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Abstract Accurate load forecasting can not only help microgrids improve the utilization efficiency of energy 
resources, but also ensure the stability and reliability of power supply. In this paper, a deep learning-based load 
forecasting model for microgrids is proposed, and its application effect in different microgrids is verified through 
experiments. First, deep learning algorithms such as LSTM, BiGRU and CNN are used to construct a hybrid 
prediction model, and TVFEMD technique is introduced to signal decompose the load data to reduce the influence 
of noise. Through comparative experiments, the results show that on microgrid 1, the proposed model has a higher 
prediction accuracy with a minimum MAPE value of 2.0485% compared with the traditional methods, while on 
other microgrids, the model still maintains a more stable performance. In microgrid 3, the prediction results are 
more reliable in general, although there is a large error. Based on the experimental results of the model, this paper 
also discusses the interpretability of the model and its potential application in real microgrid scheduling. Ultimately, 
the proposed deep learning model can effectively improve the accuracy of microgrid load prediction with strong 
adaptability and stability. 
 
Index Terms microgrid, load forecasting, deep learning, LSTM, CNN, TVFEMD 

I. Introduction 
In recent years, the power system has developed into a complex network system with centralized power 
generation and long-distance transmission [1]. With the increasing electricity load of the power system, the 
problems of high operating cost, difficult operation, and weak regulation ability of grid transmission are becoming 
more and more prominent [2], [3]. The large-scale power outages due to climatic reasons, such as the 2008 
snowstorm blackout in southern China, the 2015 “rainbow” blackout, and the 2018 “mangosteen” blackout, reflect 
the vulnerability of the traditional large-scale power grid. In addition, the global energy crisis, environmental 
pollution and other issues have intensified, people gradually began to study the use of clean energy generation to 
make up for the shortcomings of the traditional energy-consuming power generation methods. Since then green 
power generation, efficient power transmission, flexible power microgrids have gradually entered the public's vision 
[4], [5]. 

Microgrid consists of a collection of various distributed power sources, energy storage units, loads, and 
monitoring and protection devices [6]. It has flexible operation and dispatchability, and can switch between two 
modes of grid-connected operation and islanded (autonomous) operation [7]. The increase in the number and 
penetration of distributed power sources in microgrids has a great impact on the voltage, network loss and 
short-circuit capacity of the distribution system, and data forecasting for microgrid power system optimization 
becomes extremely important due to the uncertainty of distributed power sources and the discontinuity of some 
wind and photovoltaic power generation [8], [9]. 

Power load forecasting is a key component of power system planning and operation, which involves accurate 
estimation of power demand over a future period of time [10]. This work is crucial for the reliability, economy and 
sustainability of the power system. Deep Learning Emerges-Deep learning techniques, especially Long Short-Term 
Memory Networks (LSTMs) and Convolutional Neural Networks (CNNs), have shown great potential in power load 
forecasting [11], [12]. These neural networks are capable of handling complex time series data and capturing 
patterns such as seasonality, weekdays and special events of loads [13]. Researchers have worked on developing 
uncertainty modeling and management methods to improve the reliability of forecasts. Smart microgrid 
management systems use advanced control algorithms and communication technologies to achieve real-time 
management of resources within the microgrid [14], [15]. The above research trends indicate that the field of power 
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load forecasting and microgrid scheduling is full of innovations and opportunities [16]. With the emergence and 
development of new technologies, power systems will become more sustainable, intelligent and reliable. 

In this paper, a hybrid model based on deep learning is proposed for microgrid load forecasting, which combines 
a convolutional neural network, a long and short-term memory network, and a bi-directional gated loop unit. 
Through the characteristics of deep learning, the temporal features in load data can be effectively captured to 
overcome the limitation that the traditional model cannot deal with nonlinear changes. In addition, the introduction 
of TVFEMD signal decomposition technique enables the load data to be better denoised and capture the detailed 
features in it. Through the combination of multiple optimization techniques, the model proposed in this paper is 
validated in multiple microgrid systems, which aims to improve the prediction accuracy and enhance the 
applicability of the model. 

