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Abstract In view of the current problems of insufficient communication technology and real-time performance, and 
weak data processing and analysis capabilities, this paper proposes a technical solution that integrates the Internet 
of Things (IoT) and the improved 5G-TSN (Time-Sensitive Networking) model to improve the real-time control 
capabilities of the smart grid by integrating the Internet of Things technology. The model relies on the ubiquitous 
perception capability of the Internet of Things to achieve a full life cycle management of devices. Firstly, a 
multi-dimensional sensor network is constructed at the perception layer; the FlexE (Flexible Ethernet) interface is 
used to implement hard-isolated network slicing; the IEEE 802.1AS time synchronization protocol is deployed. 
Secondly, an edge computing gateway with AI (artificial intelligence) inference capabilities is deployed in the ring 
network cabinet, and a containerized microservice architecture based on Kubernetes is constructed to achieve 
intelligent collaborative management and control of Internet of Things devices. Then, a digital twin of the feeder 
automation device is established; an electromagnetic transient model is constructed using the Modelica language; 
a real-time data interaction interface based on OPC UA (Open Platform Communications Unified Architecture) is 
developed to open up the Internet of Things channel between physical devices and digital twins. Finally, the 
distribution automation performance is verified. Experiments show that the end-to-end latency is only about 8ms in 
normal load scenarios and about 22ms in encrypted transmission scenarios. The improved 5G-TSN model keeps 
the processing latency at a low level in most scenarios, and the accuracy rate reaches more than 95% within 3 
seconds in single-phase grounding fault scenarios. The improved method can solve the problems of 
communication technology and real-time performance while improving data processing and analysis capabilities. 
This research provides technical support for building a highly elastic and adaptive new power system. Its 
cross-domain fusion paradigm can be extended to multiple scenarios of the energy Internet, which has significant 
economic value and social benefits in promoting the digital transformation of the power system. 
 
Index Terms Smart Grid, Internet of Things Technology, Distribution Automation, 5G-TSN Model, Digital Twin 

I. Introduction 
Driven by the global energy structure transformation and the “dual carbon” goal, smart grids, as the core carrier of 
new power systems [1], are accelerating their evolution towards digitalization and intelligence [2], [3]. As the hub 
link between the transmission network and end users [4], the operating efficiency of the distribution automation 
system directly affects the reliability of power supply and the level of energy utilization [5], [6]. However, the current 
distribution field faces two major technical bottlenecks. On the one hand, traditional optical fiber communications 
and wireless networks are difficult to meet the low latency requirements of new loads such as distributed energy 
access and electric vehicle charging piles in high-concurrency scenarios, resulting in fault response latency [7], [8]. 
On the other hand, the massive heterogeneous data such as PMU (phasor measurement unit) data, device status 
parameters, and user power consumption information generated by distribution terminal devices have the 
phenomenon of “data islands” [9], [10]. The existing data processing architecture is limited by the centralized cloud 
computing model [11], resulting in excessive fault diagnosis latency and difficulty in supporting the rapid 
self-healing needs of the power grid [12]. The superposition effect of these problems exposes the vulnerability of 
the existing technical system in extreme scenarios. In this context, exploring the deep integration path of IoT 
technology and smart grid and building a distribution automation system with real-time perception, dynamic 
optimization, and autonomous decision capabilities [13], [14] have become the key to promoting the construction of 
new power systems. This technology integration provides distribution automation with ubiquitous perception, 
multi-dimensional data integration, and device life cycle management capabilities. Its cross-domain integration 
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paradigm can be extended to multiple scenarios of the energy Internet, which has significant economic value and 
social benefits in promoting the digital transformation of power systems. 

In response to the above challenges, the academic community has carried out multi-dimensional technical 
research. Butt O M [15] et al. improved the reliability, efficiency, and sustainability of the distribution system by 
integrating IoT and smart grid technologies. However, the lack of real-time performance of traditional 
communication architecture [16] and the data island problem caused by centralized cloud computing still restrict 
system performance [17]. Through phase-splitting switch and fault identification technology [18], [19], Zhang W [20] 
et al. proposed a fault location and isolation method based on adaptive reclosing [21], which solved the problems 
of secondary impact and long power outage time of the traditional voltage-time scheme, but did not involve the 
coordinated optimization of IoT communication and edge computing, and still had insufficient adaptability when 
dealing with dynamic topological changes of distributed energy access. Ghiasi M [22] et al., by constructing a 
mathematical model of the integration of IoE (Internet of Energy) and smart grid [23], revealed the role of 
distributed energy integration in promoting carbon emission reduction [24]. However, there is still a gap in the 
research on energy mismatch and implicit carbon emissions caused by Internet technology. Although these studies 
have made phased progress, they generally have the limitations of “local optimization and global fragmentation”, 
which makes it difficult to meet the comprehensive requirements of new power systems for real-time 
communication, data integration, and control coordination. 

To break through the boundaries of existing technologies, some scholars have begun to explore cross-domain 
technology integration paths. Orlando M [25] et al. proposed a distributed smart meter architecture based on the 
Internet of Things. By integrating two-way communication, self-configuration algorithms, and dynamic update 
functions [26]-[28], they solved the problems of fixed functions and poor scalability of traditional smart meters and 
verified the feasibility of low-cost hardware implementation. However, this solution does not involve the real-time 
optimization mechanism of communication in high-concurrency scenarios, and the security protection system lacks 
the support of national secret algorithms, which makes it difficult to meet the needs of new power systems for 
multi-service isolation and encryption latency collaborative control. By integrating Wi-Fi/RS-485 communication 
and Modbus protocol [29], Sheba M A [30] et al. proposed a low-cost IoT RTU (Remote Terminal Unit) solution 
based on microcontrollers [31], which solved the problems of poor compatibility and high upgrade costs of 
traditional power grid devices. However, its microcontroller architecture still has computing power bottlenecks in 
real-time data processing and complex AI (artificial intelligence) inference scenarios, and does not involve the 
deterministic latency guarantee mechanism of time-sensitive networking (TSN). Zhou B [32] et al. reviewed the 
architecture design and control strategy of MMGEMS (Multi-Microgrid Energy Management Systems) and 
proposed an information-physical collaboration method based on clustered energy scheduling [33], which solved 
the energy efficiency optimization and elasticity improvement problems in distributed energy access scenarios. 
However, there are still technical bottlenecks in the real-time guarantee of the decentralized communication 
architecture of the system and the coordinated control of multiple microgrids in extreme scenarios. These research 
trends indicate that through the deep integration of 5G-TSN heterogeneous networks and the native integration of 
edge computing and AI algorithms, a four-dimensional collaborative technology system of 
perception-communication-computing-control can be built to systematically solve the core contradictions in the 
development of distribution automation. 

