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Abstract As the core equipment of high-voltage direct current transmission system, the operation reliability of 
normal direct current converter valve directly affects the stability of power system. In this paper, a composite 
processing strategy integrating tensor decomposition theory and deep learning is proposed for the fault diagnosis 
problem under the missing data scenario of normally straight converter valve. A multidimensional data interpolation 
model is constructed based on Tucker decomposition, and the efficient recovery of high-dimensional missing data 
is achieved through the co-optimization of core tensor and factor matrix. Design 1DCNN-BiLSTM hybrid network 
with attention mechanism to enhance the time-frequency characterization of fault features. As verified by the 
analysis of simulated and measured vibration data on the PSSE platform, the average relative error of the Tucker 
decomposition and its rate of change are both minimized in the comparison models, and the average MRE is 2.29 
in the random missing data scenario. The MRE is reduced by 38.75% compared to the suboptimal model in the 
PMU fault scenario with 25% high missing rate. The method in this paper can successfully isolate the fault features 
of severe faults. Moreover, there are rich fault feature modulation bands in addition to the fault feature frequency. 
 
Index Terms normally straight converter valve, Tucker decomposition, deep learning, data interpolation, fault 
diagnosis 

I. Introduction 
Normally straight converter valve is the core equipment of DC transmission project, its role is to convert the three-
phase AC voltage to the DC side to get the desired DC voltage and realize the control of power, the value of about 
22~25% of the total price of the converter station set of equipment, and the process of converting the current is 
ultimately realized through the thyristor [1]-[4]. The basic component unit of the normally direct converter is the 
thyristor stage [5]. The thyristor stage consists of a thyristor valve plate, a thyristor voltage monitoring (TVM) plate, 
an RC damping circuit in parallel with the valve plate, and a DC equalizing resistor mounted in the TVM plate in 
parallel with the valve plate [6], [7]. However, due to the complex structure and working environment of the normally 
direct converter valve, its equipment is prone to failures, which bring serious impacts to the power system operation, 
so the importance of fault diagnosis is self-evident [8]-[10]. 

Current fault diagnosis methods mainly include model-based methods and machine learning methods [11]. 
Model-based methods mainly rely on manual empirical judgment or simple rules for fault diagnosis, such as fault 
tree and state observer methods [12], [13]. Although such methods are able to reason about the causes of faults 
and locate faulty components from the fault occurrence mechanism, they suffer from strong subjectivity, low 
diagnostic efficiency, and susceptibility to human factors [14]-[16]. In addition, machine learning-based methods 
have limited ability to process complex and variable failure modes and large amounts of data, which cannot meet 
the needs of practical applications [17], [18]. Although these methods can find out the cause of fault occurrence and 
locate the fault components from the fault occurrence mechanism, but it is easy to cause a large risk of missing 
data, which will directly affect the accuracy of fault diagnosis, so the study of the data missing problem and 
processing strategy in the fault diagnosis of the normal direct converter valve is of great significance for the safe 
operation of the power system [19]-[22]. 

This paper firstly explains the structural composition and fault mechanism of the normal straight converter valve, 
analyzes the equivalent circuit of the thyristor assembly and the replacement process. It outlines the application 
potential of tensor decomposition in power equipment condition monitoring, and proposes a multidimensional data 
interpolation method based on Tucker decomposition. Construct a fault diagnosis model based on one-dimensional 
convolutional neural network, bidirectional long and short-term memory and time channel joint attention module. 
The one-dimensional convolutional neural network is utilized to extract the features of time series data, the two-way 
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long and short-term memory fully exploits the features of temporal data, and the key information at different times 
and channels is adaptively learned by the time-channel joint attention module. The effectiveness of the proposed 
method is verified through simulation and real data, and the interpolation performance and fault classification 
effectiveness are compared and analyzed. The non-opening and mis-opening faults of the valve are analyzed to 
reveal the influence of the abnormal triggering pulse of the converter valve on the system voltage. 