II. Deep learning-based load forecasting model for microgrids 
II. A. Principles for forecasting microgrid loads 
Practical experience shows that correct load forecasting is crucial to the operation and control of microgrids, which 
can effectively deploy energy resources and improve the reliability and economy of power supply. When predicting 
the load of microgrid, the following principles should be strictly observed. 
 
II. A. 1) Data analysis 
Real-time collection and analysis of microgrid daily load curve, weekly load curve, seasonal changes and other 
historical load data, through in-depth analysis of historical data, to discover the regularity and characteristics of the 
load, to provide a basis for future forecasting. 
 
II. A. 2) Consideration of influencing factors 
Load microgrid forecasting takes into account various factors that may affect the load, such as ambient 
temperature, holidays, and special events. All of the above factors will have an impact on load demand. Among 
them, hot weather will increase people's use of air conditioning, leading to an increase in load, and correlating the 
weather data with the load data can more accurately predict future load demand. Special circumstances such as 
sports events and large-scale conferences can lead to load fluctuations. Correcting or adjusting future loads based 
on historical data, relevant holiday and special event information can further enhance the reliability of forecasting 
results, and therefore need to be taken into account when building forecasting models. 
 
II. A. 3) Multivariate models 
In order to improve the accuracy of load forecasting, multivariate models can be used for forecasting, at this stage, 
it has been proved that the models that can be used for load forecasting are time series analysis, regression 
analysis, ANN, etc. The comprehensive use of a variety of models will help the staff to better capture the pattern of 
change of the load demand, so as to determine the focus of the subsequent work. 
 
II. A. 4) Real-time adjustments 
Considering the microgrid operation process, there may be equipment failure, weather changes and other 
unexpected factors, therefore, load forecasting is a dynamic process of constant change, only according to the 
actual situation, timely adjustment of the forecast results, in order to make the work give full play to its role, to 
ensure the stable operation of the microgrid. 
 
II. A. 5) Refined management 
To improve the accuracy of load forecasting, refined management methods can be used as appropriate, for 
example, zonal forecasting methods and load classification methods, which can be used to predict more accurately 
the load demand in each zone or type by dividing the microgrid into different zones or types, leading to better 
energy deployment and management. 
 
II. B. Methods for forecasting microgrid loads 
Deep learning is an ANN-based machine learning method characterized by the ability to learn high-level feature 
representations of data through multi-layer neural networks. In network load forecasting, Recurrent Neural Network 
(RNN), Long Short-Term Memory Network (LSTM) deep learning models can all quickly and accurately capture the 
temporal features of the load data to improve the accuracy and stability of the forecast. The specific steps for 
predicting microgrid load using this technique are as follows: 
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In the first step, collect microgrid historical load data, including but not limited to load time series data, weather 
data, holiday data, the collected data will be used as model input features to help the model learn the changing law 
of load [17]. 

In the second step, the data are cleaned and preprocessed to deal with missing values, outliers and do 
smoothing on the data to ensure the quality of the data. 

In the third step, after preprocessing, extract and construct features suitable for deep learning model, if there is 
no special requirement, give priority to the use of time features, weather features, holiday features, and 
subsequently, do standardization or normalization operation on the extracted features. 

In the fourth step, according to the actual situation of microgrids, load forecasting requirements, and data size, 
scientifically select the deep learning models used for load forecasting, such as RNN, LSTM, and all the above 
models are able to capture the long-term dependence and complex relationships of time series data. 

In the fifth step, the dataset is divided into a training set and a test set, where the training set is responsible for 
model training and the test set is used to verify the performance of the model. During the training process, the 
established hyperparameters should be adjusted according to the model performance to improve the accuracy and 
generalization ability of the model. 

In the sixth step, the Mean Absolute Percentage Error (MAPE) metrics are comprehensively used to assess the 
model performance and understand the prediction accuracy and stability of the model. 

In the seventh step, the trained model is deployed to the actual microgrid system, and the prediction of the load 
is completed using the period, which is combined with the real-time data to realize the accurate prediction and 
scheduling of the microgrid load. It should be noted that deep learning models are usually black-box models, so 
when selecting and using the model, the explanatory and interpretable nature of the model is required to ensure 
that the prediction results are in line with the actual situation. 

