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Abstract Traditional state assessment methods often rely on single frequency signals and can only detect faults 
within a specific frequency range, making it difficult to fully reflect the overall state of the equipment. This article 
introduces multi-frequency signal processing technology to evaluate the status of GIS (Geographic Information 
System) equipment in substations. Firstly, the signal’s global spectrum features are extracted using the Fourier 
transform, and its properties at various time and frequency scales are obtained by time-frequency analysis using 
the wavelet transform. Then, spectral and time-frequency feature parameters are extracted from the decomposed 
signal, and decision level fusion using voting method is used to fuse the signal features of different frequencies and 
types, and output a comprehensive feature vector. Finally, the LSTM (Long Short-Term Memory) algorithm is used 
to analyze the fused feature vectors and evaluate the status of GIS equipment. The experiment was based on the 
log data of a substation company in Wuhan from June to December 2023, and combined with multi-frequency 
signal processing to evaluate the status of GIS equipment. The results showed that the accuracy of state 
evaluation by integrating multi-frequency signal processing and LSTM method reached 98.25%. Compared to the 
accuracy based on a specific frequency range, it has improved by 8.53%, and the shortest response time is only 
1.8s. Experiments have shown that multi-frequency signal processing plays an important role in the 
comprehensive evaluation of GIS equipment status in substations, greatly improving the accuracy of evaluation, 
achieving accurate reflection of the overall status of GIS equipment, and promoting the stable operation of 
substations. 
 
Index Terms Multi-frequency Signal Processing, State Evaluation, GIS Equipment, LSTM Algorithm, Fault 
Detection 

I. Introduction 
Substation GIS equipment is a key component of the power system, and its operating status directly affects the 
power supply. Previous single-frequency signal detection can only detect faults within a specific frequency range 
and cannot show the overall situation [1]. These studies are often limited by the frequency range, resulting in 
incomplete signal feature extraction and insufficient fault detection accuracy [2]. As the power system becomes 
more and more complex, the status assessment of substation GIS equipment has become more difficult. To solve 
this problem, people have begun to explore more advanced multi-frequency signal processing technology. 

This article adopts an innovative multi-frequency signal processing method for substation GIS equipment status 
assessment. This method improves the comprehensive monitoring capability of equipment status through 
multi-frequency signal feature extraction and fusion technology. It improves the sensitivity and stability of fault 
detection, optimizes the accuracy of status assessment, enhances the effect of signal processing, and provides a 
new technical means for status monitoring and fault prevention of substation GIS equipment. 