Based on the above analysis, this study aims to establish a new distribution automation paradigm that integrates 
smart grid and IoT technology. The specific innovation is reflected in three dimensions. A 5G-TSN hybrid 
scheduling algorithm based on dynamic weight allocation is proposed. By integrating network calculation and 
reinforcement learning technology, a dynamic optimization model of multi-dimensional QoS (Quality of Service) 
parameters (latency, jitter, bandwidth) is constructed. A lightweight space-time graph convolutional network 
(ST-GCN) for edge devices is developed, and the model parameter volume is compressed to 0.8MB through 
knowledge distillation technology. Finally, a distribution automation verification platform based on digital twins is 
constructed, integrating the RT-LAB (Real-Time Laboratory) real-time simulation system and the IoT device 
simulation cluster to complete the full process verification of fault location, isolation, and power supply restoration. 
From the perspective of large-scale application, the fusion architecture proposed in this study is not only suitable 
for typical scenarios such as rural power grid transformation and industrial park energy management, but can also 
be extended to emerging fields such as urban rail transit and port shore power through technical adaptability 
optimization, and reserves interfaces for the future 6G communication and quantum encryption technology power 
scene integration, showing the technical vitality of sustainable iteration. 
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II. IoT and 5G-TSN Converged Architecture Design 
II. A. 2.1 Optimized Design of 5G-TSN Communication Architecture 
In response to the technical challenges of differentiated latency requirements for multiple services in distribution 
automation systems, this study uses FlexE interfaces to implement physical layer network slicing. Through SPN 
(Slicing Packet Network) device deployment, the 100Gbps physical link is divided into three independent 
sub-interfaces: control service, protection service, and monitoring service. The control service sub-interface is 
configured with 25Gbps bandwidth and a time slot allocation granularity of 5Gbps. The protection service 
sub-interface is configured with 50Gbps bandwidth and a time slot granularity of 10Gbps. The monitoring service 
sub-interface is configured with 25Gbps bandwidth and a time slot granularity of 5Gbps. Each sub-interface is 
bound to a time slot through the FlexE Calendar mechanism to build a physical layer hard isolation channel to 
achieve differentiated carrying of control services, protection services, and monitoring services. 

In the communication link from the ring main unit to the distribution master station, an industrial Ethernet switch 
that supports TSN features is deployed, and the IEEE 802.1Qbv gating mechanism is enabled. For the periodic 
telemetry data of FTU (Feeder Terminal Unit), the 802.1Qbv time window is configured to 200μs, aligned with the 
5G air interface TTI (Transmission Time Interval), and latency jitter is eliminated through traffic shaping. For 
event-driven messages of fault indicators, the IEEE 802.1Qbu frame preemption function is enabled to cut 
high-priority messages into 64-byte micro-segments to ensure the transmission priority of critical services. The 
upper limit of the latency of TSN gating scheduling can be quantified and analyzed by the following equation: 

 𝐷௧௦௡ ≤ ∑ ቀ
௅ೖ

஼
+ ∑ 𝜏௝

௡ೖ
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Among them, L୩ is the length of the k-th time window; C is the link capacity; τ୨ is the frame preemption latency; 
Δୱ୷୬ୡ is the clock synchronization error. 

The time synchronization system adopts a hierarchical master-slave architecture and deploys the IEEE 
802.1AS-2020 protocol to achieve full network time synchronization. A Stratum-2 master clock is deployed in the 
110kV substation to distribute time signals to the aggregation switch in the distribution room. The critical path uses 
transparent clock correction technology to perform hardware-level compensation for the residence time of IEEE 
1588v2 messages inside the switch to eliminate the accumulated error of network transmission latency. The 
bandwidth transfer amount from the monitoring sub-interface to the control sub-interface is dynamically calculated 
through a reinforcement learning strategy: 
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Among them, 𝜂 is the learning rate, and ℒ is the QoS loss function. The bandwidth transfer amount from the 
monitoring sub-interface to the control sub-interface is dynamically adjusted through reinforcement learning. 

In view of the latency accumulation problem under the multi-branch topology of the distribution network, a 
dynamic bandwidth adjustment algorithm is designed. Based on the OpenFlow protocol, the traffic characteristics 
at each segment switch are collected to construct a QoS matrix for latency-sensitive services. When a branch line 
fault is detected, the FlexE sub-interface bandwidth reallocation mechanism is triggered through PCEP (Path 
Computation Element Communication Protocol), and the 802.1Qbv gating list parameters of the TSN switch are 
adjusted synchronously to prioritize the transmission resources of the fault isolation instruction. Through the 
dynamic bandwidth adjustment algorithm, the monitoring service sub-interface can reallocate resources to the 
control service sub-interface. The dynamic bandwidth adjustment algorithm realizes dynamic resource allocation 
by establishing a multi-dimensional QoS parameter optimization model, and its mathematical expression is: 
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Among them, w is the bandwidth weight vector; D୧, J୧, and B୧ represent the latency, jitter, and bandwidth of the 
i-th type of service, respectively; α୧, β୧, and γi are normalized weight coefficients. After optimization, the bandwidth 
occupancy rate of the control service is improved while maintaining the stable carrying capacity of the protection 
service, as shown in Figure 1. 
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(a) Original network slice resource allocation (b) Optimized network slice resource allocation 

Figure 1: Network slice resource allocation optimization 

Figure 1 shows the network slice resource allocation optimization solution based on the improved 5G-TSN 
communication architecture. The original and optimized bandwidth allocation are intuitively presented in the form of 
a three-dimensional heat map. (a) reflects the bandwidth occupancy distribution of different service sub-interfaces 
(control, protection, and monitoring) under the traditional static resource allocation strategy, and (b) shows the 
resource allocation effect after dynamic adjustment, especially how to improve resource utilization in the process of 
bandwidth redistribution from monitoring services to control services. The load status of each node and its 
optimization direction are clearly reflected through color mapping and height changes. The marked arrows and text 
descriptions further emphasize the core idea of the optimization strategy, that is, to achieve flexible resource 
scheduling under the premise of ensuring low latency and high reliability, so as to meet the real-time requirements 
of the integration scenario of smart grid and IoT technology. 

At the security protection level, the dual isolation mechanism of FlexE sub-interface and IPSec tunnel is adopted. 
The control service sub-interface enables the AES-256-GCM encryption algorithm; the protection service 
sub-interface configures the SM4 national encryption algorithm; the monitoring service sub-interface uses the TLS 
1.3 (Transport Layer Security) protocol. Through the deep coupling of time-sensitive networks and security 
protocols, the coordinated optimization of encryption processing and deterministic latency characteristics is 
achieved. 