 
II. C. TVFEMD-MFSMA-CNN-BiGRU-LSTM load forecasting model 
II. C. 1) Convolutional Neural Networks 
Convolutional neural network is a type of feed forward neural network which is a type of deep learning. CNN 
inspires the inspiration of Receptive Field (RF) in Neurology. The pixels on the map output from each layer of the 
corresponding CNN will be convolved to the next layer and the Receptive Field will get bigger and bigger as the 
convolution kernel increases. The formula for the RF is: 

 1( 1)
ii i i sizeRF RF stride K     (1) 

where 
iRF  denotes the size of the sensory field in the i th layer, 

istride  is the step size of the convolution, and 

sizeiK  is the size of the convolution kernel in the i th layer. 

 
II. C. 2) LSTM 
Long and short-term memory neural network (LSTM) simulates the human brain to learn data effectively.LSTM is 
improved on the basis of recurrent neural network (RNN), and its specific structure consists of forgetting gate, input 
gate and output gate. The forgetting gate can selectively forget the historical information in the sequence, the input 
gate can fuse the current moment information with the historical information, and the output gate can decide the 
output state of the hidden layer, which overcomes the problem of gradient disappearance of RNN in dealing with 
long time sequences, and strengthens the ability to deal with long time sequences. 

The formula for the forgetting gate is shown in (2): 

 
1( [ , ] )t F t t FF W h x b     (2) 

The equations for the input gate are shown in (3) and (4): 

 
1( [ , ] )t A t t AA W h x b     (3) 

 
1( [ , ] )t B t t BB W h x b     (4) 

The formulas for the output gates are shown in (5) and (6): 

 
0 1 0( [ , ] )t t tO W h x b     (5) 

 tanh( )t t th O C   (6) 
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where, , , ,F A B OW W W W  denote the weights, , , ,F A B Ob b b b  denote the bias, 
1th 
 denote the outputs of the basic unit 

of the LSTM in the previous moment, 
ix  denotes the input (load feature) at the current moment, and 

iC  denotes 

the updated cell state. 
tF  is the output of the forgetting gate, which is used to discard information, the product of 

tA  and 
tB  is the output of the input gate, and 

th  is the output value of the basic unit of the LSTM at moment t , 

and [] inside the formula denotes the vector splicing,   denotes the sigmoid function, and tanh denotes the 
hyperbolic tangent function, and the formulas are shown in Eqs. (7) and (8), respectively: 

 1
( )

1 x
x

e
 


 (7) 

 tanh( )
x x

x x

e e
x

e e









 (8) 

By using LSTM to establish a short-term power load forecasting model and verified through simulation, 
compared with BP neural network, LSTM has a higher prediction accuracy, however, although LSTM solves the 
gradient disappearance problem existing in RNN, the calculation is more complex, and the algorithm consumes a 
longer time. 

 
II. C. 3) BiGRU 
Gated neural network (GRU) is a variant of LSTM, which consists of a reset gate and an update gate. GRU fuses 
the input gate and forgetting gate of LSTM coupled into an update gate, whose role is to control whether to retain 
the state of the previous moment and how much information is retained, and the role of the reset gate is to combine 
the current state with the previous information. The network forward propagation formula is shown in the following 
equation: 

 
1( )t r t r tr U h W x    (9) 

 
1( )t z t z tz U h W x    (10) 

 1)tanh( ( ))t t t th Wx U r h     (11) 

 
1(1 )t t t t th z h z h     (12) 

where 
ir  is the reset gate, 

tz  is the update gate, 
th  is the vector of candidate hidden layers, 

th  is the output of 

the hidden layer, ,r rW U  is the weight of the reset gate, ,z zW U  are the update gate's weights, ,W U  are the 

weights of candidate hidden states, tanh is the hyperbolic tangent function,   is the Hadamard product of two 

matrices, and   is the sigmoid function. 
By using cuckoo search algorithm (CS) to optimize the parameters of GRU, a higher accuracy of short-term 

power load prediction is obtained, and GRU simplifies the structure of LSTM, which improves the computational 
efficiency and enhances the information processing capability while maintaining the similar prediction effect of 
LSTM. 

