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Abstract This article aimed to address the challenges of underwater target recognition algorithms in the face of 
large differences in lighting conditions, image blurring, and distortion by improving deep convolutional neural 
networks. By introducing the attention mechanism, the purpose of strengthening the representation of target 
information in the convolutional feature map is achieved, thereby reducing the interference of irrelevant information. 
Firstly, the pre-trained and improved deep convolutional neural network model ResNet-50 was used to fine tune the 
underwater target dataset to capture local and global information of the target and construct an attention 
mechanism network; secondly, attention mechanism was used to calculate the weight of each pixel in the feature 
map, making the target area more prominent. The attention weighted features can be fused with the original 
features, and the channel attention mechanism can be used to weight the importance of features between 
channels; finally, this article designed a classifier to recognize underwater targets, based on the Softmax classifier 
for target classification, and outputs the probability distribution of target categories. The research results indicate 
that the deep convolutional neural network improved by applying attention mechanism performs the best compared 
to other models in terms of accuracy, recall, and F1 value, reaching 0.85, 0.82, and 0.83, respectively. This 
indicates that deep convolutional neural networks improved by applying attention mechanisms can play a greater 
role in underwater target recognition. 
 
Index Terms Underwater Target Recognition Algorithm, Deep Convolutional Neural Network, Attention Mechanism, 
ResNet-50 Model, Softmax Classifier 

I. Introduction 
Nowadays, underwater target recognition plays an increasingly important role in marine resource development and 
environmental monitoring, but with it comes the challenges brought by the complexity of the underwater 
environment. Light attenuation, water turbidity, and illumination changes make underwater target recognition 
difficult [1], [2]. Therefore, in order to meet the current new needs for underwater target recognition, new technical 
methods need to be adopted to deal with the difficulties. 

Previous studies have shown that researchers have proposed various methods for underwater target recognition. 
Among them, some studies use feature engineering [3], [4] and traditional machine learning methods [5]-[7], for 
example, technologies such as Support Vector Machine (SVM) and Random Forest (RF) are used to handle target 
recognition tasks in underwater images. Among them, scholars like LIN Xinghua [8] have successfully overcome 
the issue of autonomous underwater robots’ inadequate perception of the flow field environment by developing a 
support vector machine model. Scholars such as LIU Xionghou [9] have effectively solved the problems faced by 
underwater slow small target classification and recognition using the joint classification method of support vector 
machines. Through the study of feature selection methods for random forests, Wang Jiawei et al. [10] effectively 
solved the problem of multi-base underwater small target classification and recognition. In response to the problem 
of interference in the performance of target detectors caused by underwater environments, random forests were 
employed by academics like Han Yongqiang [11] to increase the tracking accuracy of underwater target 
identification. Numerous academics have made significant advances in the study of underwater target recognition 
techniques in recent years [12]-[14], but these methods still cannot well overcome the challenges brought by the 
underwater environment. 

In the realm of deep learning, scientists have attempted to incorporate deep learning techniques into the domain 
of underwater target identification. They have utilized deep learning models like the Deep Convolutional Neural 
Network [15]-[17] to extract features from underwater images [18]-[20]. Wang Chenyu and other researchers [21] 
have proposed a deep learning-based method for underwater image recognition to address the issue of limited 
target image data in marine environments. Na Wang and other scholars [22] applied the timbre feature model of 



Underwater Target Recognition Algorithm Based on Improved Deep Convolutional Neural Network 

5938 

multiple regression analysis to underwater noise recognition, which effectively solved the problem of difficulty in 
classifying and identifying underwater target radiation noise signals. In response to the problem of low recognition 
accuracy of moving objects in water caused by weak light and complex environment, Chen Yuliang et al. [23] have 
effectively solved the problem of imprecise underwater moving object recognition methods based on deep learning 
algorithms. By improving convolutional neural networks, Tian Bin et al. [24] effectively solved the problem of 
difficulty in feature extraction of power frequency underwater magnetic target signals. The research of Cao 
Jianrong et al. [25] has effectively solved the various factors that affect the target segmentation algorithm. Although 
many scholars have proposed their own methods for underwater target recognition [26]-[28], as well as research 
on different problems [29], [30]. However, existing deep learning methods still have some problems when dealing 
with underwater target recognition, such as strong sensitivity to lighting conditions and insufficient ability to handle 
image blurring. 