II. Related Work 
Researchers use different technical methods to evaluate the status of GIS equipment in substations. YU Cong et al. 
introduced the partial discharge signal fusion decision based on time-resolved partial discharge and phase 
resolved partial discharge into the proposed BP (Back Propagation) neural network and improved DS 
(Dempster-Shafer) evidence theory diagnostic method, and performed fault identification by introducing evidence 
fusion degree [3]. Qingcheng Lin et al. designed a simplified model to approximately describe the internal 
insulation structure of GIS [4]. Shunfan He et al. proposed an electrical feature detection and analysis method for 
monitoring various power equipment faults in intelligent substations [5]. Xi Li et al. reviewed a large amount of 
research on local discharge source localization and proposed location of a local discharge source method founded 
on Support Vector Machine (SVM) and picture edge detection [6]. Yan-Bo Wang et al. introduced a universal 
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separation method based on Linear Predictive Analysis (LPA) and Isolation Forest (IF) algorithm [7]. There are also 
studies using the hybrid AHP-TOPSIS(Analytic Hierarchy Process - Technique for Order of Preference by Similarity 
to Ideal Solution) method to provide a decision support framework for substation technology selection [8]. D’Souza 
M et al. introduced the modern concept and methods of modularity, describing the technological development, 
design philosophy, quality assurance, and environmental impact of providing complete solutions based on site 
conditions [9]. Hongzhong Ma et al. implemented a non-invasive method that took vibration signals triggered by 
circuit breaker action into account while assessing the mechanical state of GIS [10]. Ren M et al. introduced an 
ultra-sensitive three-band optical PD sensor and obtained the spectral information by this new optical sensor [11]. 
Yanxin Wang and Xiaosheng Peng et al. attempted to combine convolutional neural networks to classify extracted 
signal features and improve the accuracy of fault detection [12], [13]. Khalyasmaa A I et al. used decision 
tree-based machine learning to address the possibility of evaluating the technical status of power circuit breakers, 
and solved the problem of determining their optimal parameters and training samples [14]. Janani H et al. 
proposed a defect feature extraction and classification algorithm for high-voltage gas insulation systems based on 
the statistical analysis of partial discharge (PD) signal time domain parameters, focusing on measuring and 
interpreting PD signals in the time domain [15]. Hamed Janani et al. proposed a new algorithm for the analysis and 
separation of PD pulse waveforms based on the Laguerre polynomial orthogonal series expansion, and also 
developed a system identification technology to help improve the accuracy of signal classification [16]. Xinlu Yang 
et al. used RBF (Radial Basis Function) neural network to classify defects. Through experiments, the high 
recognition rate was verified, indicating the effectiveness and applicability of the proposed method [17]. Salkuti S R 
introduced the differences between SCADA (Supervisory Control And Data Acquisition) and substation automation, 
as well as the concept of substation automation. The reliability assessment of smart grids can be carried out 
through analysis or simulation. The analysis method utilizes load point evaluation techniques, while the simulation 
technique uses Monte Carlo simulation techniques. The reliability index evaluation can consider the presence of 
energy storage components [18]. However, there are still shortcomings in the comprehensiveness of signal feature 
extraction and the sensitivity of fault detection in current research, and more comprehensive methods are urgently 
needed to solve these problems. 

To address the issues in current research, some researchers have adopted different methods for improvement. 
Banihashemi S et al. introduced an algorithm for planning green spaces aimed at optimizing the location, size, and 
power supply area of medium and low voltage substations in the Reference Network Model (RNM) [19]. Shudong 
Wang et al. proposed a multi-resolution generalized S-transform (GST) denoising algorithm for precise localization 
of partial discharge in substations, achieving accurate localization of partial discharge [20]. There is also research 
on using SVM to achieve casing fault diagnosis [21]. Another part of the research has shown good results in power 
outage prediction and fault detection using deep learning algorithms [22], [23]. Bhukya A et al. achieved better 
performance by combining the Bi-LSTM (Bi-directional Long Short-Term Memory) model with an enhanced training 
set [24]. Xue J et al. effectively simulated the situation of power grid equipment by combining the dynamic analysis 
of equipment in GIS and deep learning of nonlinear network structures [25]. Dukanac D et al. proposed a new 
program for extracting PD signals in the main high-frequency range from the strong noise of each signal in power 
transformers [26]. Tian D et al. proposed an improved YOLOv4 algorithm based on a hybrid domain attention 
mechanism for designing an intelligent substation inspection system [27]. There are also studies that use 
self-learning methods to achieve online monitoring after fiber optic cable faults occur [28]. However, these methods 
still have room for improvement in feature fusion and temporal modeling. This article introduces multi-frequency 
signal processing technology, combined with LSTM algorithm, to comprehensively evaluate the status of GIS 
equipment in substations, aiming to improve the accuracy and reliability of the evaluation. 

III. Implementation Based on Multi-Frequency Signal Processing 
III. A. Global Spectrum Feature Extraction 
In the assessment of GIS equipment status in substations, the frequency domain characteristics of signals can 
reflect the operating status and potential fault information of the equipment [29]. To extract global spectral features, 
Fourier Transform is used to transform the time-domain signal. Fourier transform decomposes the time signal into 
harmonic components of different frequencies, thereby obtaining the global spectrum characteristics. 

The collected operating signal data of the substation GIS equipment comes from the log records of a substation 
company in Wuhan from June to December 2023. These time domain signals are preprocessed to remove noise 
and interference. The processed signal data is input into the Fourier transform algorithm for frequency domain 
conversion. The core formula of Fourier transform is: 

 X(f) = ∫ x(t)eି୨ଶ஠୤ dt
ஶ

ିஶ
  (1) 
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X(f) represents frequency domain signal, x(t) represents time domain signal, f represents frequency, t and j 
respectively refer to time and imaginary units. 

