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Abstract Wind turbines operate in harsh environments for a long time, and the gearbox as a core transmission 
component faces severe reliability challenges. Aiming at the problem of low fault diagnosis accuracy of wind 
turbine gearbox in high noise environment, this study proposes a fault diagnosis method based on adaptive 
probabilistic random forest. The method firstly adopts the improved global projection algorithm for feature 
extraction and dimension reduction of gearbox operation data, which effectively retains the local structural 
information while taking into account the global features; then introduces the quantum wolf pack optimization 
algorithm to adaptively optimize the key parameters of the random forest, and constructs an adaptive probabilistic 
random forest classifier; and finally improves the fault identification capability through the multi-channel data fusion 
technology. The experimental results based on vibration data of 20 noisy wind turbine gearboxes show that the 
proposed method performs well in the identification of four states, namely, healthy state, secondary planetary gear 
ring wear, sun wheel crushing, and primary planetary gear ring wear. The fault identification accuracy after the 
fusion of both directions reaches 97.17%, which is significantly improved compared with 93.33% in the single 
X-direction and 95.17% in the Y-direction. Compared with the traditional method, the fault identification rate of this 
method reaches 92%, which is significantly better than the 84% of the support vector machine and the 89% of the 
traditional random forest, proving the effectiveness and superiority of the proposed method in the fault diagnosis of 
gearboxes of high-noise wind turbines. 
 
Index Terms adaptive probabilistic random forest, localization projection algorithm, quantum wolf pack 
optimization, multi-channel data fusion, fault diagnosis, wind turbine gearboxes 

I. Introduction 
In recent years, with the construction of wind farms, a large number of wind turbines have been put into operation, 
and the related failure problems have emerged [1]. Wind turbines are often located in high mountains and oceans 
and other areas with abundant wind energy resources but inconvenient inspections, and failures cannot be found 
in time. Among them, the gearbox, as a key component of the wind turbine transmission system, will pose a 
serious threat to the normal operation of the wind turbine once a failure occurs, and may even lead to serious 
safety accidents and major economic losses [2]-[5]. Therefore, condition monitoring and fault diagnosis of wind 
turbine gearboxes have become important issues [6]. 

Due to the complexity of the wind turbine gearbox working environment and strong background noise, in order to 
extract as much effective information as possible and reduce the noise interference of wind turbine gearbox 
vibration signals, American scholars Dragomiretskiy and Zosso proposed a new adaptive signal variational modal 
decomposition model in 2013 [7]. The VMD model is a completely non-recursive signal decomposition algorithm, 
which, in the process of calculation The VMD model is a completely non-recursive signal decomposition algorithm, 
which abandons the constraints of recursive decomposition, effectively avoids the modal aliasing problem and the 
white noise residual problem, improves the speed of signal decomposition, and has a good effect on the 
processing of non-smooth and non-linear signals, and is therefore widely used in the fields of noise reduction, fault 
diagnosis and identification and classification [8]-[10]. The VMD model has a strong dependence on the number of 
decomposition layers (K) and the penalization factor (α), and a smaller K leads to the under-decomposition of 
vibration signals, resulting in modal aliasing problems and the creation of a modal aliasing problem. A small K will 
lead to under-decomposition of the vibration signal, resulting in modal aliasing, while a large K will lead to 
over-decomposition of the vibration signal, resulting in modal loss [11]. α is too large to lead to a decrease in the 
bandwidth of the eigenmode components obtained from decomposition, resulting in missing information, while α is 
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too small to lead to an increase in the bandwidth of the eigenmode components obtained from decomposition, 
resulting in center-frequency overlap and modal confusions [12], [13]. In order to optimize the parameters K and α 
in the VMD model, Li et al. proposed a wind turbine gearbox fault type identification algorithm combining the VMD 
with an extreme learning machine to find the optimal K and perform the modal decomposition, which resulted in an 
effective improvement of the fault identification accuracy [14]. 