This study enhances the performance of a deep convolutional neural network through the incorporation of an 
attention mechanism aimed at addressing challenges related to variations in lighting conditions, image blurring, 
and distortion encountered in underwater target recognition. The result indicates that the enhanced network 
exhibits superior performance in terms of accuracy, recall, and F1 score, achieving values of 0.85, 0.82, and 0.83, 
respectively. 

II. Underwater Target Feature Extractioneature Extraction 
In tasks involving the recognition of underwater targets, the process of extracting features is a vital first step. By 
effectively extracting features from underwater targets, key features of the targets can be more accurately captured, 
providing a solid foundation for subsequent recognition processes. An incomplete illustration following the process 
of feature extraction is depicted in Figure 1: 

 

Figure 1: Example of underwater feature extraction map 

From the example figure, it can be seen that underwater feature extraction relies on effectively capturing and 
representing key information in underwater images. Usually, underwater feature extraction utilizes image 
processing and computer vision techniques to extract texture, color, shape, and other features in the underwater 
environment through filtering, edge detection, color space conversion, and other methods. 

In the feature extraction stage, this paper first uses the pre-trained improved deep convolutional neural network 
model ResNet-50 to fine tune the underwater target dataset, with the aim of capturing local and global information 
of the target. Deep learning models can be used to extract feature representations with rich semantic information 
from underwater images, laying the foundation for the subsequent introduction of attention mechanisms and 
feature fusion, and constructing feature representations suitable for underwater target recognition. The concept 
behind ResNet-50 is illustrated in Figure 2: 
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Figure 2: ResNet-50 schematic diagram 

ResNet-50 is a complex neural network architecture that includes multiple layers of convolutional operations, 
where the first convolutional layer extracts features. The second convolutional layer can transform features and 
directly add input features to the output through skip connections. The main feature of ResNet-50 is the 
introduction of residual connections, which transmit information through direct connections across layers, solving 
the problems of gradient vanishing and exploding during deep network training, effectively improving the training 
effect and performance of the network. The network structure of ResNet-50 is as follows: 

Input→Conv1_7x7→MaxPool→ResBlock1→⋯→ResBlock4→AvgPool→FC→Output 
Among them, the Conv1_7x7 denotes a convolutional layer with a 7x7 filter size, MaxPool signifies the maximum 

pooling layer, ResBlock1 to ResBlock4 indicate four residual blocks, AvgPool denotes the global average pooling 
layer, FC represents the fully connected layer, and Output signifies the network’s final output. By fine-tuning the 
ResNet-50 model, features with rich semantic information are extracted from underwater image data, laying a solid 
foundation for the subsequent introduction of attention mechanisms and feature fusion. The process of fine-tuning 
can be expressed as: 

 𝜃∗ = argmin
ఏ

ଵ

ே
∑ ℒே
௜ୀଵ (𝑓ఏ(𝑥௜), 𝑦௜) (1) 

Among them, 𝑓ఏ(𝑥௜) represents the output of the ResNet-50 model to the input underwater image 𝑥௜ , 𝑦௜ 
represents the true label corresponding to the underwater image 𝑥௜. The symbol ℒ denotes the loss function, 
while 𝜃 stands for the parameters of the ResNet-50 model, and N signifies the quantity of training samples. 
Through modifying the ResNet-50 model’s parameters 𝜃, the loss function is reduced on the underwater target 
dataset, leading to a better feature representation for underwater environments. 

