of humidity control, the average absolute error of the PGFNN was 2.85%, 
which was 69.6% and 44.3% lower than the 9.36% of the PID and the 5.12% of the FFNN, respectively. In terms 
of air quality control, the PGFNN enabled the CO2 concentration to be maintained in the ideal range for 94.3% of 
the time, however, the PID and the FFNN were only 65.8% and 82.7%, respectively. Analyzing from the 
perspective of system response speed and stability, when the outdoor temperature suddenly rises by 5°C at the 
30-minute node, the PGFNN controller is able to adjust the indoor temperature back to the set range within 12.5 
minutes, while FFNN and PID require 20.1 minutes and 28.3 minutes, respectively, and there is almost no 
overshooting phenomenon in the adjustment process of the PGFNN method, and the temperature fluctuation is 
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controlled by PID and PID. The temperature fluctuation was controlled within ±0.5°C, while FFNN and PID 
showed fluctuation of ±0.9°C and ±1.7°C, respectively. 

 

Figure 2: Response to ambient temperature mutations 

Table 3: The control accuracy of different environmental conditions is compared 

Method Condition type Temperature MAE (°C) Humidity MAE (%) CO2 compliance rate (%) 

PID 

High temperature in summer 1.58 8.75 68.2 

Low temperature in winter 1.82 10.24 62.5 

Rainy days with high humidity 1.42 11.35 70.4 

Air pollution 1.78 7.12 62.1 

Average value 1.65 9.37 65.8 

FFNN 

High temperature in summer 0.75 4.82 84.5 

Low temperature in winter 0.92 5.68 79.3 

Rainy days with high humidity 0.68 5.94 86.2 

Air pollution 0.78 4.05 80.8 

Average value 0.78 5.12 82.7 

PGFNN 

High temperature in summer 0.38 2.65 95.8 

Low temperature in winter 0.52 3.24 91.5 

Rainy days with high humidity 0.35 3.42 96.2 

Air pollution 0.43 2.10 93.6 

Average value 0.42 2.85 94.3 

 
At the level of multi-parameter synergistic control effectiveness, Figure 3 shows the synergistic control 

effectiveness of the three control strategies for temperature and air quality under air pollution operating conditions. 
When the outdoor PM2.5 concentration rises abruptly at the 150-minute time point, the traditional PID control 
method is unable to take both temperature and air quality into account, resulting in a rapid increase in indoor 
PM2.5 concentration until it nearly reaches the limit value; the standard FFNN method is able to balance the two 
objectives to a certain extent, but there is still a significant fluctuation in temperature. The PGFNN method, on the 
other hand, effectively suppresses the increase of PM2.5 concentration while maintaining the temperature stability 
by intelligently adjusting the window opening degree, fully demonstrating its multi-parameter synergistic control 
capability. Tests on the robustness and adaptability of the control algorithms show that when there is a 20% 
deviation of the physical model parameters, the control accuracy of the PGFNN is only reduced by 12.5%, while 
the FFNN and PID are reduced by 27.3% and 41.8%, respectively, which indicates that the integration of physical 
knowledge is crucial to enhance the robustness of the neural network controllers. 

In addition, the average satisfaction score of 4.8/5 was obtained for the ambient space moderated by the 
Physically Guided Feedforward Neural Network (PGFNN) in the assessment of user comfort. In comparison, the 
environment space regulated by Feedforward Neural Network (FFNN) and Proportional-Integral-Differential (PID) 
received 4.2/5 and 3.5/5 respectively. The feedback from the users shows that the PGFNN-regulated ambient 
space has smaller temperature fluctuations, stable air quality, and faster adaptation to changes in the external 
environment. After a comprehensive analysis, it can be shown that the multi-parameter cooperative control 
system of intelligent window opening and closing constructed based on physical guidance feed-forward neural 
network shows obvious advantages in the degree of control accuracy, the degree of fast response, the level of 
multi-parameter cooperation, the level of robustness and the efficiency of energy utilization. It is these advantages 
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that make the PGFNN method particularly suitable in the practical application of intelligent building control 
systems, and it is very promising to significantly improve the quality of the indoor environment and the efficiency 
of energy utilization. 