 

Figure 2: 5G-TSN converged communication architecture 
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Figure 2 shows the overall design of 5G-TSN converged communication in distribution automation. Physical 
layer network slicing is achieved through the FlexE interface, and control, protection, and monitoring services are 
carried on independent hard-isolated sub-interfaces respectively. Combined with the Qbv (IEEE 802.1Qbv) gating 
and Qbu (IEEE 802.1Qbu) frame preemption mechanism of the TSN switch, low latency and high reliability 
transmission of multiple service flows are ensured. At the same time, a hierarchical master-slave time 
synchronization system is adopted to achieve microsecond-level time synchronization of the entire network 
through the IEEE 802.1AS-2020 protocol and transparent clock correction technology, supplemented by a dynamic 
bandwidth adjustment algorithm and a dual security encryption mechanism to ensure communication certainty and 
security in complex distribution network scenarios, and provide a stable and efficient communication foundation for 
edge computing nodes and digital twin modeling. 

 
II. B. IoT Edge Computing Node Deployment 
II. B. 1) Perception Layer Deployment 
The perception layer uses heterogeneous sensor networks to achieve holographic perception of distribution 
devices, and builds a “perception-communication” direct data channel through cross-layer collaborative design of 
FlexE interface and TSN network. Hall current sensors, fiber optic vibration sensors, and infrared thermal imaging 
modules are deployed at key nodes of ring network cabinets, and dual-mode networking is achieved through 
ZigBee 3.0 and LoRaWAN (Long Range Wide Area Network). The multi-protocol adapter based on the FlexE 
interface realizes the semantic conversion of IEC 61850 and MQTT (Message Queuing Telemetry Transport) 
protocols. The adapter is linked with the IEEE 802.1Qbv gating mechanism of the TSN switch to dynamically adjust 
the priority tag of the perception data to ensure that the latency jitter of the GOOSE/SV (Generic Object Oriented 
Substation Event/Sampled Values) message is ≤1.5μs. The OPC UA information model is used to uniformly 
model 12 types of device status parameters (including contact travel, insulation impedance, and partial discharge). 
Through TSN transparent clock correction technology, the time scale error of the perception data is controlled 
within 50ns, providing a time and space benchmark for feeder automation. The eBPF (Extended Berkeley Packet 
Filter) traffic perception module is deployed to implement packet-level extraction of GOOSE/SV message latency 
jitter characteristics at the XDP (EXpress Data Path) layer. This module is linked with the TSN time-sensitive queue 
to establish a mapping relationship between the perception data QoS level and the network scheduling strategy. 

Table 1: Perception layer sensor selection and performance comparison 

Sensor Type Model/Parameters Accuracy/Sensitivity Communication Protocol 

Hall Current Sensor LEM LA 55-P ±0.2% Modbus RTU 

Fiber Optic Vibration Sensor HBM FS62 0.1 mm/s CANopen 

Infrared Thermal Imaging Module FLIR A655sc ±1°C GigE Vision 

Partial Discharge Sensor AE-Sensor PD-300 5 pC Resolution Ethernet/IP 

Temperature-Humidity Sensor Sensirion SHT35 ±0.2°C / ±2% RH I²C 

 
Table 1 lists in detail the selection and performance parameters of various sensors in the perception layer, 

including Hall current sensors, fiber optic vibration sensors, infrared thermal imaging modules, partial discharge 
sensors, and temperature and humidity sensors. These sensors have the characteristics of high precision, high 
sensitivity, and support for multiple communication protocols, and can realize holographic perception of the 
operating status of distribution devices, including real-time monitoring of key parameters such as main circuit 
current, mechanical vibration, device thermal field distribution, insulation status, and ambient temperature and 
humidity. As a specific embodiment of IoT technology in distribution automation, the perception layer design 
realizes reliable data transmission through ZigBee 3.0 and LoRaWAN dual-mode networking, and combines the 
multi-protocol adaptation function of the FlexE interface to uniformly model the collected information and connect it 
to the upper system, providing ubiquitous perception capabilities for smart grids and supporting the subsequent 
edge computing, digital twin modeling, and intelligent decision technology. 

A hardware parsing module based on Xilinx Kintex-7 FPGA (Field Programmable Gate Array) is developed to 
realize DMA (Direct Memory Access) direct transmission between IEC 60870-5-104/DNP3.0 protocol messages 
and GPU memory through AXI (Advanced eXtensible Interface) bus. A zero-copy technology architecture is 
designed to reduce the COMTRADE fault recording data parsing latency to 5ms, and the GPU acceleration ratio 
reaches 8.3 times. The GPU acceleration ratio model shows that: 

 𝑆௣ =
ೞ்೐೜

೛்ೌೝ
=

ே⋅௧೎೛ೠ
ಿ

ು
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Among them, 𝑁  is the data volume; 𝑝 is the number of GPU cores; 𝑡௢௩௘௥௛௘௔ௗ  is the data transmission 
overhead. The eBPF traffic perception module is deployed to realize the packet-level extraction of GOOSE/SV 
message latency jitter characteristics at the XDP layer. 

 
II. B. 2) Edge Computing Architecture 
An embedded edge computing gateway is deployed on the ring main unit side. The hardware platform integrates 
the NVIDIA Jetson AGX Xavier core module and is configured with an 8-core ARM v8.2 CPU and a 512-core Volta 
GPU architecture. The device is equipped with the Ubuntu 20.04 LTS real-time operating system, and the kernel 
uses the PREEMPT_RT (Real-Time) patch to optimize the interrupt response characteristics. The dual-redundant 
10G network interface card is expanded through the PCIe 3.0 interface to build a dual-active communication link to 
access the 5G-TSN network. The link is based on the FlexE Calendar mechanism to realize the bandwidth 
on-demand allocation of the perception data flow and the control instruction flow, and the control service 
sub-interface bandwidth dynamically adjusts the granularity to realize the parallel transmission of IEC 61850 
messages and MQTT protocols. In view of the heterogeneity of the distribution terminal device protocol, a 
multi-protocol conversion adapter is developed. Xilinx Kintex-7 series FPGA is used to implement hardware 
parsing modules for protocols such as IEC 60870-5-104, DNP3.0, and Modbus TCP (Transmission Control 
Protocol), and the protocol data is directly mapped to the GPU memory space through the AXI bus. A parallel 
decoding pipeline based on CUDA (Compute Unified Device Architecture) is designed to extract time domain 
features of COMTRADE format fault recording data, and zero-copy technology is used to achieve DMA data 
transmission between FPGA and GPU. 