In order to classify the feature vectors so as to realize the fault diagnosis of wind turbine gearboxes, the use of 
random forests in machine learning is a more widely used method currently [15]. For example, Cabrera et al. 
developed a random forest classifier for multi-class fault diagnosis of gearboxes using wavelet packet 
decomposition technique, which achieved a classification accuracy of 98.68% and demonstrated high efficiency 
and reliability [16]. Chen et al. proposed an improved random forest algorithm, which combines graph-based 
semi-supervised learning and decision trees, aiming to improve the transmission fault diagnosis in terms of 
classification accuracy, especially for the case of insufficient number of labeled samples, to achieve the 
optimization of diagnostic efficiency [17]. Qin et al. combined the integrated empirical modal decomposition (EEMD) 
and random forest for an accurate diagnostic method of rolling bearing faults, which is more accurate than the 
wavelet method in terms of diagnostic efficiency [18]. Yuan et al. proposed a change-point detection based on 
SCADA data and a stacked model for wind turbine gearbox fault prediction, which was validated on historical data 
from five wind turbines to significantly improve fault detection and reduce downtime [19]. The above methods in the 
optimization algorithm often have the problem of uneven distribution of population initialization and easy to appear 
local optimum, which leads to the optimization algorithm is inaccurate for the random forest parameter optimization, 
which in turn affects the accuracy of the classification and identification of the random forest algorithm [20], [21]. 
The combination of VMD model and random forest is a new idea to solve the above problems, however, there are 
fewer related studies. 

In this study, a fault diagnosis method for high-noise wind turbine gearboxes integrating multiple advanced 
algorithms is proposed. Firstly, for the problem of difficult extraction of signal features in high noise environment, an 
improved global projection algorithm is used to reduce and extract features from the original vibration data, which 
takes into account the global information while maintaining the local structure of the data to effectively improve the 
separability of the features. Secondly, in order to solve the problem of difficult parameter setting of the random 
forest algorithm, the quantum wolf pack optimization algorithm is introduced to realize the adaptive optimization of 
the parameters, and the convergence and robustness of the algorithm are improved by the quantum bit coding and 
dynamic adaptive rotation angle strategy. Finally, the multi-channel data fusion technology is used to integrate the 
vibration information in different directions to construct an adaptive probabilistic random forest classifier to realize 
the accurate recognition of multiple failure modes. 

II. Composition and failure characteristics of fan gearboxes 
II. A. Components of a wind turbine gearbox 
The wind turbine gearbox is the most valuable component in a wind turbine, and its function is to convert the 
low-speed rotation of the blades into the high-speed rotation required by the wind turbine generator, and to transfer 
the kinetic energy of the blades to the generator. WTGs usually use a three-stage planetary gearbox. The 
three-stage planetary gearbox consists of planetary gears and three-stage gears, three-stage planetary gearbox 
composition is shown in Figure 1. The planetary gear consists of an internal toothed inner gear ring a, three 
planetary wheels b1, b2, b3, planetary gear rack c and sun wheel d. The inner gear ring a is fixed, and the 
planetary wheels are fixed on the planetary gear rack, which is connected to the main shaft and has the same 
rotational speed as that of the fan blades. Three planetary wheels rotate in the inner gear ring, which increases the 
rotational speed of the sun wheel. The three-stage gearing consists of gear sets of three classes: low-speed class 
5, 6, medium-speed class 7, 8 and high-speed class 9, 10. The low-speed class large gear 5 is directly connected 
to the shaft 1, which is driven by the sun wheel, and the shaft 4, which is connected to the generator shaft. By 
accelerating the sun wheel in three stages, the shaft 4 reaches the required speed of the generator. 
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Figure 1: The composition of the three-stage planetary gearbox 

