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Abstract The existing power index benchmarking evaluation platform has large deviations in evaluation results 
and poor real-time performance due to the difficulty in integrating multi-source heterogeneous data, lack of index 
standards and lagging analysis mechanisms, which affects the scientific evaluation of power system operation 
performance. To solve this problem, this paper proposes an optimization solution based on cloud computing and 
big data technology. The innovation lies in the deep integration of standardized index system construction and 
intelligent benchmarking algorithm into the platform architecture. In the method design, Kafka and Flume are used 
to access data sources such as SCADA (Supervisory Control and Data Acquisition) and metering systems in 
real-time. Hadoop and Spark are used to complete data preprocessing and unified modeling. A unified index data 
warehouse is built based on Hbase (Hadoop Database) and Hive. A benchmarking evaluation model with cluster 
analysis and weighted scoring as the core is designed, and visualization and intelligent recommendation are 
realized under the Spring Boot framework. The experiment is conducted on a measured dataset of a regional 
power grid. After optimization, the response time of the platform is reduced to 51.5 seconds at a data scale of 
100GB. The accuracy of the indicator benchmarking for the industrial park scenario reaches 86.4%, and the 
accuracy of low voltage anomaly detection is increased to 94.8%. The research results show that this method has 
significant practical value in improving data processing efficiency, enhancing evaluation accuracy, and supporting 
management decisions, and has a positive role in promoting the construction of intelligent management platforms 
in the power industry. 
 
Index Terms Power System, Performance Evaluation, Cloud Computing, Big Data Analysis, Benchmarking 
Platform 

I. Introduction 
As an important part of national infrastructure, the safe and stable operation and efficient management of the 
power system are of great significance to ensuring social and economic development. With the continuous 
advancement of the construction of smart grids [1], [2], a large number of sensor devices and automation systems 
have been widely used, generating a huge amount of operation data. Through scientific benchmarking and 
evaluation of power operation indicators [3], [4], it is possible to accurately grasp the operation status of the power 
system [5], [6], discover potential hidden dangers, guide the optimization of operation and maintenance strategies, 
and improve overall operation efficiency and reliability. However, the current power industry [7], [8] generally has 
the phenomenon of scattered indicator data, lack of standards and lagging evaluation mechanisms, which limits 
the accuracy and effectiveness of benchmarking and evaluation. Data collection ends often come from diverse 
sources, involving multiple links such as power generation, transmission, distribution and sales. The data formats 
are different, and the real-time requirements are high, resulting in obvious obstacles to data fusion and sharing. 
The indicator system [9], [10] lacks a unified definition and calculation standard, which makes it difficult to 
effectively compare and comprehensively analyze the evaluation results of different regions and units. In addition, 
the evaluation methods mostly rely on traditional experience and static indicators, lack the ability to make intelligent 
judgments based on large-scale data analysis, and cannot timely reflect the dynamic changes and abnormal 
conditions in the operation of the power system [11], [12]. The functions of the existing platforms [13], [14] mostly 
stay at the display of results, lack support for in-depth data mining and trend prediction, and cannot meet the needs 
of the transformation of modern power systems to intelligent and refined management. The power industry has put 
forward higher requirements for the real-time and accuracy of data processing and the scientific nature of indicator 
evaluation. It is urgent to use advanced cloud computing [15], [16] and big data technology [17], [18] to break the 
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information island and build a unified, standard, and intelligent indicator benchmarking evaluation platform to help 
the efficient operation of the power system and decision optimization [19], [20]. 

The existing benchmarking platforms generally adopt a monolithic deployment structure, with high coupling 
between system interfaces, which cannot effectively support the rapid access of multi-source data and flexible 
calling between modules. The data processing process is still mainly based on batch processing, which leads to 
insufficient real-time performance. When facing high-frequency sampling and dynamic monitoring tasks, the 
response delay is significant, affecting the timeliness of anomaly identification and strategy adjustment. The 
platform function focuses on result presentation, lacks an in-depth analysis mechanism for abnormal trends and 
potential problems, and is not conducive to forming targeted optimization suggestions and executable strategies. 
There are problems such as inconsistent definitions, inconsistent structures, and large differences in granularity in 
data standards, which hinder the horizontal comparison and vertical tracking of benchmarking indicators. To 
improve the platform’s capabilities in data fusion, indicator modeling, and intelligent analysis, it is necessary to 
optimize the system architecture, data model, and algorithm modules in an all-round way to achieve more precise, 
efficient, and intelligent indicator evaluation goals. This paper systematically verifies the actual effect and feasibility 
of the optimization scheme by building a unified data processing architecture, establishing a standardized indicator 
system, applying multidimensional clustering and weighted scoring mechanisms, and quantitatively analyzing the 
changes in response time and evaluation accuracy before and after platform optimization in experiments. 

In view of the above difficulties, this paper designs an optimization solution for the power index benchmarking 
evaluation platform based on cloud computing and big data technology. The system builds a unified data access 
layer, uses Kafka as a real-time message middleware, and combines Flume for log data collection, ensuring the 
timely access and synchronous transmission of various heterogeneous data in the power system. In the data 
processing layer, a data lake is built based on the Hadoop distributed storage framework, and Spark is used for 
parallel computing and cleaning to convert raw data into standardized indicator data. To solve the problem of 
inconsistent indicator systems, a hierarchical indicator modeling solution covering operation, quality, safety, energy 
efficiency, and other dimensions is developed. By defining a unified indicator caliber and calculation rules, the 
comparability of indicators across regions and units is achieved. The data storage adopts a combination of HBase 
and Hive to achieve efficient storage and flexible query of indicator data. The evaluation layer designs a 
classification algorithm based on unsupervised clustering, combined with a weighted scoring model, to objectively 
quantify and dynamically compare the indicator performance of power units. The front end of the platform is based 
on the Spring Boot framework, and a responsive visualization interface is built to support diversified chart display 
and custom queries to enhance the user interaction experience. The system also integrates an intelligent early 
warning module, which can automatically detect and prompt abnormal indicators through time series analysis of 
historical data and assist management to quickly locate problems. This method is closely combined with the 
characteristics of the power business, systematically solving the problems of difficult data fusion, large differences 
in evaluation standards, and insufficient intelligent analysis, and promoting the development of power indicator 
benchmarking evaluation towards real-time, standardized, and intelligent directions. 