Containerized microservice architecture is constructed, and K3s lightweight container orchestration system is 
used for node management. The data acquisition service uses DPDK (Intel Data Plane Development Kit) 
technology to achieve DMA direct transmission between IEC 60870-5-104/DNP3.0 protocol messages and GPU 
memory, reducing communication latency. Three types of core microservices are deployed on each edge 
computing node: the data acquisition service uses DPDK technology to achieve zero packet loss capture of 104 
protocol messages. The AI inference service integrates the TensorRT 8.4 optimization engine and supports 
dynamic loading of ONNX (Open Neural Network Exchange) format models. The engine works with the TSN 
preemption mechanism to ensure that a high fault identification accuracy rate can be maintained in high 
electromagnetic interference scenarios such as arc faults. The control decision service uses ROS 2 real-time 
middleware to achieve millisecond-level response of GOOSE messages. The Kustomize tool is used to achieve 
differentiated configuration management of different ring network cabinet topologies. 

 

(a) Stacked resource allocation (b) Resource utilization curve 

Figure 3: Analysis of resource allocation and utilization of edge computing nodes 



Application Prospects of Integration of Smart Grid and Internet of Things Technology in Distribution Automation 

6196 

Figure 3 shows the analysis of resource allocation and utilization of edge computing nodes. Among them, 
sub-graph (a) presents the multi-dimensional resource allocation of CPU, GPU, memory bandwidth, and storage 
IOPS (Input/Output Operations Per Second) in three microservices of data acquisition, AI inference, and control 
decision through stacked bar charts, reflecting the high dependence of AI inference on GPU resources and the 
balanced resource demand of control decision services. Sub-graph (b) compares the utilization distribution of each 
service on different resources in the form of a line chart, highlighting the dominant position of GPU resources in AI 
inference and the basic role of CPU resources in data acquisition. This directly reflects the resource scheduling 
strategy of IoT edge computing nodes in the scenario of smart grid distribution automation, and realizes the 
feasibility of efficient fault location and real-time control through containerized microservice architecture and 
dynamic resource allocation, which provides important support for improving the communication real-time and data 
processing capabilities of smart grids. 

At the model acceleration level, TensorRT layer fusion technology is used to optimize the fault location algorithm. 
The transient current feature recognition model based on the improved ResNet-50 is converted into an FP16 
precision engine, and the fault waveform data with a sampling rate of 4kHz/8kHz is adapted through a dynamic 
shape input mechanism. The model parallel inference framework is deployed, and the GPU streaming 
multiprocessor is used to realize the concurrent processing of multi-line fault features. The model compression rate 
is dynamically calculated by layer-by-layer weight norm: 

 
𝐶௥ = 1 −

෎ (
భ
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)
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The model parameters are dynamically compressed by the Sigmoid function of the layer-by-layer weight norm ∥
𝑊௟ ∥ி. The algorithm dynamic loading framework is designed, and the OCI (open container initiative) standard 
algorithm warehouse management system is constructed. The control decision service interacts with the algorithm 
warehouse through the gRPC (Google Remote Procedure Call) interface, and the OCI image specification is used 
to implement the version control and dependency management of the algorithm container. The Kubernetes device 
plug-in mechanism is used to dynamically allocate GPU resources, and the process-level isolation of the algorithm 
container is implemented through the gVisor sandbox. The container image uses the distroless basic image, and 
the SSH (Secure Shell) service and interactive shell are disabled. The model federation update mechanism is 
developed, and the TensorFlow Federated client is deployed to implement differential privacy protection. A 
synchronization channel with the cloud training server is established through the OPC UA over TSN interface. The 
event triggering mechanism is used to implement the incremental update of model parameters. When the line 
impedance mutation exceeds the threshold, the model hot update process is triggered, and the business continuity 
of the algorithm iteration process is ensured through the version rollback mechanism. The differential privacy noise 
injection mechanism is: 

 𝑔
~

௧ = 𝑔௧ +𝒩(0, 𝜎ଶ ⋅ Δ௚
ଶ) (6) 

Among them, 𝜎 =
ඥଶ୪୬(ଵ.ଶହ/ఋ)

ఢ
; Δg is the gradient sensitivity. The eBPF network traffic perception module is 

deployed to implement packet-level traffic feature extraction at the XDP layer. The transmission latency and jitter 
characteristics of GOOSE/SV messages are captured through the eBPF program to build a traffic profile for 
latency-sensitive services. The Prometheus monitoring system is integrated, and a custom Exporter is used to 
implement real-time collection of TSN network QoS parameters. The number of microservice instances is 
dynamically adjusted through the HPA (Horizontal Pod Autoscaler) strategy. 

Security protection uses Intel SGX (Intel Software Guard Extensions) technology to build a trusted execution 
environment and encrypt the core computing process of the fault location algorithm in memory. A remote 
authentication service is deployed to verify the integrity of the algorithm container, and the SM9 national secret 
algorithm is used to implement identity-based encryption of control instructions. SGX Sealing is used to implement 
persistent storage of keys to ensure rapid reconstruction of the security environment after the device is restarted. 

 
II. C. Digital Twin Modeling Method 
The multi-physics coupling model of feeder automation devices is established based on the Modelica language, 
and the electromagnetic transient simulation kernel is constructed using the open source simulation platform 
OpenModelica. For the 10kV ring main unit devices, a refined model including vacuum circuit breaker, current 
transformer, and voltage transformer is established: the movement of the circuit breaker contact is described by the 
contact mechanics equation; the arc characteristics of the arc extinguishing chamber are characterized by the 
Mayr model; the transformer core saturation effect is modeled by the Jiles-Atherton hysteresis model. The 
functional mockup unit is exported through the FMI (Functional Mockup Interface) 2.0 standard to achieve interface 
integration with the digital twin platform. The parameter identification algorithm is deployed on the distribution 
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terminal device side, and the improved particle swarm optimization algorithm is used to realize model parameter 
calibration. The real-time operation data of the ring main unit (including the circuit breaker opening and closing coil 
current, contact travel curve, and busbar voltage distortion rate) is collected through the OPC UA interface to build 
a parameter estimation model for multi-dimensional state variables. The inertia weight factor is set to decrease 
nonlinearly with the number of iterations to optimize the convergence speed of the algorithm. The speed update 
equation of the PSO (Particle Swarm Optimization) algorithm is: 

 𝑣௜
௧ାଵ = 𝜔 ⋅ 𝑣௜

௧ + 𝑐ଵ𝑟ଵ(𝑝𝑏𝑒𝑠𝑡௜ − 𝑥௜
௧) + 𝑐ଶ𝑟ଶ(𝑔𝑏𝑒𝑠𝑡 − 𝑥௜

௧) (7) 
Among them, ω is the inertia weight; 𝑐ଵ and 𝑐ଶ are learning factors; 𝑟ଵ and 𝑟ଶ are random numbers, and the 

model parameters are adjusted dynamically. 
A real-time data interaction interface based on OPC UA is developed, and a hierarchical information model 

design is adopted. The top layer defines the object type of the feeder automation devices, including sub-objects 
such as circuit breaker state, protection signal, and electrical quantity measurement. The middle layer uses the 
address space optimization algorithm to map the IEC 61850 public data class to the OPC UA node structure. The 
bottom layer realizes deterministic transmission through the TSN network and adopts the publish-subscribe 
mechanism to ensure data synchronization latency. A closed-loop verification system of digital twins and physical 
devices is constructed, and an FPGA-based hardware-in-the-loop simulator is deployed on the ring main cabinet 
side. The electromagnetic transient calculation results of the digital twin model are output to the secondary circuit 
of the physical device through the digital-to-analog converter, and the device response signal is collected and fed 
back to the model. The dynamic time warping algorithm is used to align the timing data of the virtual and real 
systems, triggering the online correction mechanism of the model parameters. 