III. Introduction of Attention Mechanism 
In this article, a crucial aspect introduced is the attention mechanism. The self-attention mechanism enables the 
network to automatically learn the importance of each pixel based on the input feature map and highlight the target 
area by calculating the weight of each pixel in the feature map. The calculation process of the self-attention 
mechanism is: 

 Attention(𝑥௜) = softmax(𝑊௤𝑥௜) ⋅ 𝑊௩𝑥௜ (2) 

Among them, 𝑥௜ represents the i-th pixel in the feature map, and 𝑊௤ and 𝑊௩ represent the weight matrix of the 
query and value in the self-attention mechanism respectively. The attention score of each pixel was obtained by 
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multiplying the feature map 𝑥௜ with the query weight matrix 𝑊௤. The attention mechanism mimics the human 
visual attention mechanism, allowing neural networks to focus on important parts and improving performance and 
efficiency. To better comprehend the concept of attention mechanism, Figure 3 illustrates the flowchart of how it 
works: 

 

Figure 3: Attention mechanism flowchart 

Firstly, the network extracts feature representations of input data, which can be pixels of images, words of text, or 
time steps of sequences; Then, the attention weight of each feature is calculated based on the context, indicating 
its importance to the current task, which is usually obtained through learning; next, important features can be 
highlighted and secondary features can be suppressed based on weighted fusion features, achieving the goal of 
enhancing network performance; finally, weighted features can be applied to tasks such as image classification 
and text generation to improve network performance and efficiency. 

Subsequently, the attention score is adjusted using the softmax function to calculate the attention weights for 
each pixel. Ultimately, the feature map 𝑥௜ is multiplied by the weight matrix 𝑊௩ to create a weighted feature 
representation, enhancing the focus on the desired region. The Softmax function here is a commonly used 
activation function, typically used in multi-class classification tasks. It has the ability to transform a group of input 
values into a probability distribution where each value falls within the range of 0 to 1, and the total sum of all values 
equals 1. In order to demonstrate the role of the Softmax function more clearly, this article uses a simple rendering 
in Figure 4 for demonstration: 

 

Figure 4: Display of softmax function effect 

From the rendering, it can be seen that the Softmax function takes a real number vector as input, and by 
exponentiating and normalizing each element, it ultimately acquires a vector of probability distribution, with each 
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element indicating the likelihood of the respective category. Specifically, the Softmax function normalizes the index 
value of each element by dividing it by the sum of the index values of all elements, ensuring that the total output 
probability is equal to 1. At the same time, the original score is converted into probability form for easy output in 
multi-classification tasks. 

In deep learning, the Softmax function is frequently utilized as the ultimate activation function in Softmax 
classifiers to transform the neural networks’ output into probabilities for different classes. The mathematical 
expression for the Softmax function is presented as follows: 

 Softmax(𝑧௜) =
௘೥೔

෍ ௘
೥ೕ

಴

ೕసభ

) (3) 

𝑧௜ represents the i-th element in the input vector, and 𝐶 represents the total number of categories. The Softmax 
function indexes each element 𝑧௜ in the input vector, then sums all the indexed values, and finally divides each 
indexed value by the summed result to get the probability value of each element. 

IV. Feature Fusion 
In the feature fusion stage, this paper adopts a channel attention mechanism to fuse the attention-weighted 
features and original features to enhance the representation ability of underwater targets. The channel attention 
mechanism discussed is an adapted form of the attention mechanism commonly utilized in deep learning 
architectures, tailored to assign weights to channels within the network to amplify or diminish the feature 
representation of particular channels. The channel attention mechanism is usually used to process feature maps 
with multiple channels. For example, in convolutional neural networks, each convolutional layer generates feature 
maps with multiple channels. The principle of channel attention is shown in Figure 5: 

 

Figure 5: Channel Attention Principle Diagram 

In the compression part, the size of the input element feature map is represented as H×W×C, with H, W, and C 
denoting height, width, and number of channels. The compression part’s role is to reduce the dimensions from 
H×W×C to 1×1×C, essentially compressing the H×W dimensions to a 1 × 1 dimension. This is done using global 
average pooling. In the excitation stage, it is essential to integrate the 1x1xC dimension from the compression 
stage into the fully connected layer. This can forecast the significance of each channel and subsequently activate 
actions on the related channels within the preceding feature map. 