II. Related Work 
In the study of the benchmarking evaluation system of power indicators, multi-dimensional explorations have been 
carried out around system performance, evaluation methods, and low-carbon transformation needs, showing a 
trend of expanding evaluation dimensions and integrating methods. Liang et al. [21] integrated the macro 
development goals of the new power system with the operating characteristics of load-intensive cities, constructed 
a comprehensive indicator evaluation system covering dimensions such as safety, efficiency, and cleanliness, and 
verified its applicability and quantitative ability in supporting low-carbon decision-making in the context of 
megacities. To respond to the growing sustainability requirements of the power system, Deng et al. [22] 
systematically sorted out the development path of performance evaluation in the past two decades from the 
perspective of the Planning-Searching-Screening-Reporting-Reflecting cycle, pointed out that current work 
generally focuses on environmental and economic indicators and is highly dependent on Data Envelopment 
Analysis and Multi-Criteria Decision Making methods, and then proposed future optimization directions of 
strengthening social dimensions and integrating multiple methods. In terms of coping with system dynamic 
changes and operational risks, Liu et al. [23] constructed a frequency regulation coordination mechanism that 
integrated wind turbines and traditional thermal power units, and applied a multi-time scale evaluation framework to 
quantify the correlation characteristics between frequency stability and reliability parameters based on uncertain 
operation scenarios, and verified the accuracy of its modeling and analysis with the help of actual system cases. 
Overall, existing research still has shortcomings in the systematic construction of the evaluation framework, the 



Optimization of Power Index Benchmarking Evaluation Platform Based on Cloud Computing and Big Data Technology 

6175 

balance of evaluation dimensions, and the improvement of method adaptability, making it difficult to support the 
comprehensive benchmarking and intelligent decision-making needs of complex power systems [24]-[26]. 

To further address the adaptability of platform architecture in complex power scenarios, Xu et al. [27] 
systematically sorted out the inverter support capabilities in distributed renewable energy systems and conducted 
comparative analysis around voltage and frequency regulation and ride-through control strategies. They revealed 
the integration difficulties of existing algorithms under high penetration conditions and pointed out that functional 
integration and regulation algorithm optimization are the key directions for the evolution of benchmarking platform 
architecture. At the same time, in terms of benchmarking model design, Zhang et al. [28] proposed a clustering 
analysis framework for decision-making objectives, optimized the division of energy management scenarios by 
extracting key data attributes, and demonstrated strong strategy generation capabilities in real-time electricity price 
control and power dispatch, breaking through the structural isolation between traditional clustering models and 
evaluation objectives. In addition, in terms of multi-index comprehensive evaluation, Zubiria et al. [29] constructed 
an improved model of Technique for Order of Preference by Similarity to Ideal Solution based on triangular fuzzy 
numbers, integrated the opinions of multiple experts to achieve the optimal decision on energy storage technology, 
and verified its practicality in matching frequency regulation with inertial response capabilities in microgrid service 
scenarios, providing a feasible path for multi-criteria fusion and dynamic weight allocation in the platform. 

As power systems increasingly rely on data-driven and intelligent dispatching, the integrated application of cloud 
computing and big data technologies has gradually become a key path to support the transformation of their 
operation and management. Al-Jumaili et al. [30] built a hypothetical model of core performance indicators of 
power systems in big data processing scenarios based on the performance characteristics of mainstream parallel 
programming models such as Hadoop and Spark, and proposed a real-time data management solution based on 
cloud computing architecture, aiming to break through the technical bottlenecks of traditional parallel computing in 
terms of energy efficiency and response delay. On this basis, AL-Jumaili et al. [31] proposed a cloud-based 
intelligent power management system design solution, combining DC (direct-current) power devices, renewable 
energy hybrid access, and optimization algorithms, and built a management architecture for multi-source data 
analysis, verifying its adaptability and effectiveness in reducing system energy consumption and operating costs. 
To further promote the unification of industry-level standards and implementation strategy specifications, Zhang et 
al. [32] established a multi-party collaboration mechanism covering power grid companies, utilities, and cloud 
service providers, systematically sorted out the practical motivations and challenges of the power industry’s 
adoption of cloud technology from multiple aspects such as business needs, risk management, and 
implementation processes, and summarized executable migration path recommendations based on typical cases, 
which effectively supported the continuous improvement of industry regulatory rules such as the North American 
Electric Reliability Corporation. Although existing research has made progress in architecture design, performance 
optimization, and standard promotion, it still has the problem of insufficient application depth in dealing with 
real-time processing of high-frequency data streams, collaborative scheduling between platforms, and compatibility 
with multiple business scenarios [33]-[35]. 

III. Methods 
III. A. Data Collection and Access 
To achieve unified collection and efficient access of multi-source heterogeneous power system data, a data stream 
access mechanism based on Kafka and Flume is constructed. At the system architecture layer, by configuring the 
Flume Source module, the SCADA system, metering system, and automation terminal devices are directly 
connected to realize multi-channel and asynchronous data capture. Flume Channel adopts the dual-channel 
strategy of Memory and File to improve the cache capacity of high-frequency data streams and avoid delayed 
transmission problems caused by data congestion. At the data aggregation layer, Kafka is used as the message 
middleware to classify and distribute various types of power business data in Topic units, and the Producer side 
performs data compression encoding to ensure data integrity and efficiency during network transmission. To solve 
the problems of inconsistent data frequency and inconsistent format structure, the Avro serialization protocol is 
applied to complete structured packaging on the Kafka producer side to ensure data consistency and platform 
compatibility. 

During the access process, the Zookeeper cluster is deployed to achieve load balancing and high availability of 
Kafka, and the data writing throughput is improved by reasonably dividing the number of Partitions and Replicas. 
To ensure timeliness and sequence, a consumption displacement recording mechanism is configured on the Kafka 
consumer side, combining the dual index of timestamp and offset to locate key data segments in streaming data 
and read them dynamically. The platform access layer integrates Flume Sink and Kafka Consumer, uses Spring 
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Boot as a container to manage the interaction logic of intermediate components, and implements modular 
deployment and dynamic parameter tuning through a unified YAML configuration file. 

In view of the communication delay and unstable sampling frequency of some power data sources, a distributed 
time synchronization model is constructed, and a logical timestamp mechanism is applied to make the timestamp 
of any data packet: 

 𝑇௜ = 𝑚𝑎𝑥{𝑡௜, 𝑚𝑎𝑥
௝∈ே೔

 (𝑡௝ + 𝛿௜௝)} (1) 

Among them, 𝑇௜ represents the timestamp after the final calibration; 𝑡௜ is the original sampling time; 𝑁௜ is the 
set of adjacent nodes that communicate with node i; 𝛿௜௝ is the estimated delay between nodes. 

At the system scheduling layer, adaptive resource allocation of the collection and access process is realized, and 
a load balancing control strategy is designed to optimize thread allocation and resource scheduling by minimizing 
the following objective function: 

 𝑚𝑖𝑛
௫೔ೕ

 ∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ 𝑥௜௝ ⋅ 𝑐௜௝subjectto ∑  ௡
௝ୀଵ 𝑥௜௝ = 1, 𝑥௜௝ ∈ {0,1} (2) 

Among them, 𝑥௜௝ represents whether task i is executed by node j, and 𝑐௜௝ is the cost function under this 
allocation combination. Constraints ensure unique task allocation and avoid thread redundancy. Through real-time 
scheduling optimization, the system still maintains low delay and high throughput characteristics in high 
concurrency scenarios. 