 
II. C. 4) CNN-BiGRU-LSTM hybrid network prediction models 
In this paper, LSTM, CNN-BiGRU are combined to form a hybrid prediction model, which is mainly composed of 
input layer, CNN layer, BiGRU layer, LSTM layer and output layer. The specific model is shown in Figure 1. 
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Figure 1: Prediction model of CNN-BiGRU-LSTM Hybrid Network 
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II. D. TVFEMD-based signal decomposition 
TVFEMD makes up for the shortcomings of the previous two by combining the techniques of variable filtering and 
EMD.TVFEMD can adapt to the time-varying characteristics of signals by dynamically adjusting the parameters of 
the filters to reduce the sensitivity to noise and sudden changes, thus improving the stability and accuracy of the 
decomposition results. In addition, TVFEMD can take into account the changing characteristics of the signal in 
different time periods, which has better performance in dealing with non-stationary signals, and also provides 
flexible parameter adjustment to adapt to different types of signals and application scenarios [18]. The 
implementation of TVFEMD is described below. 

(1) Firstly, the Hilbert transform (HT) is proposed, which is a mathematical transformation converts a signal in the 
real domain into a signal in the complex domain, which contains the amplitude, phase and other information of the 
original signal. For a real signal ( )x t , its HT transform can be expressed as: 

 ( )
( ( )) 1 /

x
H x t d

t

 







  (13) 

(2) Find the instantaneous amplitude ( )instA t  and the instantaneous phase ( )inst t : 

 2 2( ) ( ) ( ( ))instA t x t H x t   (14) 

 1 ( )
( ) tan

( ( ))inst

x t
t

H x t
   

  
 

 (15) 

(3) Find the maximum, and minimum values of the instantaneous amplitude, and derive the two curves 
1( )l t  

and 
2 ( )l t  from interpolation estimation, and compute 

1( )t  and 
2 ( )t  from the following equations: 

 1 2
1

( ) ( )

2

l t l t



  (16) 

 1 2
2

( ) ( )

2

l t l t



  (17) 

(4) Interpolating 2
max max( ) ( )instA t t   and 2

min min( ) ( )instA t t   to get 
1( )t  and 

2 ( )t , and then proceed to compute 

1( )t  and 
2 ( )t  : 

 1 2
1 2 2

1 1 2 1 1 2

( ) ( )
( )

2 ( ) 2 ( ) ( ) 2 ( ) 2 ( ) ( )

t t
t

t t t t t t

 


     
  

 
 (18) 

 1 2
2 2

1 2
2

2 2 2 1

( ) ( )
( )

2 ( ) 2 ( ) ( ) 2 ( ) 2 ( ) ( )

t t
t

t t t t t t

 


     
  

 
 (19) 

(5) Calculate the local cutoff frequency: 

 1 2( ) ( )
( )

2bis

t t
t

 


 
 

  (20) 

(6) Use a B-spline approximation filter for ( )x t , denoted ( )x t , and compute the signal ( )s t : 

 ( ) cos ( )biss t t dt      (21) 

(7) End the loop when the end condition is satisfied, otherwise loop through steps (1)-(6). The judgment criteria 
are noted as: 

 
( )

( ) Loug

average

B t
t


  (22) 
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where ( )LougB t  denotes the instantaneous bandwidth, which represents the spectral characteristics of the signal at 

that point in time, and 
average  denotes the weighted average of the instantaneous frequencies, which can be 

defined according to the specific needs and applications. 
 

II. E. MFSMA Optimization Tuning 
II. E. 1) Sticky Bacteria Algorithm 
The slime mold algorithm is a new swarm intelligence algorithm proposed in 2020. It is inspired by the slime molds 
in the biological world. Slime molds are a class of eukaryotic organisms with unique intelligent behaviors and 
adaptations that enable them to find food, build effective channel networks and make survival decisions in complex 
environments. 