After Fourier transformation, the time domain signal is converted into a frequency domain signal, and then the 
spectrum characteristics of the signal are obtained from the frequency domain signal. The spectrum diagram is 
used to visualize and display the spectrum characteristics more intuitively. The diagram can show the signal’s 
amplitude variations at every frequency component. 

Figure 1 shows the detailed process from collecting time domain signal data to analyzing spectrum features. 
This process makes the signal feature extraction comprehensive. 

 

Figure 1: Spectral Feature Extraction Process Based on Fourier Transform 

Table 1 is the spectrum characteristic data obtained after processing: 

Table 1: Raw Signal and Spectral Feature Data 

Sample Time (s) Signal Amplitude (mV) Frequency (Hz) Amplitude Spectrum (dB) 

0 1.2 50 -20 

0.1 1.5 100 -15 

0.2 1.1 150 -25 

0.3 1.3 200 -10 

0.4 1.4 250 -18 

 
The extracted spectrum feature data shows the amplitude changes of the signal. These changes reflect the 

energy distribution of the equipment at different frequencies and reveal the operating characteristics of GIS 
equipment at different frequencies. 

 
III. B. Time Frequency Analysis 
The signal is subjected to time-frequency analysis using the wavelet transform. Wavelet transform analyzes the 
signal in two dimensions: time and frequency, and extracts the signals’ local characteristics [30]. 
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After preprocessing, the time-frequency characteristics of the signal are obtained by applying the wavelet 
transform to the time domain signal. The formula is: 

 Wந(a, b) = න x(t)ψ∗(
୲ିୠ

ୟ
)dt

ஶ

ିஶ

 (2) 

Wந(a, b) is the wavelet coefficient of signal x(t) at scale a and translation b, ψ(t) is the mother wavelet, and 
∗ represents complex conjugation. 

To confirm the competence of wavelet transform in capturing the instantaneous and local characteristics of the 
signal, the signal is processed by wavelet transform in normal state and fault state respectively. Table 2 shows the 
wavelet coefficient data in normal state and fault state. 

Table 2: Signal and wavelet coefficient data under normal and fault conditions 

Sample Time 

(s) 

Signal Amplitude 

(Normal) 

Scale 

(a) 

Wavelet Coefficient 

(Normal) 

Signal Amplitude 

(Fault) 

Wavelet Coefficient 

(Fault) 

0 1.8 1 0.42 2.2 0.65 

0.1 1.9 2 0.47 2.3 0.72 

0.2 2 3 0.33 2.1 0.58 

0.3 2.1 4 0.41 2.5 0.63 

0.4 1.7 5 0.52 2.4 0.75 

 
After analyzing the data in the table, it is found that the use of wavelet transform does capture the instantaneous 

and the signal’s local properties. By comparing the frequency-time characteristics under normal and fault 
conditions, the abnormal conditions in the operation of the equipment can be accurately identified. The results 
show that wavelet transform has obvious effects in signal feature extraction and fault detection. 

Figure 2 shows the energy distribution of the signal in time and frequency in normal and faulty states. It is not 
difficult to see from the figure that the signal’s energy in its usual state is mainly concentrated in the lower 
frequency range, and the amplitude is relatively stable. In the faulty state, the energy of the signal in the higher 
frequency range is obviously increased, and the energy distribution is more dispersed, and the amplitude is also 
higher. The obvious difference in frequency and time energy shows the effect of wavelet transform in this field. 

 

Figure 2: Signal time-frequency diagram under different states 
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III. C. Signal Decomposition 
Discrete Wavelet Transform (DWT) is used to perform multi-scale decomposition of the signal to extract signal 
feature parameters of different frequencies and types. DWT decomposes the signal into sub-bands of different 
scales, which helps to extract the multi-scale features of the signal [31].  