II. B. Wind turbine gearbox failure modes 
Fan gearbox failure modes are mainly: insufficient lubrication, vibration and swaying, high temperature, aging 
failure of bearings and gears. Insufficient lubrication is mainly due to factors such as leakage of lubricant and 
excessive particulate content in the lubricant. The causes of vibration wobble are: design defects, gears and shafts 
not aligned, installation defects and foreign objects entering, etc., which can be judged by installing a vibration 
monitoring system. In order to avoid these failures, it is necessary to regularly overhaul the gearbox. Gears and 
bearings are in high speed rotation during operation, which are subject to severe wear and aging. Aging failures of 
gears, medium-speed bearings, and high-speed bearings will cause damage to the entire transmission, and the 
cost of failure is high. The strategy for overhauling the aging components is usually to replace them periodically, 
therefore, a method for troubleshooting the gearbox of a high-noise wind turbine is proposed. 

III. Noisy wind turbine gearbox troubleshooting methods 
In order to reduce the waste of human and material resources due to minor faults, and also to prevent secondary 
damage to wind turbines due to untimely handling of major faults, this paper is based on the adaptive probabilistic 
random forest algorithm for the fault diagnosis of gearboxes of high-noise wind turbines. 
 
III. A. Feature extraction of operational data 
The local projection-preserving (LPP) algorithm is a linear approximation of the Laplace feature mapping (LE) 
algorithm to preserve local information in the data, which allows the data to maintain an internally fixed local 
structure while decreasing the dimensionality. Compared with the global information retained by principal 
component analysis, the local information can better highlight the feature differences between different fault data. 
Meanwhile the algorithm obtains the locally preserved projection by finding the optimal approximation of the 
eigenfunction of the Laplace-Beltrami operator on the manifold. Therefore, the algorithm also has the data 
representation properties of nonlinear techniques. 

The operating data of noisy wind turbine gearboxes has the characteristics of nonlinearity as well as strong 
information coupling, high noise content, and many irrelevant parameters, which makes the fault information of the 
data difficult to utilize in fault diagnosis. In order to improve this situation, this paper introduces a localization 
projection algorithm to reduce the dimensionality of the gearbox operation data and extract the fault information 
before carrying out the fault diagnosis of the gearbox, so as to improve the accuracy of the fault diagnosis. 

In the given initial data space, the data set 1 2[ , , ]nX x x x   has m  parameter dimensions, and the data set 

1 2[ , , ]nY y y y   in the dimensionalized space is obtained by transforming the matrix A  and calculating 
TY A X , so that the dimensionality of its data, m , is much smaller than m  to achieve the dimensionality 

reduction purpose. Considering that the original algorithm only focuses on the local information of the data and 
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does not take into account the global structure. The objective function of the improved algorithm introduces the 
global concept to minimize the following objective function under certain constraints: 

 
2 21

( ) ( )i j ij i
ij
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    (1) 

where i , j  represent two different data in the initial space X , ijW  represents the matrix consisting of the 

distance weight coefficients between the two data points i , j , and at the same time the computational process to 

prevent the elimination of arbitrary scaling factors, the following restriction formulae are added to the computational 
process: 

 1T TA XDX A   (2) 

At this point minimization becomes a problem of finding eigenvalues: 

 ( )T TB XLX A XDX A   (3) 
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  , L  is the Laplacian matrix, with L D W  , and D  is the diagonal 

matrix, which is used to provide the natural measure of the data points, and the D  in which the The iy  

corresponding to the maximum value iiD  is the most important data value. ii jij
D W  This solves the difficult 

problem of finding generalized eigenvalues by solving for the solution of the smallest eigenvalue. The steps of the 
algorithm are: 

(1) Construct the adjacency graph, construct the data adjacency graph by the k   nearest neighbor algorithm, if 
the data jx  is in the range of ix 's k  nearest neighbor data, or ix  is in the range of jx 's k  nearest neighbor 

data, then connect a relation line at the data points ix  and jx . 