Myxomycetes are also able to dynamically adjust their search patterns according to the quality of the food source. 
When the quality of the food source is high, the slime mold will adopt an area-limited search method, focusing on 
the discovered food sources. If the density of the initially discovered food source is low, the slime mold will leave 
that food source and search for other alternative food sources in the area. This adaptive search strategy is 
particularly evident when food blocks of varying quality are present in an area. A conceptual diagram of a slime 
mold as it acquires food is shown in Figure 2. 

 
 

 

 

 

Best fitness

Other

1S
1W 2W

3W

2S  

Figure 2: Foraging strategies of Slime molds 

where the green dots represent the locally optimal food source and W  is the width of the venous tube, it can be 

seen that the higher the quality of the food source, the wider the venous tube will be. Taking advantage of this 
property, the slime mold algorithm can be utilized to find the extreme value of the solution function. The unique 
properties of the slime mold community not only can fully utilize the solution space, but also can find the extreme 
value quickly. Therefore, this paper focuses on the slime mold algorithm. Next, mathematical modeling of the slime 
mold system will be carried out: 

 
( ) ( ( ) ( )),

( 1)
( ),

b b A B

c

X t v W X t X t r p
X t

v X t r p

    
    

 (23) 

Equation (23) is the main search formula of the slime mold algorithm. Where t  represents the current number 
of iterations, m  represents the number of slime molds, ( )b tX  represents the optimal solution under the current 

number of iterations, ( )A tX  and ( )BX t  are the two stochastic solutions under the current number of iterations, 

and ( )X t  denotes the current solution. [0,1]r rand . The , , ,b cW v v p  are the four important parameters. The 

four formulas are explained below: 

 | ( ) |p tanh S i DF   (24) 

 1( ( 1)), [ , ]b

t
a tanh v a a

T
      (25) 
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( )
1 ( 1),

2
( ( ))

( )
1 ( 1),

2

bF S i m
r log i

bF wf
W SI i

bF s i m
r log i

bF wf

           
 

 (26) 

 ( ) ( )SI i sort S  (27) 

where 
cv  is a coefficient that oscillates between [-1, 1] and eventually converges to 0 as the number of iterations 

increases. W  denotes the width of the venous pipeline, ( )S i  denotes the fitness value of the current individual 

solution, T  denotes the maximum number of iterations, and , ,DF bF wf  denotes the current optimal fitness 

value throughout the entire iteration process, the optimal fitness value at the current number of iterations, and the 
worst fitness value in the current iteration process, respectively. ( )SI i  denotes the ordering of the fitness values of 

the slime mold population after one iteration. This part mainly models the thickening or thinning of the veins of the 
slime molds depending on the food concentration. However, the slime molds do not always move towards the food 
source with high concentration, and some individuals in the slime mold community are always separated to search 
for other food sources, partly to avoid falling into the local optimal solution and partly to increase the search space. 
To summarize, the position update formula for a population of slime molds is as follows: 

 

( ) ( ( ) ( )),

( 1) ( ),

( ) ,

b b A B

c

X t v W X t X t r p

X t v X t r p

rand UB LB LB rand z

    
   
    

 (28) 

where ,UB LB  denotes the upper and lower bounds of the solution space, and once the random number is small 

z , the individual searches for the food source at a random location. The unique search mechanism of the Sticky 
Mushroom algorithm ensures both a faster convergence rate and strong robustness, which is a clear advantage 
among the emerging swarm intelligence algorithms. 
II. E. 2) MFSMA-based tuning methods 
In this paper, we use MFSMA to tune the deep hybrid model CNN-BiGRU-LSTM. According to the introduction of 
CNN-BiGRU-LSTM in previous sections, it is known that this hybrid prediction model contains several 
hyperparameters. They include learning rate, batch size, number of training times, number of filters, number of 
BiGRU hidden layer neurons and number of LSTM hidden layer neurons. So in this paper, the data of these six 
dimensions are given to MFSMA for optimization, so as to achieve the effect of tuning parameters. The specific 
flowchart of CNN-BiGRU-LSTM tuning using MFSMA is shown in Figure 3. 