To ensure the stable operation and status visualization of the entire data access process, the platform applies 
the Kafka Streams monitoring module to track the message flow status, delay distribution, and data loss in 
real-time. Figure 1 shows the flow chart of the power data collection and access architecture, which clearly reflects 
the logical relationship between various data sources, collection components, middleware, and processing 
processes. 

 

Figure 1: Architecture diagram of multi-source data access in power system 

The data packet structure and sampling frequency of various data sources are further sorted out to assist in 
standardized modeling. Table 1 gives the characteristic parameter information of the current access data source, 
including data source type, number of fields, sampling frequency, daily data volume, and access delay. 
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Table 1: Statistical table of characteristic parameters of each data source 

Data Source Type Number of Fields Average Sampling Frequency (Hz) Daily Data Volume (GB) Average Access Delay (ms) 

SCADA System 38 1 5.6 83 

Metering System 42 0.2 3.1 95 

Protection Device 24 0.5 2.4 102 

Automation Terminal 31 2 6.8 79 

 
After the data flows into Kafka, the system divides the processing window based on the combination of batch 

and micro-batch strategies. The sliding window model is used to define the data input batch; the window length is 
set to W; the sliding step is S; the processing time complexity of each round is 𝒪(𝑛𝑊log 𝑊), where n represents 
the number of concurrent data channels. 
III. B. Data Preprocessing and Storage 
To achieve unified management and efficient support for massive multi-source data in the power system, this 
platform uses the Hadoop ecosystem to build the main data processing framework and uses the distributed file 
system HDFS (Hadoop Distributed File System) to complete the unified storage of multi-source heterogeneous 
data such as SCADA systems, metering systems, and device operation records. After the data is connected, the 
MapReduce task is used to perform preprocessing operations such as field regularization, missing value filling, and 
outlier removal to ensure that the data quality meets the accuracy requirements of subsequent indicator modeling 
and benchmarking analysis. The data structure conversion is completed synchronously in the preprocessing stage, 
and the Parquet column storage format is used to compress redundant information to improve subsequent query 
performance and I/O (Inpit/Output) efficiency. 

The cleaned data is logically divided according to the business dimension and time dimension. A multi-level 
index mechanism is built and uniformly loaded into the HBase and Hive dual engine architecture. HBase carries 
high-concurrency, low delay random read and write tasks to support real-time calculation of indicators and online 
update of models. Hive undertakes batch query and historical data statistics tasks to assist benchmark model 
training and trend analysis. To solve the time series aggregation and multi-dimensional association problems 
involved in the calculation of power indicators, the Spark SQL (Structured Query Language) task framework based 
on window functions is used to perform pre-aggregation operations. The indicator calculation logic is dynamically 
scheduled by the formula parsing engine. Each indicator definition is converted into a unified expression, and the 
indicator value generation process is completed through the Spark execution environment. 

Considering the significant structural differences between different data sources, different sampling frequencies, 
and confusing field naming, a cross-source mapping strategy and field standardization mapping table are designed, 
and an automatic alignment mechanism is established. The configuration center and metadata management 
module are relied on to perform unified field renaming and data timestamp alignment to ensure the consistency of 
input data in the indicator warehouse. The system uses the following standardized processing formula to perform 
normalization operations on various continuity indicators to enhance cross-unit comparison capabilities: 

 𝑋௜௝
∗ =

௑೔ೕି௠௜௡(௑ೕ)

௠௔௫(௑ೕ)ି௠௜௡(௑ೕ)
  (3) 

Among them, 𝑋௜௝ represents the original indicator value of the j-th item in the i-th record, and 𝑚𝑎𝑥(𝑋௝) and 
𝑚𝑖𝑛(𝑋௝) are the maximum and minimum values of the indicator in the current analysis cycle. The triple standard 
deviation method is used to detect and eliminate abnormal records, and the formula is as follows: 

 |𝑋௜௝ − 𝜇௝| > 3𝜎௝ (4) 

Among them, 𝜇௝ is the mean of the j-th indicator, and 𝜎௝ is its standard deviation. Records that exceed the set 
range are marked as abnormal data and do not participate in the subsequent indicator calculation. 

The data warehouse adopts a snowflake modeling strategy during the design process, constructs standard 
dimension tables for dimensions such as operating units, voltage levels, and device types, and associates them to 
fact tables through unique primary keys to support multi-dimensional analysis queries. 

To improve the update efficiency and consistency of warehouse data, the system configures scheduled batch 
processing jobs and incremental update mechanisms to perform incremental loading of daily new data, and uses 
the Lambda architecture to integrate real-time and batch calculation results to build a hybrid processing channel. At 
the data call layer, the platform establishes an interactive query interface based on Impala, which supports 
combined retrieval and conditional filtering of any indicator field, significantly improving the response speed of 
indicator analysis and model debugging. 
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According to the indicator call frequency and data access mode in the platform operation, the frequency 
distribution of various query requests in the typical operation cycle is statistically analyzed, as shown in Table 2: 

Table 2: Frequency distribution statistics of different types of query requests 

Query Type Average Daily Requests Peak Requests (Per Day) Percentage of Total Requests (%) 

Real-Time Indicator Value Query 12,430 18,205 34.3 

Historical Trend Query 8,017 12,064 22.1 

Abnormal Indicator Detection 5,209 9,181 14.4 

Comparative Analysis (Multi-Unit) 4,376 7,834 12.1 

Aggregated Statistics Query 3,588 6,097 9.9 

Indicator Definition Invocation 1,842 2,411 5.1 

Auxiliary Queries (Config, Auth) 745 1,002 2.1 

The data in Table 2 shows that the query requests for the current value and historical trend of indicators account 
for 56.4% of the total, which constitutes the core part of the platform access load and places high demands on the 
system response time and concurrent processing capabilities. Requests for abnormal screening and comparative 
analysis show obvious peak fluctuations, reflecting the characteristics of periodic centralized execution of analysis 
tasks, which poses a challenge to the efficiency of batch processing and the stability of data pre-aggregation 
mechanism. The access volume of dimension aggregation requests is relatively low, but the processing cost is high, 
indicating that query performance needs to be improved through index optimization and storage structure 
adjustment. The proportion of indicator definition and auxiliary query is extremely small, indicating that the 
metadata layer is highly stable; the call demand is sparse; the impact on overall performance is limited. 

To optimize the access performance of key indicators, a hot and cold partitioning strategy is adopted to cache 
the frequently accessed indicator data in Redis for front-end calls to reduce the pressure on the back-end database. 
The version management and evolution of indicators are controlled by the metadata center, and the indicator 
definition change history is recorded through the version number to ensure the traceability and consistency of 
indicators. 