(2) Select the weight of the relationship line, the relationship line connected between the nodes of the adjacency 
graph is weighted, generally through the heat kernel function to calculate the weighted value jiW  of the 

connection line between the nodes, the result of the calculation so that the larger the distance between the data of 

ix  and jx , the smaller the corresponding weighted value jiW . Conversely the smaller the distance between the 

data, the larger the corresponding weighted value jiW , the heat kernel function equation is defined as: 
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where t  is the heat kernel constant, which usually defaults to 1. 
(3) Calculate the projection matrix, according to Eq. (3), the obtained eigenvector solutions are arranged as 

0 1 2 1, , , na a a a   in ascending order, the eigenvectors correspond to the positional arrangement of the 

eigensolutions, and finally, the desired reduced dimensional column vectors are selected to form the transformation 
matrix A . 

 
III. B. Adaptive Probabilistic Random Forest Approach 
Random forest is the most important method in integrated learning. The parameters of the number of decision 
trees constructed in the random forest algorithm t  and the proportion of node feature set selection f  need to be 
set values at the beginning of the algorithm, and different values of the parameters have a significant effect on the 
classification results of the random forest. This algorithm introduces the quantum wolf pack optimization algorithm 
to perform adaptive optimization of the parameters of the random forest algorithm to obtain the best values for 
parameter initialization. 
 
III. B. 1) Random Forest Algorithm 
In this paper, a random forest model is used for failure analysis of gearboxes of high noise wind turbines. Random 
forest is a learning method that utilizes an ensemble of multiple decision trees to improve the accuracy and 
robustness of predictions by aggregating their outputs. A decision tree is a tree structure where each node 
represents a test condition for an attribute and each leaf node represents a category or a value. The learning 
process focuses on the splitting of nodes with the aim of dividing the dataset into purer subsets by attribute 
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selection. When there is a new sample to be predicted, Random Forest will let all the decision trees judge it and 
then determine the final result based on majority vote or average. There are two main principles of random forests: 
self-sampling and random feature selection. Random forests use self-sampling to take some samples from the 
original training set with put-back, so that each tree has a different training set, increasing the diversity of trees and 
reducing the risk of overfitting. At the same time, the unsampled samples are used as a test set for the tree to 
evaluate the tree's generalization ability, which is called out-of-bag data. Random forests randomize some of the 
features from all the features while constructing the decision tree and then select the optimal features from them for 
splitting, which is called random subspace method. This reduces the correlation of features, increases the 
independence of the tree and improves the integration. 

Let the training set be 1 1 2 2{( , ), ( , ), , ( , )}N NP x y x y x y  , where ix  is an M -dimensional feature vector, and iy  

is the corresponding category or value. The random forest contains K  decision trees, and each tree is generated 
as follows: first, n  samples are randomly drawn from P  in a relaxed manner as the training set kP  for the k th 

tree. Then, m  features are randomly drawn from M  features in a relaxed manner as the candidate feature set 

kF  for the k th tree. Finally, kP  and kF  are used to construct the k th tree kT . Each time a node is split, a 

feature from kF  is randomly selected and the best split point is determined based on some criterion (e.g., 

information gain, Gini index, etc.). The above steps are repeated until K  trees are generated. 
In case of a classification problem, the formula is: 

 
1 1

arg max ( ( ) )
K N

k i
k i

y I T x c
 

   (5) 

where K  is the number of decision trees, I  is the indicator function, ( )kT x  is the classification result of the k th 

tree on the input x , and N  is the number of categories ic  is the category label. The meaning of the indicator 

function is that it returns 1 if the condition in the parentheses holds, and 0 otherwise. e.g., 1 1( ( ) )I T x c  is 1 if the 

1st tree classifies x  into category 1c , and 0 otherwise. for a new input x , the Random Forest will let all the K  

decision trees categorize it, and then tally up the number of votes for each category c . That is, how many trees 
classify x  into ic  categories. Finally, the random forest chooses the category with the most votes as the final 

prediction y . 

If it is a regression problem, the formula is: 

 
1

1
( )

K

k
k

y T x
k 

   (6) 

where ( )kT x  is the regression result of the k th tree on x . For a new input x , the random forest will let all the K  

decision trees regress on it, and each tree will give a result with the value ( )kT x . The random forest then computes 

the average of the results from all the trees as the final prediction y . 