A fault behavior prediction algorithm is developed for the single-phase grounding fault scenario of the distribution 
network. Fault currents with different transition resistances are injected into the digital twin model, and the 
electromagnetic field distribution during arc grounding is calculated by the finite element method. The LSTM (Long 
Short-Term Memory) network is used to establish the mapping relationship between fault characteristics and 
device status. The adversarial generative network is applied during the training process to enhance sample 
diversity. The control equation of the electromagnetic field distribution is: 

 ∇ × (𝜈∇ × 𝐀) + 𝜎
డ𝐀

డ௧
= 𝐉௦ (8) 

Among them, 𝜈 is the magnetic resistivity; 𝜎 is the electrical conductivity; A is the magnetic vector potential; 𝐉𝒔 
is the source current density. The prediction results are pushed to the distribution master station in real-time 
through the OPC UA event notification service, and the joint loss function is designed as: 

 ℒ௧௢௧௔௟ = ℒ௅ௌ்ெ + 𝜆 ⋅ (𝔼௫∼௣೏ೌ೟ೌ[log𝐷(𝑥)] + 𝔼௭∼௣೥[log(1 − 𝐷(𝐺(𝑧))] (9) 
Combining the time series prediction loss ℒ௅ௌ்ெ and the adversarial loss, 𝜆 is the balance coefficient. The 

distributed collaborative computing architecture of the digital twin model is designed, and the model segmentation 
technology is used to decompose the electromagnetic transient computing task into the line section sub-model and 
the device-level sub-model. The line section sub-model is deployed in the cloud computing cluster, and parallel 
computing is used to accelerate large-scale power grid simulation. The device-level sub-model is deployed on the 
edge computing gateway and interacts with the physical device in real-time through the OPC UA over TSN 
interface. The consistent hashing algorithm is used to achieve dynamic load balancing of model sharding. To 
ensure the security of the digital twin system, the attribute-based access control (ABAC) strategy is used to 
manage the OPC UA interface permissions. Attribute dimensions such as device type, geographic location, and 
operation type are defined, and a multi-level access control policy library is established. In response to model 
parameter tampering attacks, lightweight blockchain nodes are deployed to store key operation logs and model 
version hash values on the chain. 

Figure 4 shows the digital twin modeling and virtual-real interaction system architecture. Combining the theme of 
the integration of smart grid and IoT technology, the collaborative working mechanism of physical devices, 
communication network, digital twin model, and application system in distribution automation is reflected. The 
physical layer collects real-time data of devices such as ring network cabinets through sensor networks and 
hardware-in-the-loop simulators, and interacts with the digital twin layer in a closed-loop. The communication layer 
relies on TSN network and OPC UA interface to achieve low-latency, high-reliability data transmission and 
synchronization. The digital twin layer uses multi-physics field coupling model (electromagnetic transient, 
mechanical motion, and thermodynamic model) combined with AI algorithm to complete parameter identification, 
fault prediction, and distributed computing. The application layer realizes a complete business closed-loop from 
real-time monitoring to self-healing control, and at the same time ensures the reliability and safety of system 
operation through security protection mechanism, thereby comprehensively improving the real-time perception, 
dynamic optimization, and autonomous decision capabilities of smart grids. 
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Figure 4: Digital twin modeling and virtual-real interaction system architecture 

 
II. D. Distribution Automation Performance Verification System 
This study constructs a multi-dimensional verification framework, deploys network analyzers and embedded 
timestamps using distributed test nodes, and calculates end-to-end communication latency through hardware 
timestamp differences. A periodic traffic injection experiment is designed, and Spirent TestCenter is used to 
simulate multi-service traffic to verify the TSN scheduling mechanism. Fault handling verification uses a dual-track 
comparison test to simulate faults on the electromagnetic transient simulation platform and the physical ring 
network cabinet. The positioning accuracy is compared by loading the algorithm with the TensorRT inference 
engine, and the self-healing recovery time is calibrated based on the IEC 61850 event sequence record. 
Cloud-edge collaborative testing builds a three-level stress model and simulates dynamic migration of algorithm 
containers through Kubernetes clusters. Heartbeat packets are used to detect the success rate of task offloading, 
and the Helm tool is combined to verify the model update frequency. An attack and defense confrontation 
framework is deployed for security verification, and a nationally certified cryptographic machine is used to test 
encryption performance. A multi-type attack traffic library is built to verify the intrusion detection model. Through the 
red-blue confrontation drill, the MACsec anti-replay attack capability is tested, and the electromagnetic protection 
effect of the physical layer is monitored using a spectrum analyzer. The test tool chain integrates modular devices 
to achieve multi-parameter synchronous acquisition, and the boundary scan link is designed according to IEEE 
standards to ensure full-stack coverage. 

III. Experimental Test 
III. A. Experimental Design 
This study uses a multi-source heterogeneous dataset, covering PMU measurement data, device status 
parameters, user power consumption information, and electromagnetic transient simulation data. The ring main 
unit operation data is collected in real-time through the OPC UA interface, and the digital twin model built by 
Modelica is used to generate fault scenario samples. The dataset is divided into training set, validation set, and test 
set in a ratio of 8:1:1. Among them, the training set is used for model parameter optimization; the validation set is 
used for algorithm hyperparameter tuning; the test set is used for multi-model performance comparison. Real-time 
data is incrementally updated under differential privacy protection through the federated learning framework. The 
simulation data uses the FMI 2.0 standard to perform closed-loop verification with physical devices, and the 
dynamic time warping algorithm is used to align the virtual and real system time series data. The experimental 
environment deploys an improved 5G-TSN communication architecture, an edge computing gateway cluster, and a 
digital twin verification platform to test the performance differences between the Modelica digital twin model, the 
LSTM-GAN (Long Short-Term Memory-Generative adversarial network) fault prediction model, the ResNet-50 
transient current identification model, the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 
fault location model, and the improved 5G-TSN model in terms of latency, fault handling, cloud-edge collaboration, 
and security. 
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III. B. Communication and Computing Performance Testing 
This section builds a multi-dimensional evaluation system to verify the comprehensive performance of the 
improved 5G-TSN model from three dimensions: latency (communication layer), edge inference efficiency 
(computing layer), and cloud-edge data consistency (collaboration layer). 