 
III. C. Construction of Power Index System 
To achieve standardized management and high-precision benchmarking evaluation of power indicators, the 
construction of the index system is based on the core principles of “unified definition, hierarchical classification, and 
quantitative expression”. A combination of business structure modeling and statistical characteristic analysis is 
adopted to systematically organize multi-level index items under the four core dimensions of operation, quality, 
safety, and energy efficiency. By analyzing the coupling relationship between management data and operation data 
of various power companies, an index mapping map is constructed. Based on the comparability and structural 
dependence of indicators between different business units, the integrated reconstruction of indicators on the time 
scale and space scale is completed. 

The indicator definition adopts a modeling method that integrates attribute constraints and rule reasoning. For 
the noise and drift in the original data sequence, a multivariate collaborative sliding window algorithm is used to 
perform dynamic smoothing processing to eliminate nonlinear disturbance terms. Assuming that the input data 
stream is 𝑋௧ ∈ ℝ௡×௠, where n represents the number of monitoring points, and m represents the number of 
sampling moments, the multi-indicator window smoothing function is defined as: 

 𝑋෠௧ =
ଵ

ଶ௞ାଵ
∑  ௞

௜ୀି௞ 𝑊௜ ⋅ 𝑋௧ା௜ (5) 

Among them, 𝑊௜ is the weight factor matrix, which is adaptively adjusted according to historical stability and 
real-time variability to effectively improve the representativeness of the indicator value. The indicator 
standardization adopts the interval mapping and Z-Score joint normalization strategy, and the unified 
standardization formula is defined as: 

 𝑍௜௝ =
௫೔ೕିఓೕ

ఙೕ
 (6) 

Among them, 𝑥௜௝ represents the observed value of the j-th indicator in the i-th sample, and 𝜇௝ and 𝜎௝ are the 
mean and standard deviation of the indicator, respectively. 

To enhance the logical consistency and dependency expression between indicators, the indicator hierarchical 
modeling method based on graph structure is adopted to construct the indicator association directed graph G = (V, 
E). Among them, the node V represents the indicator set, and the edge E represents the functional dependency or 
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causal path between indicators. According to this structure, the indicators are causally disassembled and grouped 
to form an indicator cluster structure for functional modules. The optimized indicator system is divided into four 
first-level indicator dimensions, thirteen second-level subcategories, and sixty-four third-level indicator items. The 
specific structure distribution is shown in Table 3. 

Table 3: Hierarchical structure and coverage statistics of the power indicator system 

Primary Dimension Number of Secondary Categories Number of Tertiary Indicators Number of Source Systems for Sample Data 

Operation 4 18 5 

Quality 3 14 4 

Safety 3 17 3 

Energy Efficiency 3 15 6 

 
The hierarchical structure of the power indicator system shown in Table 3 reflects the distribution characteristics 

and structural coverage of multi-dimensional indicators in the systematic construction. The first-level dimension is 
divided according to the core operating elements of the power system; the second-level category is refined 
according to the functional attributes; the third-level indicators are formed through statistical screening on the basis 
of maintaining business representativeness. The number of data source systems reflects the support breadth and 
coverage depth of various indicators in different platforms. 

To quantify the degree of dispersion and outlier risk between indicators, a discriminant function based on 
information entropy is applied on the standardized dataset to evaluate the stability level of various indicators. It is 
assumed that the dispersion of the j-th indicator after standardization on the entire sample set is: 

 𝐻௝ = −∑
௡

 𝑝௜௝log (𝑝௜௝) (7) 

Among them, 𝑝௜௝ =
௭೔ೕ

∑  ೙
೔సభ ௭೔ೕ

 represents the normalized weight of the i-th sample on the indicator. 

Figure 2 shows the key processing flow of multi-source data in the construction of a unified indicator system for 
the power system. Starting from data sources such as SCADA, metering system, and operation log, after data 
alignment and fusion, sliding window processing, standardization transformation, graph structure modeling, and 
function clustering, a multi-level indicator structure system covering four dimensions of operation, quality, safety, 
and energy efficiency is finally formed. 

 

Figure 2: Architecture diagram of the construction of a multi-source data fusion and standardized indicator system 
for power 

III. D. Design of Intelligent Benchmarking Evaluation Models 
In response to the problems of large deviations in the evaluation results of power indicators and lack of dynamic 
analysis capabilities, this study constructs an intelligent benchmarking evaluation model that integrates 
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unsupervised clustering and weighted scoring mechanisms to achieve multi-dimensional quantification and 
dynamic classification of power system operation performance. The model operates on the basis of standardized 
indicators that are uniformly modeled in the data warehouse. First, based on the K-means algorithm, similar power 
units are classified. By presetting the number of cluster centers K, the samples in the normalized indicator vector 
space are iteratively clustered so that each unit belongs to the most similar performance cluster. Assuming that the 
sample space is 𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡}, where each 𝑥௜ ∈ ℝௗ  represents the d-dimensional standardized indicator 
vector of the i-th unit, the objective function is to minimize the sum of squared errors within the cluster: 

 𝐽 = ∑  ௄
௜ୀଵ ∑  ௫∈஼೔

∥ 𝑥 − 𝜇௜ ∥ଶ (8) 

Among them, 𝐶௜ is the i-th cluster, and 𝜇௜ is its centroid. To enhance the robustness of clustering, the silhouette 
coefficient method is used to evaluate the clustering quality and automatically adjust the optimal cluster number K. 
After clustering is completed, the power units in each cluster are horizontally compared and ranked according to 
the weighted scoring method. 

The scoring function is constructed based on the weight distribution of each standardized indicator, and the 
entropy weight method is used to adaptively calculate the indicator weight. Assuming that the standardized value of 
the j-th indicator in n units is 𝑥௜௝, its entropy value is: 

 𝑒௝ = −
ଵ

୪୬ ௡
∑  ௡

௜ୀଵ 𝑝௜௝ln 𝑝௜௝ , 𝑝௜௝ =
௫೔ೕ

∑  ೙
೔సభ ௫೔ೕ

 (9) 

After calculating the information entropy of each indicator, its weight 𝑤௝ is obtained by the following formula: 

 𝑤௝ =
ଵି௘ೕ

∑  ೘
ೕసభ (ଵି௘ೕ)

 (10) 

This method avoids the bias caused by artificial subjective weighting, so that the evaluation weight of the 
indicator in different dimensions is determined by its distribution difference. The comprehensive score 𝑆௜ is the 
weighted sum of each weight and the unit standardized indicator value: 

 𝑆௜ = ∑  ௠
௝ୀଵ 𝑤௝ ⋅ 𝑥௜௝ (11) 

In the implementation of the evaluation model, Spark Machine Learning Library is used to implement the parallel 
operation of the K-means algorithm, and the data samples are mapped through the RDD (Resilient Distributed 
Dataset) structure, which significantly reduces the resource overhead of large-scale samples in multi-dimensional 
space calculation. In the scoring module, Hive SQL and Spark DataFrame are combined to build data extraction 
logic to ensure seamless switching between weight calculation and scoring functions in batch and stream 
processing scenarios. A clustering result cache mechanism is also designed in the system architecture to avoid 
frequent recalculation affecting real-time performance. 