In this paper, we optimize the random forest algorithm using an improved quantum wolf pack optimization 
algorithm to obtain an adaptive probabilistic random forest algorithm. 

 
III. B. 2) Quantum Wolfpack Algorithm Improvement 
The basic idea of the wolf pack algorithm is derived from the behavior of wolf pack groups, the algorithm has good 
search and development ability, but its existence is due to the randomness of the update mechanism leads to an 
increase in the uncertainty of the wolf pack population, which reduces the algorithm's generalization ability and 
robustness. The introduction of quantum computing increases the optimization performance of the wolf pack 
algorithm, controls the convergence speed of the algorithm, and strives to achieve better optimization results. 

The core idea of the quantum wolf pack algorithm is to represent the artificial wolf in the form of multiple quantum 
bits, and use the quantum revolving door to change the positional transformation of the wolf pack and adjust its 
hunting behavior, and the optimization-seeking performance is further improved. In the population updating 
behavior of the wolf pack algorithm, the way of eliminating some poorly evaluated artificial wolves and then 
randomly producing the same number of artificial wolves is used, which is easy to make the algorithm fall into the 
local optimal solution and lack of robustness. This study improves on this foundation, when the wolves reach the 
step of population updating behavior, evaluate and rank the position of the wolves, eliminate the   part of the 
artificial wolves ranked at the back, take the same number of artificial wolves ranked at the front as the basic 
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samples, and update these samples using quantum revolving door, which increases the diversity of the algorithm 
while keeping the number of wolves unchanged, and improves the algorithm's Robustness. 

Quantum computation consists of quantum bit encoding and quantum revolving door updating, which utilizes the 
uncertainty of quantum states for computation and ensures the diversity of quantum computation. Therefore, 
combining quantum computing with optimization algorithms can improve the diversity, convergence, generalization 
ability and robustness of optimization algorithms. 

Quantum bit encoding contains information about the independent variables in the algorithm, and quantum bit 
encoding differs from normal optimization algorithms in that it can contain information about multiple quantum 
states simultaneously. Usually quantum bits are represented as | | 0 |1       , where ( , )   is the probability 

amplitude of | 0  and | 1 , respectively, and satisfies 2 2| | | | 1beta   , and | 0  and | 1  denote spin states. So 

a quantum state contains both | 0  and | 1  different information, and the bit encoding formula is: 

 
11 12 1 21 22 2 1 2

11 12 1 21 22 2 1 2

t t t t t t t t t
k k m m mkt

j t t t t t t t t t
k k m m mk
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        

 
  
  

  
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 (7) 

where, t
jq  is the t th generation of the population, the artificial wolf of the j th individual, k  represents the 

number of quantum bits encoding a gene, and m  represents the number of chromosomal genes. 
The use of quantum bit encoding allows a quantum state to represent a superposition of multiple states, which 

allows for better diversity and also better convergence of optimization algorithms introduced into quantum 
computing. 

The quantum revolving door is used to change the artificial wolf position, which has different effects on the 
performance of the algorithm when different rotation angles are chosen. How to choose the rotation angle of the 
quantum revolving door is an extremely important issue, and setting the rotation angle too large is prone to 
produce a local optimal solution, and too small will lead to a longer running time of the algorithm. This study 
proposes a dynamic adaptive rotation angle to solve this problem, namely: 

 sgn( )i i iA     (8) 

where, sgn( )iA  denotes the positive or negative direction of the rotation angle. h i
i

h i
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the probability amplitude corresponding to the current optimal quantum bit, i

i



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 denotes the probability amplitude 

corresponding to the current quantum bit, and   denotes the magnitude of the rotation angle, which is calculated 
as 