The preprocessed signal data is input into the DWT algorithm for multi-scale decomposition. The calculation 
formula for DWT is as follows: 

 X୨(t) = ෌ x(k)ψ(2ି୨t − k)
ஶ

୩ୀିஶ
 (3) 

 A୨(t) = ෌ x(k)ϕ(2ି୨t − k)
ஶ

୩ୀିஶ
 (4) 

X୨(t) and A୨(t) respectively represent detail coefficients and approximation coefficients, ψ(t) is a wavelet 
function, ϕ(t) is a scale function, j and k are scale and displacement, respectively. 

After applying DWT, the signal is decomposed into several sub bands of different scales, each containing 
detailed information about the signal at different frequencies. Features of the multi-scale signal can be extracted 
from these sub-band data. Table 3 displays the experiment’s initial data as well as the signal feature data following 
multi-scale decomposition: 

Table 3: Signal feature data after DWT decomposition 

Sample Time (s) Signal Amplitude (mV) Scale (a) Detail Coefficient Approximate Coefficient 

0 1.1 1 0.25 0.45 

0.1 1.3 2 0.35 0.5 

0.2 1.2 3 0.4 0.55 

0.3 1.4 4 0.45 0.6 

0.4 1.5 5 0.5 0.65 

 
The data in Table 3 shows the detail coefficients and approximation coefficients at different sample times and 

scales. The sample time is 0.0 seconds, the detail coefficient of scale 1 is 0.25, and the approximation coefficient is 
0.45. By comparing data at different times and scales, it can find out how the signal changes in different frequency 
components. In summary, DWT can effectively decompose signals and extract multi-scale features. Multi-scale 
features reflect the detailed information of the signal at each frequency component so as to understand the 
operating status of the equipment. Using these features, the evaluation model can more accurately identify normal 
and abnormal conditions. 

The excellent performance of DWT in signal decomposition increases the credibility of the status assessment 
results of substation GIS equipment. The details and approximate coefficients calculated by DWT show the 
properties of the signal over various scales. 

 
III. D. Feature Fusion 
In terms of signal feature fusion, the voting method is used for decision-level fusion, and signal features of different 
frequencies and types are weightedly combined to generate a comprehensive feature vector. 

During the feature fusion process, the extracted signal features are normalized to make the different features 
have consistent dimensions. The weight matrix is then defined based on the contribution of each feature to the 
evaluation result, and the optimal configuration is determined through the optimization of experimental data. 

The setting of weights requires multiple experiments to adjust the weight values of each feature, ensuring that 
the comprehensive feature vector can accurately reflect the state of the device. The application formula of the 
weight matrix is: 

 F୤୳ୱ୧୭୬ = ∑ w୧F୧
୬
୧ୀଵ  (5) 

Among them, the comprehensive feature vector is represented by F୤୳ୱ୧୭୬, w୧ is the weight of the ith feature, 
and F୧ is the ith feature. 

In practical operation, all extracted features are preprocessed to ensure the quality of the data. Suitable weight 
matrices can be selected for weighted calculation, and the selection and optimization of weight matrices are carried 
out through cross validation until the optimal configuration is found. Each feature is assigned different weights 
during the fusion process based on its contribution to the evaluation results. In the experiment, the weight 
allocation of different feature types is shown in the data distribution in Table 4: 

Table 4: Weight distribution of feature fusion 
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Feature Type Weight Frequency (Hz) Time-Frequency Feature (dB) 

Spectrum Feature 1 0.2 50 -20 

Spectrum Feature 2 0.3 100 -15 

Time-Frequency Feature 1 0.25 150 -25 

Time-Frequency Feature 2 0.25 200 -10 

The weight allocation of different feature types shows their contribution in the comprehensive feature vector. The 
optimal weight matrix configuration can be determined through continuous adjustment and optimization of 
experimental data. The integrated feature vector after fusion more accurately reflects the status of GIS equipment 
in substations. 