To ensure the adaptability of the model to the multi-dimensional indicator structure, the system supports users to 
customize the evaluation dimension combination at the front end, and automatically adjusts the dimension space 
and retrains the clustering model through the vector mapping function at the back end, supporting comprehensive 
classification analysis of power units in different directions such as operating efficiency, quality stability, and energy 
efficiency level. In addition, a difference analysis module is set at the output end of the model to identify key gap 
indicators through the significance test of the mean indicators of units between different clusters, providing a 
decision-making basis for subsequent optimization suggestions. 

 
III. E. Visualization and Intelligent Warning 
The platform builds a responsive display and interaction system based on Spring Boot. The backend adopts the 
RESTful (Representational State Transfer) architecture to design interfaces. MyBatis is used to implement data 
interaction with HBase and Hive to meet the real-time reading requirements of indicator data. The front end uses 
Echarts as a graphic display engine to build multi-dimensional chart components, supporting line charts, heat maps, 
radar charts, etc., and improves response efficiency through asynchronous data binding and dynamic refresh 
mechanisms. The chart presentation logic is adaptively adjusted based on the indicator dimension and time 
window, and the user interface integrates filtering, sorting, and focusing operations to ensure the hierarchical and 
targeted information transmission. The indicator query parameters are embedded in the interface, and the data 
request and graphic update are automatically triggered after the user inputs, forming a highly coupled feedback 
closed-loop of query and display. 

The visualization module is closely bound to the indicator classification structure, and a hierarchical data view is 
constructed around operating efficiency, power quality, safety stability, and energy efficiency level. The graphics 
and numerical tables are synchronized. The platform responds to high-frequency refresh requests through the 
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front-end rendering cache and lazy loading mechanism to improve the interface response performance of the 
system in a concurrent environment. The data refresh cycle is uniformly managed by the backend scheduling 
module. Quartz is used to implement a minute-level update strategy. Combined with the user request-driven 
mechanism, the component content is asynchronously refreshed under the trigger of manual interaction to reduce 
unnecessary repeated calculations of the system. 

The early warning mechanism is built on the basis of the indicator anomaly detection model. Based on time 
series analysis, trend prediction and deviation judgment are performed on continuous data. The exponential 
weighted moving average method is applied when building the baseline model, and the prediction function is 
defined as: 

 𝑥ො௧ାଵ = 𝛼𝑥௧ + (1 − 𝛼)𝑥ො௧ (12) 

Among them, 𝑥ො௧ାଵ is the predicted value; 𝑥௧ is the current observation value; 𝛼 is the smoothing coefficient, 
and the value is obtained by reverse optimization based on the historical error. Deviation detection adopts the 
statistical discrimination method, and the anomaly judgment formula is: 

 |𝑥௧ − 𝑥ො௧| > 3𝜎௧ (13) 

Among them, 𝜎௧ represents the sample standard deviation in the sliding window. 
To enhance the recognition ability of nonlinear mutations, the system integrates the isolation forest algorithm to 

identify non-periodic abnormal signals in indicators. Isolation forest constructs multiple binary trees based on 
random partitioning and performs expected modeling on the average path length of samples. The anomaly score is 
defined as: 

 𝑠(𝑥) = 2
ି

ಶ(೓(ೣ))

೎(೙)  (14) 

Among them, 𝐸(ℎ(𝑥)) is the average path length of samples in the isolation tree; 𝑐(𝑛) is the expected value of 
the normal path length when the number of samples is n, which is approximately 2ln (𝑛) + 𝛾; 𝛾 is the Euler 
constant. 

The early warning system accesses the indicator abnormal event recording module, marks the abnormal 
indicator, deviation amplitude, trigger time, and system information for each alarm event, and associates the recent 
operation log and control instruction record to form a preliminary abnormal attribution path. During the operation of 
the system, all alarm events are uniformly written into the early warning log database and pushed to the front-end 
interactive interface in an asynchronous manner to form a closed-loop feedback mechanism. The 
multi-dimensional indicator correlation analysis constructs a correlation map through the covariance matrix 
between indicators and combines the principal component analysis method to select the key nodes of the 
abnormal propagation path to assist managers in the classification of warning levels and disposal strategy 
decisions. 

The platform designs a delay monitoring mechanism to record the time cost of indicator data from access, 
preprocessing, writing, query to front-end rendering to form a delay distribution dataset. Based on this dataset, the 
system updates the processing performance status in real-time in the background, dynamically adjusts the 
concurrent thread resource allocation strategy, and performs load balancing control on the key path nodes to 
ensure the response stability under abnormally high load conditions. The user interface supports multi-dimensional 
interactive operations. Indicator switching, chart focus, and time granularity adjustment are all completed in local 
components, without relying on the overall page refresh, improving operation fluency and information accessibility. 

IV. Experiments 
IV. A. Experimental Environment Construction 
The experimental platform of this study is deployed in a cloud computing environment with elastic expansion 
capabilities. The overall architecture is divided into data acquisition layer, computing processing layer, data storage 
layer, and application service layer. The experiment adopts a private cloud deployment solution, builds a virtualized 
resource pool based on OpenStack, supports multi-node parallel processing tasks, and meets the distributed 
processing requirements of large-scale power data. The operating system is CentOS 7.9 (Community ENTerprise 
Operating System), and the underlying hardware configuration uses Intel Xeon Gold series processors with a main 
frequency of 2.6GHz, 128GB of memory, and a single-node hard disk capacity of 10TB. A storage cluster is 
established to improve read and write efficiency. The network environment is Gigabit Ethernet interconnection to 
ensure the stability and low delay of data transmission between nodes. 

The big data processing framework uses Hadoop 3.3.1 and Spark 3.1.2 to run together. HDFS is used for 
persistent storage, supporting sharding and replica mechanisms to ensure data redundancy and reliability. The 



Optimization of Power Index Benchmarking Evaluation Platform Based on Cloud Computing and Big Data Technology 

6182 

Spark cluster runs on the YARN (Yet Another Resource Negotiator) resource scheduling system, setting the ratio of 
Driver and Executor resources to 1:5 to balance task scheduling and computing resource utilization. Kafka 2.8.0 is 
deployed in the message queue layer to support partitioning mechanism and asynchronous transmission to 
improve data collection throughput. Flume is used as a data transmission agent to achieve real-time data access 
and transmission scheduling for data sources such as SCADA systems and metering terminals, and supports 
multi-channel flow control and fault-tolerant forwarding mechanisms. 