The specific MFSMA optimization parameter flow is described below: 
Step1: Initialize the algorithm parameters. Determine the population size, the number of iterations, the 

hyperparameters, and the upper and lower bounds of the search range. 
Step2: Initialize each individual in the slime mold population. Each individual 

1 2( , , , , , )iX l s t n h h , records such 

six-dimensional data. Where l  represents the learning rate of the hybrid prediction model, s  represents the 

batch size, t  represents the number of times the model has been trained, n  represents the number of filters, 
and 

1h  and 
2h  represent the number of neurons in the BiGRU and LSTM layers. The upper and lower bounds in 

this paper are: learning rate [le-3, le-1], batch size [16, 256], number of trainings [10, 100] number of filters [16, 
128], number of BiGRU neurons [1, 100], and number of LSTM neurons [1, 100]. 

Step3: Determine the fitness value function of MFSMA. Train the hybrid prediction model using the 
hyperparameters obtained from the initialization in Step2. Divide the data into a training set and a validation set. 
Input the training set into the prediction model for training, and after reaching the number of iterations, output the 
training sample prediction value and the validation sample prediction value, then the fitness value of 

iX  can be 

expressed as: 
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Figure 3: Flowchart of the MFMSA optimized hybrid prediction model 
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2
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t t v v
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y y y y
F

y y 

  
   

 
   (29) 

where ˆ j
ty  is the training sample output value, ˆ kvy  is the validation sample output value, and j

ty  is the training 

expected output value k
vy  is the validation expected output value. That is, the fitness value includes both the error 

during the training sample and the error of the validation sample, and both of them have the same weight, so that 
the model capability can be fully quantified into the fitness value, which is conducive to the optimization of the slime 
mold population. 

Step4: Calculate the fitness value, and then rank the individual advantages and disadvantages according to the 
fitness value, and determine the current optimal individual and the global optimal solution. 

Step5: Update the position using three steps. The first step is the original position update formula of the slime 
mold algorithm. The second step is the refractive opposition position update. The third part is the Bottle Sea 
Sheath following strategy position update. After that, Step4 is repeated. 

Step6: After satisfying the iteration number requirement of MFSMA, the optimal result is output and set into the 
CNN-BiGRU-LSTM hybrid negative measurement model, then the model is trained with data and finally the load 
prediction value is output. 

 
II. F. Analysis of microgrid load forecasting results 
II. F. 1) Error evaluation indicators 
The difference between the load prediction value and the actual value is called the prediction error, the lower the 
prediction error, the better, the lower the error, then the model is more effective [19]. Let 

iy  represent the actual 
load value and 

iy
  represent the predicted load value, there are various methods of prediction error, and in this 

paper, we mainly utilize the mean absolute percentage error (MAPE): 
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1

1 N

i ii
MAPE y y

N 
    (30) 

II. F. 2) Comparison of prediction errors 
For these four microgrids, on microgrid 1, this paper's model gives better predictions than GBDT and deep residual 
networks, with the smallest error and the best fit. On microgrid 2 and microgrid 3, this paper's model is less 
effective and does not give the best results. The results of this paper's model on microgrid 4 are also not the best. 
This is because microgrid prediction itself is more challenging. 

Table 1 shows the microgrid prediction error MAPE values, the table gives the specific load prediction error 
values for these four microgrids on holidays and all weekend breaks, it can also be seen from the table that on 
microgrid 1, this paper's model obtains the smallest error, with MAPEs of 2.0485%, 16.7859%, 13.8485%, 9.3855% 
for the seven sample days, 11.5485%, 1.4156%, and 1.0485%. On microgrid 3, the prediction errors of this paper's 
model are particularly large on August 18 and August 19, which are 28.3485 and 23.3485, respectively. While for 
the other two microgrids, the prediction effect of this paper's model is not the worst, and it can be said that the 
prediction error is relatively stable, with small fluctuations in the error, and no particularly large error. 