II. Research on the treatment of missing data and fault diagnosis of normal direct 

converter valve 

As the core technology of long-distance and large-capacity power transmission, the stable operation of high-voltage 
direct current (HVDC) transmission systems with converter valves is crucial to grid safety. The fault diagnosis of the 
normally direct converter valve needs to rely on heterogeneous data from multiple sources, including electrical 
parameters, mechanical vibration and temperature signals, etc. However, in practical engineering, the problem of 
missing data occurs frequently, resulting in incomplete feature information and reduced robustness of the diagnostic 
model. Existing research mostly uses interpolation method or single decomposition model to deal with missing data, 
however, its interpolation accuracy in high-dimensional nonlinear data is limited; at the same time, the traditional 
fault diagnosis methods are difficult to effectively integrate the temporal features and spatial correlation information, 
and are susceptible to noise and composite fault interference. Therefore, this paper focuses on two key issues, 
namely, the repair of missing data and the extraction of fault features, with the aim of constructing an intelligent 
diagnostic framework for normally direct converter valves. 
 
II. A. Converter valve structure 
The current converter valve includes gate unit assembly, thyristor press-fit structure, damping resistor assembly, 
saturation reactor assembly, damping capacitor assembly, cooling line, DC equalizing resistor, and electrical 
connection structure. The gate unit assembly, damping resistor assembly, and damping capacitor assembly 
surround the thyristor press-fit structure. When there is a need for conduction of the current valve, the pulse code 
is transmitted from the VBE through the fiber optic, and then triggers the thyristor through the TTM decoding, and 
each thyristor is equipped with a TTM board. 
 
II. A. 1) Thyristor assembly 
The equivalent circuit of the thyristor assembly is shown in Fig. 1. 

dcR  is the DC equalizing resistor, 
bR  is the 

damping resistor, 
bC  is the damping capacitor, and TCE is the thyristor control electronics. 
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Figure 1: Equivalent circuit of thyristor assembly 

The saturated reactor equivalent circuit used in the commutator structure is shown in Fig. 2. 
pC  is the capacitor 

impact capacitance, 
cuR  is the reactor coil resistance, 

mR  is the core resistance and hysteresis loss resistance 

for eddy current losses, 
mL  is the core inductance, and 

airL  is the hollow inductance. 
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Figure 2: Equivalent circuit of saturated reactor 

Analyzing the equivalent circuit of the thyristor assembly and the equivalent circuit of the saturation reactor is 
conducive to making a quick diagnosis of the converter valve fault, saving the time of fault diagnosis and improving 
the accuracy of fault location. When analyzing the fault diagnosis method, the thyristor replacement method needs 
to be analyzed first. 

 
II. A. 2) Thyristor Replacement Methods 
Thyristors need to be replaced when they fail badly or have a long service life. Currently, thyristor replacement 
requires the use of a special tool that relies on silicon stack pressure to repair the thyristor. The tool includes a 
pressure gauge, a retarder valve assembly, a 25t hydraulic cylinder, a manual hydraulic pump, an adapter assembly, 
a TCA auxiliary support frame, and a pressure loading plunger. 

The manual hydraulic pump oil line has two branches, using only one branch to be able to realize the 
pressurization or depressurization, when the hydraulic pump completes the work, you can use the other branch to 
depressurize, using two branches of the hydraulic pump can save the time of replacing the thyristor. 

 
II. B. Tensor Decomposition Theory 
In recent years, tensor research has received wide attention in the fields of image processing, service quality 
prediction, data mining, and traffic flow prediction. In practical applications, due to data acquisition equipment 
problems, data transmission problems, data storage problems, data processing errors, and data cleaning and 
screening and other uncontrollable reasons resulting in cyclical missing data, the tensor completion technique needs 
to be used to recover the missing values by utilizing the acquired data. 
 
II. B. 1) Four-dimensional tensor multiplication 
Given that the model presented in this paper is a four-dimensional tensor model, this section focuses on the 
multiplication of four-dimensional tensors. For the vector spaces 

1V , 
2V , 

3V , 
4V  with dimensions 

1I , 
2I , 

3I , and 

4I  , respectively, the tensor product space 
1 2 3 4V V V V     in any one of the four-dimensional tensor X   is 

represented as shown in equation (1): 

    1 2 3 4 1 2 3 4
, , ,

1 2 3 4, , , 1

I I I I I I I I
hjkl h j k lh j k l

X x v v v v R   


      (1) 

where 
1 2 3 4h j k lv v v v    (

11 h I  , 
21 j I  , 

31 k I  , 
41 l I  ) is a set of bases for the tensor product space 

1 2 3 4V V V V   . 