The channel attention mechanism enables the network to dynamically adjust the weights of each channel by 
considering their relative importance, thereby enabling the network to better utilize the correlation information 
between features and improve underwater target recognition performance. The formula for feature fusion is: 

 Fused_Feature = ReLU(𝑊௙[Original_Feature;Weighted_Feature]) (4) 

Among them, ReLU represents the activation function, [Original_Feature;Weighted_Feature]  represents 
concatenating the original features and attention weighted features by channels, 𝑊௙ represents the weight matrix 
in the fusion operation. By fusing the original features and attention weighted features, the information of both can 
be fully utilized to improve the recognition performance of underwater targets. 

This feature fusion method can better utilize the information introduced by attention mechanisms, further 
improving the performance of underwater target recognition. By adaptively learning the weights of each channel, 
the network can more effectively capture the correlation between features, thereby enhancing the representation 
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ability of underwater targets. The final fused features can fully leverage the advantages of different features, 
enabling the network to more accurately recognize underwater targets. 

V. Classifier Design 
In the classifier design stage, this article uses the Softmax classifier to recognize underwater targets. Softmax 
classifier is a commonly used multi-class classifier, commonly used in the output layer of deep learning. The 
Softmax function mentioned earlier is commonly used as the last activation function in Softmax classifiers. 

 

Figure 6: Example of Softmax classifier 

Figure 6 summarizes the implementation process of the Softmax classifier. Firstly, the input features can be 
received and linearly combined to transform them into real vectors representing the original scores of each 
category; subsequently, the score vector can be input into the Softmax function for exponentiation and 
normalization to obtain the probability of each category. Finally, a probability distribution vector can be output, 
where each element represents the predicted probability of the corresponding category. 

The Softmax classifier transforms the neural network’s output into a distribution of probabilities for a group of 
categories, ensuring that the likelihood of each category is predicted to be within the range of 0 to 1. The sum of 
the predicted probabilities for all categories is 1, thus achieving accurate identification of underwater targets. The 
calculation process of Softmax classifier can be described as follows: 

 
𝑃(𝑦 = 𝑖|𝑥) =

௘ೈ೔
೅ೣశ್೔

෎ ௘
ೈೕ
೅ೣశ್ೕ

಴

ೕసభ

 (5) 

𝑃(𝑦 = 𝑖|𝑥) represents the probability that the target belongs to category i given input x, 𝑊௜ and 𝑏௜ represent 
the weight and bias parameters of the Softmax classifier, and 𝐶 represents the total number of categories. The 
Softmax classifier exponentiates the linear combination of input feature 𝑥 and weight 𝑊௜  with bias 𝑏௜ , and 
normalizes the probability distribution of each category. By selecting the category with the highest probability as the 
prediction result, the classification and recognition of underwater targets can be completed. 

VI. Effect Evaluation 
To verify the real effectiveness of the deep convolutional neural network improved by applying the attention 
mechanism in underwater target recognition, a systematic effect evaluation must be conducted. By 
comprehensively evaluating the model’s performance in different underwater environments and measuring key 
indicators such as accuracy, recall, and F1 value, it can objectively evaluate the model’s performance in identifying 
underwater targets and the degree of performance improvement. The particular procedure of impact assessment is 
illustrated in Figure 7: 
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Figure 7: Effect evaluation flowchart 

The flow chart of the effect evaluation is shown in Figure 7. First, it can prepare the test data set, input the test 
data set into the already trained model to predict and obtain the prediction results; secondly, the model on the test 
data set can be calculated for indicators such as accuracy, recall, and F1 value according to the selected 
evaluation indicators; then it can select the model with the best performance through comprehensive evaluation 
and finally generate an evaluation report based on the evaluation results. 