The following Table 5 is an example of data for adjusting different feature weights during the experimental 
process: 

Table 5: Evaluation indicators during weight adjustment process 

Iteration 

Spectrum 

Feature 1 

Weight 

Spectrum 

Feature 2 

Weight 

Time-Frequency 

Feature 1 Weight 

Time-Frequency 

Feature 2 Weight 

Accuracy 

(%) 

Fault 

Detection 

Rate (%) 

False 

Alarm Rate 

(%) 

1 0.25 0.25 0.25 0.25 92.1 88.4 5.6 

2 0.2 0.3 0.25 0.25 93.5 89.2 4.8 

3 0.15 0.35 0.25 0.25 94.2 90.1 4.2 

4 0.1 0.4 0.25 0.25 94.8 91 3.9 

 
From the data in Table 5, it can be seen that by gradually adjusting the feature weights, the evaluation accuracy 

and fault detection rate continue to improve, while the false alarm rate gradually decreases. The final optimal 
weight configuration is: Spectrum Feature 1 has a weight of 0.1, Spectrum Feature 2 has a weight of 0.4, Time 
Frequency Feature 1 has a weight of 0.25, and Time Frequency Feature 2 has a weight of 0.25. Under this 
configuration, the evaluation accuracy reached 94.8%, the fault detection rate was 91.0%, and the false alarm rate 
was reduced to 3.9%. 

Through continuous adjustment and optimization of experimental data, the optimal weight matrix configuration 
was ultimately determined, significantly improving the performance of the evaluation model. The experimental data 
verified that the decision-level fusion method of voting method is feasible in GIS equipment status assessment. 

 
III. E. Status Assessment 
When analyzing the feature vector after feature fusion, the long short-term memory network (LSTM) algorithm is 
used for state evaluation. LSTM is a special recursive neural network (RNN). The structure of LSTM is divided into 
input gate, forget gate, output gate and memory cell. Each gate control unit realizes dynamic processing of signals 
and extraction of time series features by controlling the flow of information. 

The following is the LSTM computation methodology: 

 f୲ = σ(W୤ ⋅ [h୲ିଵ, x୲] + b୤) (6) 

 i୲ = σ(W୧ ⋅ [h୲ିଵ, x୲] + b୧) (7) 

 C
~

୲ = tanh(Wେ ⋅ [h୲ିଵ, x୲] + bେ) (8) 

 C୲ = f୲ ∗ C୲ିଵ + i୲ ∗ C
~

୲
 (9) 

 o୲ = σ(W୭ ⋅ [h୲ିଵ, x୲] + b୭) (10) 

 h୲ = o୲ ∗ tanh(C୲) (11) 

σ represents the Sigmoid function, W is the weight matrix, b is the bias, x୲ refers to the current input, h୲ିଵ is 
the hidden state at the previous time, and C୲ is the current memory cell state. 

The experimental data contains multiple time series signals, which are supplied as training data to the LSTM 
model and evaluation after feature extraction and fusion. Table 6 shows the evaluation results in the experiment. 

 

 



GIS Equipment Status Assessment Method for Substations Based on Multi-Frequency Signal Processing 

5984 

Table 6: Raw Signal Data and LSTM Prediction Results 

Sample Time (s) Signal Amplitude (mV) LSTM Prediction Actual State 

0 1.1 Normal Normal 

0.1 1.2 Normal Normal 

0.2 0.8 Fault Fault 

0.3 1.3 Normal Normal 

0.4 0.7 Fault Fault 

 
As observed in the table, the LSTM model’s prediction results are highly similar to the actual status, indicating 

that it is also effective in capturing signal timing characteristics and evaluating the status of GIS equipment. Testing 
on multiple samples verifies the positive performance of the LSTM model. 

The prediction findings demonstrate that the LSTM model’s ability to precisely assess the status of substation 
GIS equipment by analyzing the fused feature vectors when processing complex time series data. 

IV. Evaluation Results and Analysis 
IV. A. Accuracy of State Assessment 
In order to evaluate the performance of the fusion of multi-frequency signal processing and LSTM method in the 
condition assessment of substation GIS equipment, the condition assessment accuracy is used as the key 
indicator of the experiment. During the evaluation process, multiple and comparative experiments are used to 
evaluate the performance of the model under different experimental conditions. 