 0.08
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b T
i e

M

 
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
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where, b  denotes the current optimal rotation angle,   denotes the current rotation angle, M  denotes a fixed 
value, generally taken as  ,   denotes a dynamically adjusted nonlinear exponent with a range of (1.0, 2.0) , 
  denotes a dynamic rotation angle with a range of (0,0.5 ) , t  denotes the current number of iterations, and 

T  denotes the maximum number of iterations. Controlling the size of   and   allows dynamic adaptive 
control of the size of the rotation angle. The quantum revolving door transformation formula is: 

 
cos( ) sin( )

( )
sin( ) cos( )

i i
i

i i

U
 


 
   

     
 (10) 

Its transformation process is given by Eq: 
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where, ( , )Ti i   and ( , )Ti i    are the probability amplitudes of the i th quantum bit before and after it is updated 

by the revolving door, respectively. 
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The dynamic adaptive rotation angle of the quantum rotating gate update is used, which makes the optimization 
algorithm introduced into quantum computing have better practicality and also improves the generalization ability 
and robustness of the algorithm. 
III. B. 3) Adaptive probabilistic random forests 
In order to ensure that the improved quantum wolf pack algorithm always runs efficiently when optimizing the two 
parameters in random forests, it is necessary to find the appropriate   and   parameters in the dynamic 
adaptive rotation angle function first. In this study, the Rastrigin function is utilized to carry out the search for the 
optimal values of the   and   parameters in the dynamic adaptive rotation angle function, which is computed 
as: 

 2 2
1 2 1 2min ( ) 20 10(cos 2 cos 2 )f x x x x x       (12) 

Its minimum value is taken to be 0 at point (0,0) . 

IV. Troubleshooting analysis of the model 
IV. A. Model test data 
In order to verify the effectiveness of the PE-VMD method in signal denoising, a simple simulation signal of a 
localized fault occurring in the gear running state is constructed. Based on the vibration data of 20 noisy wind 
turbine gearboxes collected from this wind farm, four states are classified as healthy state (N), secondary planetary 
gear ring wear (SPG), sun wheel crush (SWC), and primary planetary gear ring wear (PPG), and the time-domain 
waveform data in the X and Y directions of each state are obtained. 

For the four gearbox states mentioned above, this experiment intercepts 3500 data points as a sample in a 
randomized manner at the starting point in sequence, generates 1500 samples for the time domain signals of each 
state, and randomly selects 80% as the training set and 20% as the test set. 

 
IV. B. Analysis of test results 
The collected training samples are used as the dataset for this experiment, which are fed into the network for 
training and testing, and in order to ensure the accuracy of the test results, the ten-fold cross-validation method is 
used to reduce the chance of random assignment of the training and testing sets. The optimizer is Adam, the 
Dropout rate is 0.3, the learning rate is 0.002, and the number of iterations is set to 100. 

Using the method of this paper in the adaptive probabilistic random forest fault recognition model for 100 
iterations, the fault recognition accuracy curve obtained is shown in Figure 2. By observing the accuracy curve, it 
can be found that the training set reaches convergence when it is iterated in the model up to 36 times, and at this 
time, the fault recognition accuracy of the training set and the test set is 96.35% and 92.56%, which verifies the 
validity of the adaptive probabilistic random forest model established in this paper in the application of high-noise 
wind turbine gearbox fault diagnosis. 

 

Figure 2: Fault identification accuracy curve 

In order to further study the necessity of multi-channel data fusion, the parameters of the adaptive probabilistic 
random forest network structure are now kept unchanged, and the X-direction and Y-direction data in the training 
samples are inputted into the adaptive probabilistic random forest network for training respectively, and the 
confusion matrices for wind turbine gearbox fault classification in the X-direction, Y-direction, as well as the fusion 
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of the X- and Y-direction data are obtained, and the confusion matrices for gearbox fault classification are shown in 
Fig. 3 shown in Fig. 3. 