 
VI. A. Selection of Evaluation Indicators 
In order to comprehensively evaluate the performance of the model, this article selects accuracy, recall and F1 
value as the criteria for evaluating the model. 

Accuracy is the proportion of the number of samples correctly predicted by the model to the total number of 
samples. The precision can be assessed by employing the subsequent equation: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା

்௉ା்ேାி௉ାிே
  (6) 

In this formula, TP represents the number of occurrences in which the model accurately identifies true data as 
true, TN signifies the number of occurrences in which the model correctly identifies false data as false, FP denotes 
the number of occurrences in which the model inaccurately identifies false data as true, and FN indicates the 
number of occurrences in which the model inaccurately identifies true data as false. 

Recall rate refers to the proportion of the number of correct samples successfully predicted by the model to the 
number of all real samples. The recall rate can be determined using the following formula: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
 (7) 

The F1 value is the harmonic mean of precision and recall. The formula is as follows: 

 𝐹1 =
ଶ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ
 (8) 

Among them, Precision is one of the metrics used to evaluate models, representing the ratio of correctly 
predicted positive samples to all predicted positive samples. It is calculated using a specific formula: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
 (9) 

VI. B. Preparation of Test Datasets 
When creating a test data set, it should make sure to include a variety of scenarios and ensure that the data is 
representative to some degree. In addition, the test data set also needs to be annotated to ensure that the label 
information of each sample is true and reliable. The model’s generalization ability and performance can be 
objectively and thoroughly assessed only with a well-prepared test dataset. This article addresses the issues of 
poor sensitivity to lighting conditions and insufficient ability to handle image blurring. Based on actual situations, 
various image samples of underwater scenes were collected. Figure 8 shows some image sample images of 
underwater scenes: 
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Figure 8: Partial underwater sample images 

These image samples cover different underwater environments, different types of targets, and different lighting 
conditions, with the aim of ensuring the diversity and representativeness of the dataset. Table 1 shows the 
corresponding test set data table: 

Table 1: Test set data 

 Rock Fish Shellfish Other 

No Processing 100 50 60 30 

Blur Processing 70 40 20 10 

Lighting Processing 80 60 40 20 

Blur + Lighting Processing 90 70 50 40 

 
The data content in Table 1 is the number of test data. This article selected four common underwater images, 

namely fish, shellfish, rocks, and other types. To more effectively evaluate the model’s performance in dealing with 
sensitivity to lighting variations and its capability to manage image blurriness, this paper processed the selected 
images with control variables and divided them into four groups: unprocessed group, blurred group, illuminated 
group, and both blurred and illuminated group. To reflect the recognition ability of the model in complex underwater 
situations, different processing methods are applied to the images. 

 
VI. C. Model Evaluation 
This article highlights five traditional machine learning models: deep convolutional neural network, convolutional 
neural network combined with long short-term memory network, support vector machine, random forest, and 
K-nearest neighbor. It has improved the attention mechanism for deep convolutional neural network models, 
forming a control group and an experimental group. Subsequently, the test dataset can be input into these models 
and the prediction results of each model can be obtained. 

The reason for choosing these models as controls is because each of these classic models has its own 
characteristics in underwater target recognition. For instance, deep convolutional neural networks excel in tasks 
related to recognizing images by extracting image characteristics using multiple layers of convolution and pooling 
operations, and then categorizing them using fully connected layers. The merging of convolutional neural networks 
with long short-term memory networks combines the spatial feature extraction capability of CNNs with the time 
series data processing capability of LSTM. Support Vector Machine (SVM) is a classic supervised learning model 
that separates data of different categories by finding an optimal hyperplane. It is commonly used for underwater 
target classification. The random forest algorithm is a type of ensemble learning method that utilizes decision trees. 
It creates several decision trees and then merges them together to perform classification or regression tasks. It has 
good robustness and generalization ability in underwater target recognition. K nearest neighbor is an 
instance-based learning method. KNN does not make any assumptions about the distribution of data, and does not 
require complex parameter adjustment or training processes. Therefore, KNN can adapt to different types and 
different scales of targets, and can handle underwater target data when the distribution is unclear or irregular. The 
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prediction results of the six models are compared and evaluated, and the final results can provide a reference for 
the best model. 