For a four-dimensional tensor 1 2 3 4I I I I
hjklX x R        , the Frobenius-paradigm 

F
X   is defined as shown in 

equation (2): 

   1 2 3 4 2

1 1 1 1
,

I I I I
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X X X x

   
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Let the four-dimensional tensor 1 2 3 4I I I IX R     , matrix n nJ IM R   , any 1 4n    when n    mode tensor X  

with matrix X  the n   mode matrix product 
nX M  is defined as shown in equation (3): 

  
1 2 41 1 1 4

1

n

nn n
n

I

n i i i jij j ji i
i

X M x m
 



   
 (3) 

where “
n ” denotes the n   pattern matrix product of the tensor, 1,2, , nj j  . 

The Kronecker product of the tensor X  and the matrix M  is defined as shown in equation (4): 

   1 1 2 2 3 4

1 2 3 4

( ) ( )I J I J I I
i i i iX M X M R        (4) 

where, any 
n ni I , 1,2,3,4n  . When the four-dimensional tensor 1 2 3 4I I I IX R     is downgraded to a second-order 

tensor 1 2I IX R   (i.e., a matrix), the Kronecker product of X  and M  is the Kronecker product of the matrix. 

 
II. B. 2) Tensor decomposition 
The two classical models for tensor decomposition are the Candecomp/Parafac (CP) decomposition and the Tucker 
decomposition. Compared with the CP decomposition, the core tensor obtained by the Tucker decomposition 
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requires significantly less storage space, and it is easier to capture the potential connection between the target 
tensors, and the number of parameters shows an exponential relationship with the order of the tensor, and the time 
complexity is related to the size of the core tensor, which is more suitable for processing small and medium-sized 
data. 

The Tucker decomposition is the representation of a higher-order tensor as the product of a core tensor and the 
accompanying matrices corresponding to a number of tensor modes. The process of Tucker decomposition of a 
third-order tensor is shown in Fig. 3. For any N st order tensor 1 2 NI I IX R     , the Tucker decomposition can be 

expressed as: 

 (1) (2) ( ) (1) (2) ( )
1 2 3[ ; , , , ]N N

NX G A A A G A A A        (5) 

where, the core tensor 1 2 NJ J JG R      retains the main information of the original tensor and 
N NJ I , and the 

factor matrices ( ) n nI JnA R   ,  1, 2, ,n N    represent the principal components of the n  th order after 

decomposition. 
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Figure 3: Tucker decomposition of the tensor 

II. C. Deep learning based fault diagnosis technique for flexible direct converter valve 
II. C. 1) Bidirectional Long and Short-Term Memory Networks 
The Bidirectional Long Short-Term Memory Network (BiLSTM) is a sequence model that employs three gate units 
in order to solve the gradient vanishing problem that occurs in traditional recurrent neural networks. For a given 
time series 

1 2[ , , , ]NX x x x   as an input to the LSTM layer, the LSTM unit computes the t th data [1: ]t N  by 

the following equation: 
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where  kLinear   denotes the single-layer full linkage, and  , , ,k i f o c  denotes the input gates, oblivion gates, 

output gates, and cell states, respectively. 
1 2[ , , , ]NH h h h   denotes the representation of the encoder's output 

results at all times. 
As shown in Eq. (7), BiLSTM is a model consisting of two LSTMs with opposite directions, where N  and d  

denote the input sample length and output feature length, respectively. 

 ( ) ( ); ( )
T

N dH BiLSTM X R LSTM X LSTM X      
 (7) 

Forward LSTM and reverse LSTM are responsible for processing the input sequence data in chronological order 
and reverse order, respectively, and the flow is shown in Fig. 4. This setup enables the BiLSTM to acquire the before 
and after timing sequence information before and after the current moment simultaneously. By performing splicing 
or merging operations on the outputs of forward and reverse LSTMs, we can obtain a representation that 
comprehensively considers the information of the entire input sequence. This bi-directional modeling approach 
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allows BiLSTM to better capture the various patterns and regularities present in the time-series data. This modeling 
is important for revealing the underlying patterns in time-series data. 
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Figure 4: Bidirectional long short term memory network processing data 

II. C. 2) Combining 1DCNN-BiLSTM with Attention Module for Fault Diagnosis 
The main processes of the fault diagnosis method of 1DCNN-BiLSTM with attention module proposed in this paper 
are as follows. 