In the data storage layer, HBase 2.4.9 is used to build a time series storage structure for power indicators, and 
the column storage mode is used to optimize the retrieval efficiency of indicator-level data. Hive 3.1.3 is integrated 
in the Hadoop ecosystem to achieve batch data analysis and structured query, support docking with the Spark SQL 
engine, and improve query response speed and semantic processing capabilities. Metadata management is 
uniformly maintained by Hive Metastore to ensure data semantic consistency and access uniformity among 
modules. The platform control logic is developed based on Spring Boot 2.6.7 to achieve service decoupling, 
dynamic module deployment, and system load monitoring. 

Zookeeper is integrated between nodes for service coordination and status monitoring to ensure operational 
consistency under the modular deployment of the platform. The system security layer integrates the Kerberos 
protocol for authentication and authorization to avoid security risks in the data access process and improve the 
credibility and stability of the platform’s overall operation. 

 
IV. B. Dataset Preparation 
The experimental data used in this study is derived from the real operation data of a regional power grid, covering 
multiple business platforms such as SCADA, electricity metering system, energy efficiency management system, 
and safety monitoring system. The data types cover voltage, current, active power, reactive power, frequency, load 
rate, device status code, energy efficiency index, and fault information. The data has high-frequency update 
characteristics and strong heterogeneity. The total amount of data reaches 6.3TB, and the time span covers 120 
consecutive days. To ensure the representativeness and integrity of model training and evaluation, all data are 
systematically integrated, time-series aligned, and null value removed, and uniformly converted into standardized 
indicator format. 

During the preprocessing process, the data is first uniformly stored in the HDFS cluster and structured in Parquet 
columnar format. When regularizing the original data, a sliding aggregation method based on time window is used 
to aggregate minute-level data into indicator blocks with a period of 15 minutes. At the same time, a unified 
dimension and value range are set for each type of indicator, and the dimension effect is eliminated through the 
Z-score standardization method to improve the comparability of data and the stability of analysis. In the data 
integrity review, Spark SQL is used to perform batch statistics and screening on the missing rate of each data 
source. The missing threshold is set to 10% to remove the high missing fields. The sliding mean interpolation 
strategy is used to repair the low missing fields. 

To support the subsequent benchmarking model training and classification analysis, it is necessary to identify 
and label the data of different power units. The data involves four types of power entities, including power supply 
stations, substations, switch stations, and main grid dispatching centers in the district. The system sets an 
independent identification code for each type of entity and completes data mapping. In the data partition design, 
grouping is carried out according to the dual dimensions of geographical area and voltage level to achieve 
hierarchical organization of data in the logical structure. After preliminary summary and review, a unified indicator 
sample set is formed, providing a complete indicator vector for a total of 1,853 independent units. Each unit 
includes four categories: operation, quality, safety, and energy efficiency, which has a sufficient analysis basis. 

In terms of dataset division, the ratio of training set to test set is set to 8:2, and the ratio of each type of unit is 
kept consistent to ensure the model’s generalization ability during training. 

 
IV. C. Parameter Setting and Operation Process 
This section elaborates on the parameter configuration and operation process used by the benchmarking 
evaluation platform during the experiment to ensure that the experiment is reproducible and scientific in terms of 
technical implementation and data processing. Model training and system operation both rely on reasonable 
parameter settings, which must take into account data scale, computing efficiency, and indicator stability. The 
platform’s parameter configuration covers multiple aspects such as data collection batch control, preprocessing 
task scheduling, clustering analysis parameter selection, scoring model weight allocation, and warning threshold 
setting. 

In the data collection stage, the number of Kafka partitions is set to 8 to ensure that the parallel processing 
capability matches the message transmission stability. The collection interval in the Flume configuration is 
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uniformly set to 5 seconds, and the buffer size is 128MB to ensure data synchronization performance between 
different data sources. In the data preprocessing stage, the maximum number of concurrent users of Hadoop’s 
MapReduce task is set to 20. The data cleaning rule uniformly interpolates missing values, uses a fixed value 
standardization strategy for unified unit conversion, and uses a unified field mapping rule for field specifications. 
The data batch processing is achieved three times a day by configuring the scheduler. 

In the model building stage, the K-Means clustering algorithm is used for unsupervised classification. The 
number of clusters is set to 6, and the maximum number of iterations is set to 100. The initial center point adopts a 
random initialization strategy, and the Euclidean distance is used as the similarity metric. The weights of each 
indicator in the benchmarking scoring model are calculated by the entropy weight method, where the weights of 
operation indicators, quality indicators, safety indicators, and energy efficiency indicators are 0.30, 0.25, 0.25, and 
0.20, respectively. The final score calculation is based on the weighted normalized score, and the score range is 0 
to 100. In the early warning module, the abnormal identification is set to trigger a primary warning when the 
indicator deviates from the standard range by more than 15%, and trigger an advanced warning when it deviates 
by more than 30%. The time series analysis module sets the sliding window to 10 minutes to identify trend 
deviations. 

In terms of the operation process, the platform is built on the Spring Boot framework as a whole, and the task 
scheduling and data display are decoupled through the front-end and back-end separation mode. After the 
operation is started, the data collection module is activated first. Kafka is connected to data sources such as 
SCADA, metering system, and scheduling platform, and Flume concurrently pulls each data stream and writes it to 
HDFS. Subsequently, YARN schedules and starts the data cleaning and conversion process. Hadoop formats the 
raw data, normalizes the indicators and maps the fields, and updates the HBase indicator table synchronously. 
Hive, as the query middle layer, provides a unified query interface for the model module to access. 

After the model scheduling layer loads the training model, it clusters the current batch data, builds a scoring 
archive based on historical data, and then compares the current unit score with the mean of similar units to output 
the benchmarking results. The intelligent early warning module automatically identifies abnormal indicators after 
the score is generated, and pushes the corresponding early warning logo and suggestion content in the front-end 
display platform. The platform interface displays cluster distribution, scoring trend, and abnormal indicator statistics 
through ECharts graphic components, and user interaction behavior is synchronously fed back to the 
recommendation module to form a data closed-loop. 

V. Results 
V. A. Data Processing Efficiency 
This section conducts quantitative experiments on the performance response of the platform in big data processing 
tasks and multi-user concurrent scenarios, and conducts hierarchical verification of key performance indicators. By 
setting data scales ranging from 1GB to 100GB, the actual workflow of the platform in the access, preprocessing, 
and indicator modeling stages is simulated, and the changing trend of its response delay under load growth is 
analyzed; by constructing concurrent access scenarios of 10 to 1000 users, the resource allocation and throughput 
performance of the platform under intensive task scheduling are simulated. Figure 3(a) shows the response time 
performance of the platform under different data volume conditions, and Figure 3(b) reflects the changes in the 
throughput capacity of the system under different concurrent loads. 