 

Figure 3: The effect of multi-parameter collaborative control 

III. Conclusions and future prospects 
III. A. Conclusion 
The physics-guided feed-forward neural network smart switching window multi-parameter cooperative control 
system proposed in this study presents clear and convincing results after systematic theoretical analysis as well 
as rich experimental verification. The embedding of physical knowledge into the feed-forward neural network 
significantly enhances the overall performance of the smart switching window control system. The constructed 
physics-guided feedforward neural network model skillfully integrates the first-principles-based physical level with 
the black-box neural network level. While maintaining the strong nonlinear mapping ability of the neural network, 
the physical model is introduced to provide interpretability and stability, which makes the control system show 
excellent performance under various complex working conditions. Through comparison experiments, it can be 
seen that the PGFNN control method has a significant improvement in temperature control accuracy compared 
with the traditional PID and the standard FFNN; the system response speed is more rapid compared with the PID 
and the FFNN, which shows a significant advantage. The multi-parameter cooperative control strategy 
successfully solves the problem of multi-objective control of temperature, humidity and air quality. The designed 
dynamic weighting system and predictive control framework can intelligently adjust the priority of the control 
objectives according to the environmental conditions and user preferences, thus realizing the overall optimization 
of multiple parameters. 

The control system is also found to have excellent robustness and adaptability. When there is a 20% deviation 
of the physical model parameters, the control accuracy of PGFNN decreases by only 12.5%, while that of FFNN 
and PID decreases by 27.3% and 41.8%, respectively, which proves that the embedding of physical knowledge 
can effectively improve the robustness of the neural network controller. The system is also significantly more 
tolerant to sensor noise than traditional methods, and is able to make reasonable control decisions even in the 
presence of 5% - 10% measurement errors. The results of the energy efficiency analysis show that the average 
energy savings of the PGFNN control system are better than those of the traditional control methods, mainly due 
to its predictive control capability and precise environmental adjustment strategies. In the user comfort 
assessment, the PGFNN-controlled environment received a high satisfaction rating of 4.8/5, validating the 
system's outstanding performance in real-world applications. 

From this, it can be seen that the multi-parameter cooperative control system for smart window opening and 
closing based on physically guided feed-forward neural network shows significant advantages in the core indexes 
of control accuracy, response speed, multi-parameter cooperative, robustness, and energy efficiency, and 
provides an innovative solution for the environment control technology of smart buildings. This hybrid control 
architecture, which combines physical knowledge with data-driven methods, represents the future development 
trend of intelligent control systems, and has a far-reaching impact on promoting technological innovation and 
practical applications in the field of intelligent buildings. 

 
III. B. Directions for future research 
The improvement of the accuracy of the physical model is decisive for the performance of the multi-parameter 
cooperative control system for smart window opening and closing based on feed-in neural networks. Existing 



Research on multi-parameter cooperative control of smart opening and closing windows based on feed-forward neural network 

5306 

models lack prediction ability under extreme weather conditions or complex indoor activity patterns, and need to 
be enhanced through the introduction of more detailed thermodynamic models, fluid dynamics calculations, and 
consideration of changes in the thermal properties of building materials. Experiments have shown that 
differentiated physical models for high-rise and large-space buildings can be better adapted to specific 
scenarios.PGFNN control algorithms are more complex and computationally burdensome, and their real-time 
performance is poor on resource-constrained devices, which can be reduced by using techniques such as 
network pruning, knowledge distillation, or low-precision quantization. The hierarchical control architecture used in 
cloud and edge devices can fully utilize distributed computing resources, and FPGA-specific hardware 
acceleration schemes can also significantly improve real-time performance. Current research is mainly in a limited 
number of scenarios for verification, should be carried out in different climatic regions, different types of buildings 
in the long-term test work, especially to focus on the stability of the system in extreme climatic conditions. 
Reinforcement learning technology can replace the current multi-parameter weight assignment based on 
predefined rules, and continuously optimize the control strategy by interacting with the environment. The multi-
intelligence body reinforcement learning framework can treat the control of different environmental parameters as 
independent intelligences, and achieve overall optimization through collaborative learning. 

Smart window opening and closing system raises potential privacy risk issues in processing a large amount of 
user behavior data, and the federated learning training method can achieve model optimization without sharing 
the original data. The ability of the system to withstand antisample attacks needs to be enhanced, and the fail-
safe mechanism in case of sensor failure or communication disruption needs to be improved urgently. From the 
perspective of different application scenarios, there is still room for improving the interoperability between the 
system and other smart home devices, and there is still a long way to go to build a complete ecosystem for smart 
building environment management. The adaptive physical model structure can dynamically adjust the physical 
parameters based on real-time observation data during the system operation to enhance the ability to adapt to 
environmental changes. In our experiments, we found that when the light conditions change suddenly, the system 
parameters will be adjusted with a lag, and this kind of problem needs to be solved by a more intelligent prediction 
mechanism. Physically guided feed-in neural network multiparameter cooperative control technology is expected 
to make breakthroughs in theoretical completeness, engineering practicality, and application universality after in-
depth exploration in multiple directions, but the balance between computational resource demand, system 
complexity, and user experience remains a major obstacle in the process of technology implementation. 
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