(1) Pre-processing process: the one-dimensional voltage signal is augmented and equalized using overlapping 
sampling method, with 300 samples of each type as a group, and the overlapping step size is based on the number 
of fault samples of this type. 

(2) Feature extraction process: the first layer of the proposed method uses 40 one-dimensional convolution 
kernels of size 10 1 . The second layer uses a temporal channel joint attention module. Among them, the temporal 
attention module uses one 1D convolutional kernel of size 1 1  and 40 1D depth-separable convolutional kernels 
of size 5 1  to obtain the importance weights in the temporal dimension; the channel attention module adopts two 
fully-connected layers of size 5 1   and two fully-connected layers of size 40 1   to assign weights to different 
channels to assign weights according to their importance. 

(3) Classifier: the proposed method uses a global average pooling layer instead of a fully connected layer to 
simplify the model. Subsequently, the obtained feature maps are input into the Softmax layer for classification, and 
the model is optimized based on the set loss function, knowing that the number of iterations is reached or the 
condition of early termination is met. After obtaining the trained model, the performance of the fault diagnosis model 
is verified by a test set. 

III. Data missing treatment and troubleshooting example analysis of normal direct 
converter valve 

III. A. Comparison of interpolation effect of data 
Based on the PSSE platform for time-domain simulation, a total of 29,674 transient samples are generated for the 
10-machine, 40-node power system in New England, of which 18,853 are stable samples and 10,821 are unstable 
samples. The interpolation effect of the Tucker decomposition is quantified and compared by calculating the mean 
relative error (MRE) of the missing data, which is calculated as follows: 

 
1

ˆ1 n
I I

I I

x y
MRE

n x


 




 (8) 

where 
Ix  and ˆIy  are the true and interpolated values of the electrical runs, respectively; n  is the sum of the 

elements of 
tM ; MRE is numerically equal to the average of the plausibility PR  and FR ; and I  is the sample 

size. Random forest (RF) predictor, LSTM predictor, and CP decomposition are introduced to predict or interpolate 
the missing data.The interpolation effect of Tucker decomposition and comparison model with different missing 
proportion and different missing types is shown in Fig. 5(a~b). 

As the probability of occurrence of missing electrical operation data increases, the interpolation effects of the 
interpolation models all decrease. The LSTM predictor outperforms the RF predictor in both data missing modes 
due to the temporal feature extraction capability of the temporal model, and the CP decomposition, although it does 
not have explicit temporal and spatial feature extraction capability, also exhibits considerable interpolation effects 
due to its unique mechanism. Overall, the Tucker decomposition achieves the optimal performance by minimizing 
both the average relative error and its rate of change among the compared models. In the random missing data 
scenario, the average MRE is 2.29. The Tucker decomposition shows more reliable interpolation for missing feature 
values due to PMU failures. In the PMU fault scenario with 25% high missing rate, the MRE is only 2.15, which is 
38.75% lower than the suboptimal model. The experimental data validate the robustness of the proposed method 
under complex missing modes, demonstrating its reliability and practicality in engineering applications. 
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(a)Data missing at random (b)PMU fault 

Figure 5: Comparison of prediction or imputation effects of different models 

III. B. Troubleshooting Analysis 
In this section, the actual vibration data of the converter valve air cooler motor is used as an example to apply the 
proposed algorithm for validation and assess the effectiveness of the proposed diagnostic method. As the converter 
valve air cooler works under the environment of humidity, corrosion and external vibration for a long time, it will lead 
to a high probability of air cooler motor failure and is prone to multiple failures concurrently. 
 
III. B. 1) Validation of validity 
In this paper, a magnetic suction vibration sensor is used for data acquisition of the commutator valve air cooler 
motor, and the time-domain vibration signal x(t) of the bearing measured by the sensor and its frequency domain 
after FFT are shown in Fig. 6. Among them, the sampling frequency is 15000Hz and the sampling length is 12000 
points. In addition, the fault characteristic frequency of the periodic fault is 3 times its rotational frequency, the fault 
characteristic frequency of the impact fault 1 is about 157.88 Hz, and the fault characteristic frequency of the impact 
fault 2 is 110.3 Hz. Although there are obvious impact signals in both the time domain and the frequency domain 
plots, it is not possible to determine the frequency of the faults due to the presence of a large number of resonance 
spectral peaks in the spectra components. 