The experiment used log record data from a substation company in Wuhan from June to December 2023. After 
processing, these data were input into the LSTM model for training and testing. The model evaluates the status of 
GIS equipment by learning the temporal relationship inside the data time series. 

The accuracy of state assessment is calculated by comparing the level of correspondence between the model’s 
anticipated and real states. The definition of accuracy is the ratio of the number of correctly predicted samples to 
the total number of samples, and the calculation equation is as follows: 

 Accuracy =
୒୳୫ୠୣ୰୭୤େ୭୰୰ୣୡ୲୔୰ୣୢ୧ୡ୲୧୭୬ୱ

୘୭୲ୟ୪୒୳୫ୠୣ୰୭୤୔୰ୣୢ୧ୡ୲୧୭୬ୱ
× 100% (12) 

The test set included 10,000 samples during the experiment, and 9825 of those samples had their states 
properly predicted by the LSTM model. The accuracy of the evaluation was calculated to be 98.25%. The single 
frequency signal analysis method correctly predicted 8972 samples, with an accuracy of only 89.72%, which is an 
improvement of 8.53% compared to the previous method. 

Table 7 shows some of the experimental data and results: 

Table 7: Raw Signal Data and LSTM Prediction Results 

Sample Time (s) Signal Amplitude (mV) Predicted State Actual State 

0 1.1 Normal Normal 

0.1 1.2 Normal Normal 

0.2 0.8 Fault Fault 

0.3 1.3 Normal Normal 

0.4 0.7 Fault Fault 

0.5 1.5 Normal Normal 

0.6 0.9 Fault Fault 

0.7 1.4 Normal Normal 

0.8 1 Normal Normal 

0.9 0.6 Fault Fault 

 
From the experimental data in Table 7, it can be concluded that the LSTM model’s predicted state of signal 

amplitude at different time points is highly consistent with the actual state, demonstrating the high accuracy of the 
model in state evaluation. However, to confirm the model’s dependability and stability, multiple experiments and 
cross validation were conducted on the model. 

By evaluating the performance of the model under different experimental conditions, the findings of the 
experiment indicate that the feature extraction method and model parameters have a significant impact on the 
accuracy of the evaluation. The evaluation accuracy of the LSTM model under different experimental conditions is 
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shown in Figure 3. The results show that the evaluation accuracy can reach up to 98.25% using the optimized 
feature extraction method and LSTM model parameters. This high accuracy shows the feasibility of integrating 
multi-frequency signal processing and LSTM method in substation GIS equipment status evaluation. 

 

Figure 3: Accuracy of LSTM model under different conditions 

IV. B. Response Time 
Response time is a key indicator that measures the efficiency of the system in processing and evaluation. 

To verify the performance of the LSTM model in response time, a control experimental model was used for 
validation. Each experiment was conducted using four models, LSTM, SVM, RF, and NN (Neural Network), to 
prevent the occurrence of randomness. In the experiment, the data is preprocessed to remove noise and 
interference, ensuring the purity and effectiveness of the signal. In terms of feature extraction, the global spectrum 
properties of the signal are extracted using the Fourier transform, and the wavelet transform is employed to obtain 
the features of the signal at different time and frequency scales. Feature fusion adopts decision level fusion using 
voting method, which weights and combines signal features of different frequencies and types to generate a 
comprehensive feature vector. 

The experimental data still comes from the log records of a substation company in Wuhan, which record the 
operation of the substation GIS equipment at different time points. The calculation of response time is achieved by 
recording the time from signal input to model output evaluation results each time. Figure 4 shows the response 
time of different models in the experiment, and four subgraphs respectively demonstrate the performance of LSTM, 
SVM, RF, and NN models. The LSTM model performed well in all experiments, with the shortest response time 
ranging from 1.80 seconds to 1.82 seconds. The response time of other models is significantly longer, with SVM 
ranging from 2.45 seconds to 2.60 seconds, RF ranging from 2.18 seconds to 2.30 seconds, and NN ranging from 
1.95 seconds to 2.05 seconds. This indicates that the LSTM model has the highest efficiency and significant 
advantages in processing the status assessment of GIS equipment in substations. 