 
 

(a) Response time comparison (b) Throughput comparison 

Figure 3: Platform processing performance comparison chart: response time and throughput dual perspective 
evaluation 
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The optimization effect of the platform on data processing efficiency is quite significant. As the data volume 
expands from 1GB to 100GB, the platform response time before optimization increases from 4.7 seconds to 329 
seconds, while the response time after optimization is controlled within 51.5 seconds, indicating that the system 
has good stability when facing high-concurrency data processing. The changing trend of the response time growth 
rate reflects the expansion advantages of Hadoop and Spark distributed architecture in batch task processing, and 
significantly reduces processing delays through task scheduling and load balancing between nodes. In terms of 
throughput, the throughput of the platform before optimization decreases after the number of concurrent users 
reaches 100, showing a resource bottleneck. After optimization, the platform maintains an increasing trend with the 
increase of concurrent users, up to 48.2MB per second, showing the processing elasticity after the coordinated 
scheduling of Kafka message distribution mechanism and Spark Streaming real-time computing framework. The 
experimental results show that the constructed optimized architecture shows stronger processing capabilities and 
response stability when facing multi-dimensional business pressure. 

 
V. B. Indicator Benchmarking Accuracy 
To improve the applicability of benchmarking evaluation models in different scenarios and the effectiveness of 
standardization strategies, this section conducts an in-depth comparative analysis from two dimensions: model 
accuracy and indicator data distribution. The comparison objects cover five types of evaluation models. Model 1 is 
a static evaluation method based on expert rules, which is suitable for business scenarios with clear rules but lack 
of generalization ability. Model 2 is a benchmarking analysis method based on K-Means clustering, which relies on 
the distance division of feature space but is sensitive to outliers. Model 3 is an indicator evaluation model based on 
principal component analysis and weighted scoring, which has certain explanatory power but is easy to weaken 
local structure. Model 4 is a comprehensive scoring method based on hierarchical clustering analysis, which is 
suitable for processing complex objects with nested structures. Model 5 is an intelligent benchmarking evaluation 
method that integrates standardization-clustering analysis-weighted scoring, which realizes dual modeling of 
business heterogeneity and dynamic correlation of indicators. At the indicator level, the Active Load Factor 
selected in this study represents the balance of user power load; Voltage Qualification Rate reflects the degree of 
voltage qualification; Line Loss Rate reflects the efficiency of energy loss; Outage Frequency represents the 
continuity of power supply; Device Health Score measures the stability of device operation status and early 
warning needs. The above models and indicators together construct a multi-level information foundation for 
benchmarking evaluation. Figure 4 (a) shows the accuracy differences of each model in three typical power grid 
scenarios (Urban Grid A, Industrial Park B, Rural Distribution C), and Figure 4 (b) compares the statistical 
distribution characteristics of each indicator before and after standardization in the form of a box plot. 

 
 

(a) Comparison of the accuracy of different models (b) Comparison of the statistical distribution before and 
after index standardization 

Figure 4: Comparison of the accuracy of different models and the statistical distribution before and after index 
standardization 

Model 5 shows a leading accuracy in all scenarios, reaching 86.4% and 83.1% in industrial parks and rural 
distribution networks, respectively. This performance is attributed to the fact that its clustering algorithm takes into 
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account the global distribution structure while maintaining local density characteristics, avoiding the 
misclassification of marginal samples by traditional methods. In contrast, the accuracy of model 1 in all three 
scenarios is lower than 79%, mainly limited by the coverage of rules and the lag in strategy updates. Models 2 and 
4 perform relatively close. On the other hand, it can be seen from the index distribution diagram that after 
standardization, the box shape of each index tends to be symmetrical, and the maximum and minimum values 
converge significantly. Among them, the outlier situation of Outage Frequency is effectively suppressed. This 
change improves the comparative consistency and generalization stability of the model under different dimensions. 
The standardized results also enhance the robustness of the weighting mechanism to extreme value indicators, 
thereby avoiding the problem of a single indicator dominating the overall score in the evaluation results. Overall, 
the benchmarking system built based on unified standardized processes and structure-aware algorithms shows 
higher robustness and evaluation accuracy when dealing with heterogeneous scenarios and complex indicator 
structures. 

 
V. C. Real-time Performance and Response Delay 
To evaluate the processing capabilities of the optimized power indicator benchmarking evaluation platform under 
different data loads, a response time measurement experiment for five core processing stages is designed, 
covering typical processes such as data collection and access, preprocessing, indicator modeling, warehouse 
query, and visualization output. There are significant differences in the computing tasks and system call complexity 
carried by each stage. The data collection and access stage relies on stream processing components such as 
Kafka and Flume, and the response delay is less affected by network I/O and caching strategies; a large number of 
ETL (Extract, Transform, Load) operations are required in the data preprocessing stage, which is easy to form a 
computing bottleneck; indicator calculation and modeling involve clustering and weighted scoring algorithms, which 
are highly sensitive to memory and CPU usage; the performance of the data query stage is related to the 
warehouse design and indexing mechanism; the visualization stage mainly examines rendering efficiency and 
interface responsiveness. In the experimental setting, the input data scale is controlled to 100,000, 500,000, and 1 
million records to observe the response time change trend of the platform under different load scenarios. Figure 5 
shows the average response delay distribution of each processing stage under three data scales. 

 

Figure 5: Response time distribution of each processing stage of the platform under different data scales 

In terms of the overall trend, data preprocessing and indicator modeling stages always dominate the response 
time under all data scales. Among them, when 1 million data are input, the average time consumed by the 
preprocessing stage reaches 420 milliseconds, while the indicator modeling stage is even higher, reaching 500 
milliseconds, reflecting the high dependence of these two stages on computing resources in the big data 
environment. In contrast, the data collection stage benefits from Kafka’s asynchronous buffering mechanism and 
Flume’s batch processing optimization, and the response time increases more slowly, only increasing by 120 
milliseconds between 100,000 and 1 million data scales, showing good scalability. The data query stage is affected 
by HBase column storage and Hive query optimization, and the delay is controlled within 260 milliseconds, 
showing the effectiveness of the platform in query path compression and index loading strategies. The delay of the 
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visualization stage is always kept within 200 milliseconds, mainly due to the low computing density and cache 
mechanism support of front-end rendering and data aggregation tasks. Overall, the platform still maintains good 
stage response stability and distribution balance under high load, indicating that it has good adaptability in 
multi-stage collaborative processing and load stratification optimization. 