 

Figure 6: Composite fault time domain and frequency domain 

The spectrum of severe fault feature 1 obtained using the method of this paper is shown in Fig. 7. The method of 
this paper can successfully isolate the fault features of severe faults. Moreover, in addition to the fault feature 
frequency 

1nf  and its multiplier frequencies 
12 ,nf , 

13 nf , there are rich modulation bands of fault features. Similarly, 
fault feature 2 can be well recognized, thus verifying the effectiveness of the proposed method. 
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Figure 7: Spectrum of severe fault feature 1 

III. B. 2) Troubleshooting 
The proposed method is further used to investigate the voltage RMS situation when the non-opening and mis-
opening faults occur in the converter valve. When the valve does not turn on, take the converter valve system V1 
as an example, the RMS voltage waveform of the system's commutated phase is shown in Fig. 8. After the loss of 
the V1 trigger pulse, V1 cannot conduct normally, V5 fails to commutate to V1, and V5 continues to turn on, at which 
time V1 is subjected to a positive voltage. Other valves conduct normally, after V2 conducts, causing a short circuit 
on the DC side, the fault continues until V3 conducts and disappears, after which the system enters the normal 
state. 

 

Figure 8: Effective value of fault commutation voltage without valve opening 

When the valve is mistakenly turned on, take the converter valve system V1 as an example, the RMS phase 
voltage waveform of the system is shown in Fig. 9. when the trigger pulse of V1 persists, i.e., when V1 continues 
to conduct, it causes a short-circuit on the DC side after V4 conducts until the fault disappears in the cycle after V4 
shuts off and V6 turns on, and the fault repeats itself afterward, resulting in a decrease in the RMS phase-voltage 
and cyclical fluctuations. Compared with the normal case, the inverter side is controlled by constant current, but the 
trans-advance trigger angle increases and periodic continuous fluctuation occurs. The case of pulse advance 
triggering is only equivalent to an increase in the trigger angle of the valve, which has a very small effect on the 
system as can be seen from the voltage RMS waveform shown in Fig. 9. 

 

Figure 9: Effective value of fault commutation voltage without valve opening 
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The analysis results show that when the valve is triggered early, the effect on the system is small and usually 
negligible. When the loss of a single trigger pulse causes the valve to turn on incorrectly, the system returns to 
normal operation after a short transient process. When the valve is continuously turned on and continuously not 
turned on, the RMS value of the system commutation voltage decreases and fluctuates periodically, but the latter is 
more serious than the former. 

IV. Conclusion 

Aiming at the fault problem of the normally direct converter valve, this paper proposes to use Tucker decomposition 
to deal with the problem of missing data, and designs a fault diagnosis method that combines 1DCNN-BiLSTM with 
the attention module. 

Based on the time-domain simulation of the PSSE platform, the interpolation effects of the interpolation models 
are all reduced with the increase of the probability of the occurrence of missing electrical operation data.The average 
relative error of the Tucker decomposition and its rate of change are both minimized among the comparison models, 
and the optimal performance is achieved. In the random missing data scenario, the average MRE is 2.29. The 
Tucker decomposition shows more reliable interpolation for missing feature values due to PMU failures. In the PMU 
fault scenario with 25% high missing rate, the MRE is only 2.15, which is 38.75% lower than the suboptimal model. 
The experimental data validate the robustness of the proposed method under complex missing modes, 
demonstrating its reliability and practicality in engineering applications. 

Taking the actual vibration data of the air cooler motor of the converter valve as an example, the method in this 
paper can successfully isolate the fault characteristics of serious faults. Moreover, there are rich modulation bands 
of fault features in addition to the fault feature frequency, which verifies the effectiveness of the proposed method. 
For the occurrence of non-opening and mis-opening faults of the converter valve, the analysis results show that 
when the valve is triggered in advance, the impact on the system is small and usually negligible. When the loss of 
a single triggering pulse leads to valve misopening, the system returns to normal operation after a short transient 
process. In the case of sustained valve turn-on and sustained non-turn-on, the RMS value of the system 
commutation voltage decreases and fluctuates periodically, but the latter is more serious than the former. 
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