When only the X-direction is used as input to the model, the fault identification accuracy is 93.33%, when only 
the Y-direction is used as input to the model, the fault identification accuracy is 95.17%, and after the fusion of the 
two dual directions, the fault identification accuracy can reach 97.17%. By comparison, it can be seen that referring 
to the vibration information of both directions can significantly improve the accuracy of fault recognition. Studying 
the above three confusion matrices, it can be found that the X-direction data is more sensitive to the secondary ring 
wear fault SPG, and its fault identification accuracy is 2.67% higher than that of the Y-direction fault identification 
accuracy. On the other hand, the Y-direction vibration data is more sensitive to the sun wheel crush SWC and the 
primary planetary gear ring wear fault PPG, and its recognition accuracy for these two fault types is 5.33% and 
3.00% higher than that of the X-direction, respectively. This analysis of the confusion matrix further validates the 
effectiveness of the adaptive probabilistic random forest model developed in this paper in the application of 
high-noise wind turbine gearbox fault diagnosis. 

  

(a)X direction confusion matrix (b)Y direction confusion matrix 

 

(c)The confusion matrix after fusion 

Figure 3: Fault classification confusion matrix of gearbox 

IV. C. Comparative analysis of methods 
The SVM model and the unimproved random forest model are trained with the same data to compare the 
advantages and disadvantages between the proposed adaptive probabilistic random forest model. The article uses 
MATLAB program to record the fault diagnosis effect of the improved adaptive probability random forest model. 
The test results of the adaptive probabilistic random forest model are shown in Fig. 4, with labels 1 to 4 denoting N, 
SPG, SWC, and PPG, respectively.The proposed model in this article is able to efficiently identify different faults in 
the high-noise wind turbine gearbox model. The adaptive probabilistic random forest model proposed in the article 
has only 4 wrong diagnoses in the fault diagnosis of noisy wind turbine and all others are predicted correctly with a 
fault identification rate of 92%. The test results of the same SVM model and the unimproved random forest model 
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are shown in Figures 5 and 6. The support vector machine is obviously not able to meet the requirements in the 
classification of transmission faults, and there are many recognition errors, the fault recognition rate is only 84%, 
while the random forest model for different faults diagnosis recognition rate is 89%. The adaptive probabilistic 
random forest model proposed in the article is used in the identification of different faults in the gearbox of a 
high-noise wind turbine, which can improve the recognition rate of fault diagnosis. 

 

Figure 4: Test results of Adaptive probability random forest 

 

Figure 5: Test results of SVM model 

 

Figure 6: Test results of Random Forest model 

V. Conclusion 
In this study, by constructing an adaptive probabilistic random forest-based fault diagnosis model for high-noise 
wind turbine gearboxes, we effectively solve the problems of feature extraction difficulties and low recognition 
accuracy of traditional methods in strong noise environments. The improved localization-preserving projection 
algorithm successfully realizes the effective dimensionality reduction of high-dimensional vibration data, which 
retains the key fault information while eliminating the redundant features. The introduction of quantum wolf pack 
optimization algorithm significantly improves the adaptive optimization ability of random forest parameters, and the 
dynamic adaptive rotation angle strategy enhances the convergence and stability of the algorithm. 

The experimental validation shows that the method performs well in the identification of four typical fault states of 
the gearbox. The training process reaches convergence at the 36th iteration, and the fault recognition accuracies 
of the training and test sets are 96.35% and 92.56%, respectively, which proves the good generalization ability of 
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the model. The effectiveness of the multi-channel data fusion strategy is fully verified, and the fault recognition 
accuracy after the fusion of X- and Y-direction data reaches 97.17%, which is significantly improved compared with 
single-direction data. Comparative analysis results show that the comprehensive performance of the proposed 
method is significantly better than the traditional algorithm, and there are only 4 misdiagnoses in noisy wind turbine 
gearbox fault diagnosis, and the overall recognition accuracy rate reaches 92%, which provides a reliable technical 
support for the intelligent operation and maintenance of wind turbines. The method not only improves the accuracy 
and real-time of fault diagnosis, but also provides new ideas and methods for the development of predictive 
maintenance technology in the wind power industry. 
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