Its latency characteristics are analyzed through multi-scenario comparative experiments. The test covers five 
typical scenarios: normal load, traffic surge, wide area synchronization, encrypted transmission, and multi-service 
concurrency, and is carried out from three dimensions: end-to-end latency, communication latency, and processing 
latency. The experiment compares the performance differences between the improved 5G-TSN model and the 
Modelica, LSTM-GAN, ResNet-50, and DBSCAN models, and evaluates their latency performance in different 
business scenarios. 

 

(a) End-to-end latency (b) Communication latency (c) Processing latency 

Figure 5: Comparison of latency performance of various models in multiple scenarios 

Figure 5 shows the latency performance test results of different models and four models: Modelica, LSTM-GAN, 
ResNet-50, and DBSCAN in five typical scenarios (normal load, traffic surge, wide area synchronization, encrypted 
transmission, and multi-service concurrency). The horizontal axis represents the five scenarios, and the vertical 
axis is the latency index (unit: ms), including three sub-graphs: end-to-end latency, communication latency, and 
processing latency. From the data, the improved 5G-TSN model performs well in most scenarios, and its 
end-to-end latency in the normal load scenario is only about 8ms. In the encrypted transmission scenario, its 
end-to-end latency increases to about 22ms. This differentiated data reflects the trade-offs between different 
models in resource allocation, hardware acceleration, and encryption overhead. 

The reasons behind the data in Figure 5 are closely related to the underlying mechanisms of each model. The 
improved 5G-TSN model implements hard-isolated network slicing and dynamic bandwidth adjustment through the 
FlexE interface, significantly reducing latency in normal load and traffic surge scenarios, and increasing 
communication latency in traffic surge scenarios. However, in encrypted transmission scenarios, the improved 
5G-TSN increases communication latency due to the activation of the AES-256-GCM encryption algorithm, but its 
processing latency remains low, thanks to the optimization of encryption tasks by the hardware acceleration unit. In 
addition, ResNet-50 and improved DBSCAN show high latency when processing complex computing tasks, 
reflecting the limitations of traditional AI models in resource-constrained environments. These data show that the 
improved 5G-TSN model achieves overall performance optimization through the deep integration of time-sensitive 
networks and edge computing, but security and real-time performance need to be further balanced in encryption 
scenarios. 

To evaluate the inference performance of different models in edge computing environments, the inference 
efficiency of Modelica, LSTM-GAN, ResNet-50, DBSCAN, and improved 5G-TSN models is tested experimentally. 
The experiment deploys each model on the embedded edge gateway, focusing on monitoring the core indicators of 
inference latency, model volume, accuracy, and energy consumption, and verifies the optimization effect of the 
model in terms of lightweight and real-time performance. 
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Table 2: Comparison of edge inference efficiency 

Model Average Inference Latency (ms) Model Size (MB) Accuracy (%) Power Consumption (W) 

Modelica 45.6 1520 82.3 18.5 

LSTM-GAN 32.1 890 91.7 15.2 

ResNet-50 58.4 98 93.5 22.8 

DBSCAN 24.9 12 88.6 9.7 

Improved 5G-TSN 5.8 0.8 94.1 6.3 

 
Table 2 shows the comparison of edge inference efficiency between the improved 5G-TSN model and four 

models, Modelica, LSTM-GAN, ResNet-50, and DBSCAN, including four key indicators: average inference latency, 
model size, accuracy, and power consumption. The improved 5G-TSN model shows obvious advantages in 
various performances, with an average inference latency of only 5.8ms, much lower than other models, including 
45.6ms for Modelica and 58.4ms for ResNet-50. In terms of model size, the improved 5G-TSN significantly 
outperforms the other models, especially Modelica (1520MB), with a parameter size of 0.8MB, reflecting its 
lightweight design. In terms of accuracy, the improved 5G-TSN reaches 94.1%, slightly higher than ResNet-50’s 
93.5% and significantly ahead of DBSCAN (88.6%) and Modelica (82.3%). In terms of power consumption, the 
6.3W of the improved 5G-TSN is also better than other models, especially the ResNet-50 (22.8W) and Modelica 
(18.5W) with higher power consumption, showing its outstanding performance in energy efficiency. 

Behind these performance advantages is the design concept of the improved 5G-TSN model based on the deep 
integration of IoT technology and 5G-TSN. Through the FlexE interface to achieve hard-isolated network slicing, 
combined with the TSN time synchronization protocol, the model effectively reduces communication latency and 
compresses the model volume through the lightweight ST-GCN algorithm, while using the TensorRT optimization 
engine to improve the inference speed and accuracy. In contrast, Modelica relies on complex electromagnetic 
transient simulation, resulting in high latency and large model volume; although ResNet-50 has a high accuracy 
rate, its deep learning structure makes it consume too much power when running on edge devices; DBSCAN, as a 
traditional clustering algorithm, has fast inference speed and low power consumption, but its accuracy is limited. 
Due to the complexity of the generative adversarial network, LSTM-GAN performs generally in terms of model 
volume and inference latency. 

Through three-dimensional surface analysis, the correlation between task migration success rate, resource 
utilization, and coordination latency is quantified. The three-level pressure model is constructed experimentally to 
simulate the dynamic migration process of algorithm containers. The task offloading success rate is detected 
through heartbeat packets, and the model update frequency is verified in combination with the Helm tool. The 
cloud-edge coordination performance of the improved 5G-TSN model and different models is compared. 

 

(a) Modelica (b) LSTM-GAN (c) ResNet-50 

(d) DBSCAN (e) Improved 5G-TSN 

Figure 6: 3D surface analysis of cloud-edge collaboration capability 
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Figure 6 shows the 3D surface data of different models in the cloud-edge collaboration capability test through 
five sub-graphs. The horizontal axis represents the task migration success rate (60%-100%); the vertical axis 
represents the resource utilization rate (40%-90%); the Z axis reflects the collaboration latency (ms). From the data, 
Modelica shows a higher latency (Z≈60-70ms) under high resource utilization, while improved 5G-TSN achieves a 
lower latency (Z≈20-28ms) under the same conditions, indicating that the model is more adaptable to parameter 
changes. The color mapping further reveals the difference in model update frequency. Warmer colors indicate 
higher update frequency, and colder colors indicate lower update frequency. 