 
V. D. Evaluation of Intelligent Early Warning Effect 
To verify the overall optimization effect of the platform in terms of abnormal identification accuracy and response 
performance, this paper designs a set of experimental schemes covering typical fault types and multi-level load 
scenarios to systematically evaluate its robustness performance in complex operating environments. The 
experiment selects five common anomalies: overvoltage, undervoltage, frequency drift, device tripping, and power 
fluctuation, corresponding to different risk dimensions such as power quality, frequency stability, and device safety. 
This selection takes into account both steady-state disturbances and sudden faults, and has good 
representativeness and identification differences. Among them, voltage anomalies directly affect the power supply 
quality on the user side; frequency drift reflects the source-load power imbalance; device tripping is usually 
triggered by short-term shocks or protection strategies; power fluctuations reflect the uncertainty of load-side 
operation. In addition, to simulate the performance of the platform under different load pressures, the experiment 
sets five load levels (from extremely low to extremely high), covering typical business scenarios from no-load 
debugging to peak operation. The data flow density increases significantly during the high-load stage, which often 
causes processing delays and resource conflicts, and is a key test point for the system’s responsiveness. Figure 
6(a) shows the difference in the accuracy of various anomaly recognition before and after optimization, and Figure 
6(b) describes the distribution and stability boundary of the platform response delay under different load levels. 

  

(a) Anomaly detection accuracy (b) Load response delay performance 

Figure 6: Comparative analysis of anomaly detection accuracy and load response delay performance 

From the analysis of detection accuracy, the accuracy of voltage anomalies has increased to more than 92% 
after optimization. Among them, the accuracy of voltage under-detection reaches 94.8%, an increase of 14.7 
percentage points compared with before optimization, indicating that with the support of unified indicator definition 
and feature modeling, the system is more sensitive to the extraction of steady-state anomaly features. The 
detection effect of frequency drift and power fluctuation has been improved more significantly, with the accuracy 
rates of 89.2% and 89.6%, respectively after optimization, an increase of nearly 19.5 percentage points and 17.7 
percentage points. This proves that after the application of the sliding window trend analysis mechanism and the 
isolation forest algorithm, the system has significantly enhanced its ability to extract short-period nonlinear 
disturbance features, thereby improving the recognition accuracy of power quality and frequency anomalies. It is 
worth noting that the accuracy of device tripping detection has increased by 16.4% simultaneously, which is closely 
related to the expansion of the impulse current waveform sample library and the mining of protection action 
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association rules. The response delay results show that the median response time of the system under extremely 
low load is 120.8 milliseconds, and the median values under higher load and extremely high load increase to 450.5 
milliseconds and 790.2 milliseconds, respectively, with significant differences, indicating that data concurrency 
pressure poses a challenge to the response rate of the early warning module. However, after optimization, a 
reasonable delay distribution range is still maintained, and the abnormal points are controlled within the statistical 
normal range. The platform has a certain real-time processing elasticity and performance stability. The 
comprehensive results show that the platform has strong operational adaptability while ensuring accuracy. The 
system applies a sliding window mechanism to dynamically adjust the warning threshold, adaptively correct the 
judgment boundary according to real-time statistical characteristics, and improve the response accuracy to 
changes in indicator time series. 

 
V. E. User Interaction Experience 
To comprehensively evaluate and optimize the performance of the platform in terms of interactive design, this 
section applies a data analysis framework that integrates subjective cognition and objective measurement, 
covering two levels: user satisfaction survey and operation behavior monitoring. The satisfaction evaluation 
focuses on seven interactive dimensions, such as interface aesthetics, chart clarity, and navigation logic, and 
collects technical and management personnel’s evaluation of system functions and interactive fluency; the 
operational efficiency evaluation selects six typical task operations and reflects the system’s responsiveness and 
interface fluency by recording the task completion time. This design covers both the user’s perception level and the 
performance in the operation chain, which helps to judge the platform’s interactive capabilities from multiple angles. 
Figure 7 contains a radar chart of the distribution of two types of user satisfaction on multi-dimensional attributes 
and a bar chart of the average time spent on operation tasks, showing the performance differences of the 
platform’s interactive mechanism in different usage scenarios. 

  

(a) Subjective ratings of interactive experience (b) Comparison of task time consumption 

Figure 7: Comparative analysis of subjective ratings of platform interactive experience and task time consumption 

From the perspective of satisfaction, managers score significantly higher than technicians in the two dimensions 
of operational convenience and navigation logic, 4.4 and 4.2, respectively, while the corresponding scores of 
technicians are only 3.9 and 3.6. This difference reflects that managers have a more positive perception of the 
simplicity of use paths, probably because their typical tasks are more fixed, and the operation process is more 
familiar. The technicians score 4.2 on the clarity of the chart, higher than the 4.1 of the managers. Combined with 
their attention to graphic details and data accuracy, it can be seen that they have higher requirements for the 
quality of chart expression. In terms of warning comprehensibility, the scores of both types of users are at a 
relatively medium level, 3.5 and 4.1, respectively, indicating that there is still room for improvement in the semantic 
expression and prompt strategy of this function. The task time consumption data shows that the average time 
consumption of the comparative analysis task is 4.6 seconds, which is much higher than the 1.9 seconds for chart 
switching and the 2.1 seconds for data export. This shows that the task involves data integration and chart 
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generation; the logical chain is complex, and the system calculation is large, which is the bottleneck link affecting 
the overall response experience. In contrast, the operation time of indicator query and module switching is 2.8 
seconds and 3.0 seconds, respectively, indicating that the system maintains a relatively stable response efficiency 
under medium-complexity tasks. The comprehensive analysis results show that the platform’s improvements in 
task structure clarity and response optimization strategies have a direct driving effect on the improvement of the 
interactive experience of different user groups. 

VI. Conclusions 
This paper proposes an optimization method for the power index benchmarking evaluation platform based on cloud 
computing and big data technology. By building a system architecture that integrates a standardized index system 
and an intelligent benchmarking algorithm, Kafka and Flume are integrated to achieve real-time access to 
multi-source heterogeneous data. Hadoop and Spark are used to complete data preprocessing and modeling. A 
unified index warehouse is established by combining HBase and Hive, and a dynamic scoring model based on 
unsupervised clustering and entropy weight method is designed. The experimental results show that the response 
time of the optimized platform is reduced from 329 seconds to 51.5 seconds under the scale of 100GB data. The 
accuracy of index benchmarking for industrial park scenarios reaches 86.4%, and the accuracy of voltage 
undervoltage anomaly detection is increased by 14.7 percentage points to 94.8%. The system has a balanced 
response delay distribution at each stage under the scale of 1 million data, and the average time consumption of 
the preprocessing and modeling stages is 420 milliseconds and 500 milliseconds, respectively. The shortcomings 
of the research are that the warning response delay still fluctuates in some extreme load scenarios, and the 
dynamic update mechanism of the index system has not yet fully adapted to high-frequency business changes. 
Future work needs to further optimize the resource scheduling strategy of the model under high concurrent load, 
explore incremental learning mechanisms to improve the dynamic adaptability of the indicator system, and expand 
multimodal data fusion capabilities to meet the complex analysis needs of new power systems. 
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