 
VI. D. Evaluation Results 
The test dataset can be input into different models to obtain the predicted results of the models (Table 2): 

Table 2: Evaluation of the effectiveness of different models 

Model Name Accuracy Recall F1 Score 

DCNN 0.82 0.78 0.80 

CNN + LSTM 0.75 0.72 0.73 

SVM 0.79 0.75 0.76 

RF 0.81 0.77 0.79 

KNN 0.73 0.68 0.69 

Attention Mechanism Enhanced -DCNN 0.85 0.82 0.83 

 
The DCNN model has achieved a high level of accuracy, recall, and F1 score. In terms of evaluation indicators, 

the best is the accuracy, which reaches 0.82, but the recall rate and F1 value are slightly lower, 0.78 and 0.8 
respectively. The occurrence of this result indicates that the model has misclassification. The CNN+LSTM model 
performs poorly in terms of accuracy, recall, and F1 value, with values of 0.75, 0.72, and 0.73, respectively. 
Especially in terms of accuracy, the CNN+LSTM model’s accuracy is just 0.02 points better than the 
lowest-performing KNN model. The LSTM model is usually used to process sequence data. Combining CNN can 
improve the utilization of time series information. Based on the evaluation findings, the impact of the CNN+LSTM 
model appears to be minimal, while the SVM and random forest models showed strong performance in the 
evaluations. The performance is equivalent and at the mid-range level. Their accuracy, recall rate and F1 value are 
0.79, 0.75.0.76 and 0.81, 0.77, 0.79 respectively. The three indicator data of the random forest model appear to be 
slightly elevated compared to those of the SVN model, nevertheless, their performance is not as strong as the 
deep convolutional neural network model with enhanced attention mechanism due to constraints in feature 
representation capabilities. The KNN model has the lowest accuracy, recall rate, and F1 value compared to all 
other models, which are 0.73 respectively, 0.68 and 0.69. Because the KNN model is very simple and intuitive, its 
performance on complex data sets is not as good as other complex models, so more feature engineering or model 
adjustments are needed to improve performance. Ultimately, the deep convolutional neural network model with an 
enhanced attention mechanism has achieved the highest levels of accuracy, recall rate, and F1 value compared to 
all other models. They are 0.85, 0.82 and 0.83 respectively, which are comprehensively ahead of the 
better-performing DCNN model. 

 
VI. E. Discussions 
In terms of the selected traditional models, although the five selected traditional models have achieved a certain 
degree of accuracy, recall and F1 value in the underwater target recognition task, they all have certain limitations, 
such as errors in classification situations, poor performance in dealing with problems with large differences in 
lighting conditions, image blur and distortion. The deep convolutional neural network improved by introducing the 
self-attention mechanism shows obvious advantages in underwater target recognition tasks, leading other models 
with an accuracy of 0.85, a recall of 0.82, and an F1 value of 0.83. This shows that the attention mechanism has a 
good effect on improving the model for problems such as lighting conditions and image blur. 

VII. Conclusions 
A large number of experiments have shown that introducing an attention mechanism to improve the underwater 
target recognition algorithm of a deep convolutional neural network has significant advantages in dealing with 
illumination-sensitive and blurred images. However, the stability of this method under extreme lighting conditions is 
still limited. Future research can continue to improve the attention mechanism, explore more effective solutions to 
underwater environment challenges, and improve algorithm performance and robustness by combining advanced 
technologies such as reinforcement learning. It is believed that with the development of deep learning technology, 
underwater target recognition algorithms based on deep convolutional neural networks can provide strong support 
for marine resource development, environmental protection and other fields. 
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