Behind these data, the underlying mechanism differences of each model in cloud-edge collaboration are 
reflected. The improved 5G-TSN model optimizes task migration and resource allocation through dynamic 
bandwidth adjustment algorithm and TSN gating mechanism, thereby significantly reducing latency and increasing 
update frequency; in contrast, the Modelica model relies on complex physical simulation calculations, resulting in 
high latency and limited update frequency. Overall, the data in Figure 6 not only verifies the superiority of the 
improved 5G-TSN model in cloud-edge collaboration, but also reveals the applicability and limitations of other 
models in specific scenarios, providing an important reference for the integration of smart grid and IoT technology. 

 
III. C. Comprehensive Fault Handling Test 
Aiming at the core requirement of the distribution automation system, that is, the ability to respond to faults quickly, 
this section compares the positioning accuracy of different models in five fault scenarios: single-phase grounding, 
phase-to-phase short circuit, line break, arc, and compound fault. The experiment simulates faults synchronously 
through the electromagnetic transient simulation platform and the physical ring network cabinet to test the 
differences in fault location accuracy of each model. 

 

(a) Single-phase ground fault (b) Phase-to-phase short circuit fault (c) Line break fault 

(d) Arc fault (e) Compound fault 

Figure 7: Comparison of model performance under five fault scenarios 

Figure 7 shows the performance comparison of different models under five typical fault scenarios. The horizontal 
axis represents the fault duration (0 to 5 seconds), and the vertical axis represents the fault location accuracy. 
From the data comparison, the improved 5G-TSN model shows significant advantages in most scenarios. In (a), its 
accuracy reaches more than 95% within 3 seconds and remains stable. In (e), the model quickly increases to about 
96% within 2 seconds, showing its superiority in complex scenarios. However, in scenario (d), the performance of 
the improved 5G-TSN model is relatively insufficient, only maintaining at about 85%-92%, reflecting its limitations 
in high electromagnetic interference environments. 
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The data in Figure 7 reflects the differences in model design and underlying mechanisms, as well as their 
adaptability to different types of faults. The improved 5G-TSN model realizes hard-isolated network slicing by 
integrating FlexE interfaces and optimizes the transmission of latency-sensitive service flows in combination with 
TSN technology, so that it can respond quickly and maintain high accuracy in most scenarios. However, in arc 
faults, due to the impact of electromagnetic interference on communication links, its mechanism based on the time 
synchronization protocol is subject to certain limitations, resulting in slightly inferior performance to the LSTM-GAN 
model, which enhances the learning ability of complex fault features through adversarial generative networks. 
ResNet-50, on the other hand, demonstrates the advantages of convolutional neural networks in image data 
processing in scenarios with obvious features such as phase-to-phase short circuits. These results show that the 
performance differences of different models are closely related to their technical characteristics and also verify the 
practical application potential of the integration of smart grid and IoT technologies in distribution automation. 

Table 3: Comparison of resource consumption of cloud-edge collaborative task migration 

Model 
CPU Peak Usage 

Rate (%) 

Peak Memory 

Usage (MB) 

Bandwidth Fluctuation 

Range (Mbps) 

Task Migration 

Time (ms) 

Resource Recovery 

Efficiency (%) 

Improved 

5G-TSN 
62.3 980 75-88 18.2 94.5 

Modelica 78.6 1520 110-130 42.7 81.2 

LSTM-GAN 71.5 1350 90-105 33.1 87.3 

ResNet-50 85.4 1890 120-140 49.8 76.8 

DBSCAN 67.9 1120 80-95 27.4 89.1 

Table 3 shows the resource consumption and efficiency comparison of different models in the process of 
cloud-edge collaborative task migration, covering five key dimensions: CPU peak utilization, memory usage, 
bandwidth fluctuation range, migration time, and resource recovery efficiency. From the data, the improved 
5G-TSN model performs well in multiple indicators. Its CPU peak utilization is 62.3%, significantly lower than 
ResNet-50’s 85.4% and Modelica’s 78.6%; its memory usage is 980MB, much lower than Modelica’s 1520MB and 
ResNet-50’s 1890MB. In addition, the bandwidth fluctuation range of the improved 5G-TSN model is 75-88Mbps, 
and the migration task takes only 18.2ms, both of which are better than other models, and its resource recovery 
efficiency is as high as 94.5%, far exceeding Modelica’s 81.2% and ResNet-50’s 76.8%. In contrast, ResNet-50 
has the largest resource overhead due to its reliance on GPU inference, while Modelica has a low resource 
recovery efficiency due to complex simulation calculations. 

The differences in these data reflect the differences in the design mechanisms and applicable scenarios of each 
model. The improved 5G-TSN model optimizes task migration and resource allocation through dynamic bandwidth 
adjustment algorithm and TSN gating mechanism, thereby significantly reducing latency. For example, the 
excellent performance in bandwidth fluctuation range and migration time is due to the hard isolation network slice 
design and time synchronization protocol support of the FlexE interface. However, the Modelica model relies on 
complex physical simulation calculations, resulting in low resource recovery efficiency and long migration time 
(42.7ms). The high CPU and memory usage of the ResNet-50 model is mainly due to its high dependence on deep 
learning inference, which makes it perform poorly in resource-constrained environments. Although the LSTM-GAN 
and DBSCAN models perform relatively evenly in some scenarios, they are insufficient in resource recovery 
efficiency (87.3% and 89.1%, respectively). These results further verify the comprehensive advantages of the 
improved 5G-TSN model in the scenario of the integration of smart grid and IoT technology. 

 
III. D. Security Test 
Security is the cornerstone of the integration of smart grid and IoT. This section constructs a radar chart evaluation 
system from five dimensions: encryption performance, intrusion detection rate, anti-replay attack, data integrity, 
and privacy protection. The experiment deploys an attack and defense framework, uses a nationally certified 
cryptographic machine to test encryption performance, and builds a multi-type attack traffic library to verify the 
intrusion detection model. The MACsec anti-replay attack capability is tested through a red-blue confrontation 
exercise, and the security protection level of each model is comprehensively compared. 
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(a) Modelica (b) LSTM-GAN (c) ResNet-50 

(d) DBSCAN (e) Improved 5G-TSN 

Figure 8: Security test radar chart 

Figure 8 shows the performance of the five models in the security test, presenting the comparison of five 
dimensions in the form of radar charts: encryption performance, intrusion detection rate, anti-replay attack, data 
integrity, and privacy protection. Each sub-graph represents a model, with a numerical range of 0 to 100 points. 
Among them, the improved 5G-TSN model performs well in all dimensions, especially in encryption performance 
(98 points) and privacy protection (96 points). Overall, the DBSCAN model has the highest score in the anti-replay 
attack dimension (95 points); the ResNet-50 transient current identification model performs well in data integrity (95 
points), but is slightly insufficient in privacy protection (75 points). These data show that different models have 
different focuses on security, and the improved 5G-TSN model has the best comprehensive performance. 