The evaluation results of response time show that the LSTM model is an ideal choice for substation GIS 
equipment status evaluation. 

 
IV. C. Fault Detection Rate 
Fault detection rate is the ability of the evaluation system to detect equipment failures. Fault detection is crucial for 
the operation and maintenance of substation GIS equipment. As a key component of the power system, the normal 
operation of substation GIS equipment directly affects the safety of the power grid. 

The calculation of fault detection rate is expressed as: 

 Fault Detection Rate =
୒୳୫ୠୣ୰ ୭୤ ୈୣ୲ୣୡ୲ୣୢ ୊ୟ୳୪୲ୱ

୘୭୲ୟ୪ ୒୳୫ୠୣ୰ ୭୤ ୊ୟ୳୪୲ୱ
× 100% (13) 

Table 8 shows the number of faults detected in the experiment and the total number of faults: 
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Table 8: Comparison of Fault Detection between Single Frequency and Multi-Frequency Methods 

Experiment ID Total Faults 
Detected Faults 

(Single Frequency) 

Detection Rate (Single 

Frequency) (%) 

Detected Faults 

(Multi-Frequency) 

Detection Rate 

(Multi-Frequency) (%) 

Exp1 100 85 85 96 96 

Exp2 100 83 83 95 95 

Exp3 100 84 84 94 94 

Exp4 100 86 86 97 97 

Exp5 100 85 85 96 96 

 

 

Figure 4: Comparison of response times of different models 

 
The findings indicated that the rate of fault detection of the single-frequency signal analysis method ranged from 

83% to 86%, with an average fault detection rate of 84.6%. The fault detection rate of the fusion multi-frequency 
signal processing and LSTM method is between 94% and 97%, and the average fault detection rate is 95.6%. 
Comparing the single frequency signal analysis method with the fusion multi-frequency signal processing method, 
it is found that the fusion multi-frequency signal processing and LSTM method performs well in fault detection. 

However, to confirm the method’s efficacy even more, this article contrasts the fault detection rates using support 
vector machines (SVM), random forests (RF), and traditional neural networks (NN), as displayed in Figure 5. The 
fault detection rate of the LSTM model in all experimental groups remained at 94%-97%, and was the highest value 
in each group. This also shows that the LSTM model performs best in fault detection, and the fault detection effect 
of the fusion of multi-frequency signal processing and LSTM method is the most accurate. 
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Figure 5: Comparison of fault detection rates of various experimental groups 

The comparative experiments and the fault detection comparison between single-frequency and multi-frequency 
methods have verified the advantages of the fusion of multi-frequency signal processing and LSTM methods in 
fault detection. A higher fault detection rate means that equipment faults can be discovered and handled more 
promptly, reducing downtime and ensuring the stable operation of the substation. 

 
IV. D. False Alarm Rate 
The false alarm rate is the frequency of errors in the fault detection process of the evaluation system. A lower false 
alarm rate can improve the credibility of the method in practical application, allowing operation and maintenance 
personnel to trust the evaluation results more and make more accurate maintenance decisions. 

The calculation formula for the false alarm rate is as follows: 

 False Alarm Rate =
୒୳୫ୠୣ୰ ୭୤ ୊ୟ୪ୱୣ ୅୪ୟ୰୫ୱ

୘୭୲ୟ୪ ୒୳୫ୠୣ୰ ୭୤ ୉୴ୟ୪୳ୟ୲୧୭୬ୱ
× 100% (14) 

Table 9 shows five sets of experimental results for false alarm rate detection. 

Table 9: Experimental statistical result 

Experiment ID Total Evaluations False Alarms False Alarm Rate (%) 

Exp1 100 3 3 

Exp2 100 4 4 

Exp3 100 2 2 

Exp4 100 3 3 

Exp5 100 3 3 

 
From the data in the table, it can be concluded that the false alarm rate of the fusion multi-frequency signal 

processing and LSTM method is stable at 2%-4%, as well as the result’s average false alarm rate is 3.00%. The 
low number of false alarms indicates that the technique has a low number of false positives in practical 
applications. 