Behind these data differences, it reflects the differences in the design mechanisms and applicable scenarios of 
each model. For example, the improved 5G-TSN model effectively improves encryption performance and privacy 
protection capabilities through the dual isolation mechanism of FlexE interface and IPSec tunnel, combined with 
the AES-256-GCM encryption algorithm. The Modelica digital twin model relies on high-precision electromagnetic 
transient modeling and real-time data interaction to ensure a high level of data integrity. The LSTM-GAN model 
uses adversarial generative networks to enhance sample diversity, thereby improving the intrusion detection 
accuracy. The improved DBSCAN model performs well in anti-replay attack scenarios through an optimized fault 
location algorithm. In addition, the ResNet-50 transient current identification model performs well in data integrity 
with the help of GPU acceleration and deep learning inference framework, but its emphasis on privacy protection is 
low, resulting in a low score in this dimension. Overall, the differences in security of these models are due to the 
targeted design of their technical architecture and application scenarios, and also reflect the complexity of 
multi-dimensional security requirements in the process of integrating smart grid and IoT technologies. 

IV. Application Prospects 
IV. A. Technology Promotion Path 
For rural power grid transformation scenarios, it is necessary to focus on breaking through the communication 
coverage blind spots and low device operation and maintenance efficiency caused by high altitude and 
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mountainous terrain. By deploying LoRaWAN/ZigBee dual-mode heterogeneous sensor networks and combining 
the cross-standard multi-protocol adaptation capabilities of the FlexE interface, millisecond-level acquisition and 
transmission of device status parameters (contact stroke, partial discharge) of old ring network cabinets can be 
achieved. The TSN switch IEEE 802.1Qbv gating mechanism is used to optimize the telemetry data transmission 
timing of the feeder terminal unit, and the device status parameter modeling standards are unified through the OPC 
UA information model to reduce the cost of operation and maintenance data governance. 

In the multi-energy complementary system of the industrial park, it is necessary to solve the bottleneck of 
dynamic collaborative control of distributed photovoltaic, energy storage clusters, and charging pile loads. Based 
on the containerized microservice architecture, a lightweight spatiotemporal graph convolutional network is 
deployed, and edge computing gateway resources with AI inference capabilities are dynamically scheduled 
through Kubernetes to achieve park-level source-grid-load-storage collaborative optimization. Combined with the 
improved 5G-TSN hybrid scheduling algorithm, the efficiency of dynamic bandwidth adjustment is improved. The 
Modelica electromagnetic transient model and LSTM-GAN fault prediction module are integrated through the 
digital twin platform to support the improvement of single-phase grounding fault location accuracy and power 
supply restoration time compression, and adapt to the millisecond-level charging and discharging switching of 
electrochemical energy storage and the real-time response needs of electric vehicle load aggregators. 

 
IV. B. Economic Evaluation 
Compared with the architecture of traditional SCADA systems that rely on fiber-optic communication and 
centralized cloud computing, the technical solution proposed in this study that integrates the Internet of Things and 
the improved 5G-TSN model presents differentiated advantages in terms of life cycle costs. Traditional 
architectures require large-scale deployment of fiber-optic networks to meet real-time requirements, resulting in 
initial capital expenditures concentrated on communication infrastructure construction, and additional investment in 
multi-protocol conversion devices and distributed storage units due to data island problems, significantly increasing 
operation and maintenance costs. This solution uses the FlexE interface to hard-isolate network slices and TSN 
gating mechanisms to achieve dynamic bandwidth allocation for multi-service traffic, while reducing fiber 
dependence and improving communication resource utilization; combined with containerized microservice 
architecture and edge computing node deployment, the focus of data governance is moved forward to the 
perception layer, reducing the computing power consumption of cloud data cleaning and model iteration, thereby 
compressing long-term operation and maintenance expenses. 

In terms of scalability costs, traditional SCADA systems need to be transformed at the architectural level for 
distributed energy access scenarios due to protocol heterogeneity and centralized processing bottlenecks, 
involving secondary investment and business interruption risks. This solution unifies the modeling standards of 
device status parameters through the OPC UA information model, and implements elastic scaling of microservices 
based on Kubernetes, supporting rapid functional iteration of source-grid-load-storage collaborative control 
scenarios. In addition, the integration of the digital twin platform and the federated learning framework enables the 
fault prediction model to replace the full algorithm replacement of the traditional SCADA (Supervisory Control And 
Data Acquisition) system through incremental updates, reducing the marginal cost of technology upgrades. From a 
full life cycle perspective, the initial hardware investment of this fusion architecture is slightly higher than that of 
traditional solutions, but by increasing resource reuse and compressing operation and maintenance complexity, it 
can achieve convergence and overtaking of TCO (Total cost of ownership) within a 3-5 year cycle. 

 
IV. C. Future Expansion Direction 
The terahertz frequency band and intelligent metasurface technology for 6G communication can further enhance 
the dynamic coverage capability of the distribution automation system. By applying the channel state prediction 
mechanism of the AI native architecture, real-time compensation of multipath effects and electromagnetic 
interference in the submillimeter wave frequency band can be achieved, supporting the deterministic 
communication needs of feeder terminal units in complex electromagnetic environments. Combining network 
slicing and distributed AI decision, a control plane with end-to-end latency less than 1ms is constructed to adapt to 
the rapid topology reconstruction and collaborative control needs in scenarios with high penetration of distributed 
energy. 

The quantum key distribution protocol and post-quantum encryption algorithm of quantum communication 
technology can provide a physical layer security enhancement solution for distribution automation. The 
synchronization mechanism based on quantum entanglement can improve the time synchronization accuracy of 
the wide-area monitoring system to the picosecond level, and at the same time realize the anti-interference 
transmission of control instructions through quantum teleportation. Combined with the federated learning 
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framework of edge computing nodes, a collaborative verification system of quantum secure communication and 
classical power business is constructed to provide a protection basis for new power systems against quantum 
computing attacks. 

V. Conclusions 
This paper focuses on the integration of smart grid and Internet of Things technology, and proposes a technical 
solution based on an improved 5G-TSN model. Combining the ubiquitous perception and edge computing 
capabilities of the Internet of Things, it realizes real-time control and efficient data processing of the distribution 
automation system. By building a multi-dimensional sensor network, deploying edge computing gateways, and 
digital twin modeling, the communication real-time performance, fault response speed, and intelligence level of the 
distribution system are effectively improved. The research provides a technical support for highly elastic and 
adaptive new power systems, and demonstrates its broad application prospects in rural power grid transformation, 
industrial park energy management, and other scenarios. In the future, the deep integration of this architecture with 
6G communication and quantum encryption technology can be further explored to promote the development of the 
power system in a more efficient and secure direction. 
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