However, in order to prevent errors, four groups of comparative experiments were conducted for more 
convincing verification. The comparative experiments also used support vector machine (SVM), random forest (RF) 
and traditional neural network (NN) as controls. The four sub-figures in Figure 6 show the comparison of the false 
alarm rate of the models in different experimental groups. The statistical results show that the LSTM model has the 
lowest false alarm rate in the four experimental groups. The false alarm rates of the other three methods are higher 
than that. The emergence of this result further shows that the fusion of multi-frequency signal processing and 
LSTM method can significantly reduce the false alarm rate. 
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Figure 6: Comparison of false alarm rates of different models 

Combining the results of the two experiments, it is concluded that the fusion of multi-frequency signal processing 
and LSTM methods performs better in terms of false alarm rate. A lower false alarm rate means that the equipment 
status can be assessed more accurately and misjudgment can be reduced. This is of great significance for the 
maintenance and management of power systems, and can help power engineers discover and deal with potential 
problems in a timely manner. 

 
IV. E. Comparative Analysis 
Experimental results show that multi-frequency signal processing and LSTM methods perform well on multiple key 
indicators, surpassing single-frequency signal analysis methods. The accuracy of state assessment has been 
significantly improved. The accuracy of using multi-frequency signal processing and LSTM method reaches 
98.25%, which is 8.53% higher than the single-frequency signal analysis method. This shows that multi-frequency 
signal processing methods can capture more comprehensive signal characteristics. 

In terms of response time, multi-frequency signal processing and LSTM methods show significant advantages. 
Experimental data shows that the response time of the multi-frequency signal processing method is only 1.8 
seconds, while the response time of the single-frequency signal analysis method is longer. For real-time monitoring 
and fault handling of substation GIS equipment, this advantage can detect and handle equipment faults in a more 
timely manner and reduce downtime. 

Regarding the rate of fault detection, multi-frequency signal processing and LSTM methods performed well. 
Experimental results show that the fault detection rate of the multi-frequency signal processing method is between 
94% and 97%, while the fault detection rate of the single-frequency signal analysis method is between 83% and 
86%. The multi-frequency signal processing method is significantly better than the single-frequency signal analysis 
method in fault detection. 

The experimental results of false alarm rate show that multi-frequency signal processing and LSTM methods 
also show obvious advantages. The experimental results show that the false alarm rate of multi-frequency signal 
processing method is between 2% and 4%, with an average of 3.00%, while the false alarm rates of other models 
are all higher. The LSTM model performs best in terms of false alarm rate, which is much lower than other models, 
showing higher evaluation accuracy. 

Based on the experimental results, multi-frequency signal processing and LSTM methods are superior to 
single-frequency signal analysis methods in terms of status assessment accuracy, response time, fault detection 
rate, and false alarm rate. Multi-frequency signal processing technology can capture more comprehensive signal 
features, and combined with the timing analysis capability of LSTM, it can achieve efficient evaluation of GIS 
equipment status. 
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By introducing more signal processing technologies and optimization algorithms, the performance of the 
evaluation system can be further improved, providing a stronger guarantee for the safe operation of the power 
system. Through continuous technical improvements and practical applications, multi-frequency signal processing 
and LSTM methods are expected to be promoted and applied in more fields and play a greater role. 

V. Conclusions 
This article introduces a comprehensive method based on multi-frequency signal processing and LSTM algorithm 
to evaluate the status of substation GIS equipment. In the study, Fourier transform and wavelet transform were 
used to extract the spectrum and time-frequency characteristics of the signal, and generated a comprehensive 
feature vector through feature fusion, and then used the LSTM model for state assessment. Experimental results 
verify the superiority of this method in terms of accuracy and response time in state assessment, showing 
significant improvements compared with traditional single-frequency signal analysis methods. Although the 
research has achieved good results, the generalization ability of the model and the optimization of feature fusion 
still need to be further studied. In the future, the article can further expand the dataset, optimize feature extraction 
and fusion algorithms, and explore more deep learning techniques to improve the performance and adaptability of 
the evaluation system. 
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