Table 1: Microgrid prediction error MAPE value 

Date 
Sunday Statutory holidays (including Saturday) Sunday (Work day) Saturday Sunday 

8-14 8-18 8-19 8-20 8-21 8-25 8-26 

Microgrid 1 

GBDT 1.9485 174.0485 209.7498 9.4855 164.9485 7.3452 1.6458 

Deep residual network 2.2369 28.6486 38.6152 37.0485 12.5136 2.1485 2.0248 

This model 2.0485 16.7859 13.8485 9.3855 11.5485 1.4156 1.0485 

Microgrid 2 

GBDT 4.8486 6.4048 5.9485 6.5248 7.7399 28.7458 3.8698 

Deep residual network 5.8665 8.3489 7.7388 5.6325 7.7493 9.1642 12.1485 

This model 5.5169 11.4855 6.5482 4.3115 8.1548 7.0385 8.2645 

Microgrid 3 

GBDT 10.1658 18.6485 9.2015 11.4485 15.1265 7.5152 5.6948 

Deep residual network 7.9585 34.2699 22.4985 10.1685 11.8425 8.6185 18.9645 

This model 6.1854 28.3485 23.3485 9.9758 10.2486 7.9186 3.6152 

Microgrid 4 

GBDT 22.4685 24.5169 10.8485 9.2348 32.5185 18.2869 12.0458 

Deep residual network 13.1785 10.8596 9.8482 8.1548 10.3645 10.6849 7.3484 

This model 14.8486 9.5469 9.9345 9.6385 8.4686 7.3448 6.3469 

 
II. F. 3) Load Forecast Curves 
The good performance of the neural network model proposed in this paper can be demonstrated by the prediction 
of legal holidays or Saturdays and Sundays, as well as peak and valley loads. Fig. 4 shows the load prediction 
curves for legal holidays of microgrids, and Figs. (a)-(d) represent microgrids 1-4, respectively.Load prediction 
during legal holidays of four microgrids is given for the period from 2023-8-18 to 2023-8-20. 

For microgrid 1, by observing the fitting effect of actual and forecast values, it can be seen that the load curve of 
this paper's model fits significantly better than that of GBDT, with less fluctuation than that of the load curve of the 
deep residuals, and is more in line with the trend of the load change of the actual values, and the mean value of the 
error is 156.745. For microgrid 2, by observing the fitting effect of actual and forecast values, it can be seen that the 
load curve of this paper's model's load profile fits better than GBDT and depth residuals at the peak, has a lower 
prediction error with a mean error value of 11.979, but the prediction errors at other time points are larger. For 
microgrid 4, the model in this paper did not perform well in predicting holidays, but instead caused a large error, 
and the prediction results for weekends were not satisfactory. For microgrid 8, it can be seen that the fluctuation of 
this load curve itself is very obvious, so the prediction results of this paper's model also have more greatly 
fluctuation. 
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(a) Microgrid 1 (b) Microgrid 2 

  

(c) Microgrid 3 (d) Microgrid 4 

Figure 4: Forecast of statutory holiday load of microgrid 

III. SSA-based optimal scheduling strategy for microgrid energy storage 
III. A. Optimized scheduling model for microgrid systems 
Multi-microgrid system is an extension of single microgrid. Therefore, this chapter constructs an optimal scheduling 
model for multi-microgrid systems based on the energy storage scheduling of microgrids and considering the 
power interaction between microgrids, so as to improve the utilization efficiency of renewable energy and reduce 
the interaction between microgrids and the main grid. 

For the optimal scheduling problem of multi-microgrid system, it can be constructed into a multi-objective 
optimization model. In this chapter, based on the load forecasting results of each microgrid within the system, the 
renewable energy output of each microgrid, inter-microgrid power interaction and other information are taken into 
account to minimize the cost of each microgrid's own operation within the system. Since there is a competitive 
relationship between each microgrid for energy interaction, the inter-microgrid interaction cost and losses are 
added to the operating cost as shown in equation (31) as the operating cost of microgrid k  per unit dispatch 
interval: 
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where in, ,k DGCost  is the operating cost of the distributed generation unit in the microgrid k , the expression is 

shown in (32), where G  is the number of distributed generators in the microgrid, and the .
.
i OM
k DGCost  and .

,
i DEP
k DGCost  

are the maintenance cost and depreciation cost of the first i  distributed power generation unit in the microgrid, 

respectively, and the calculation method is consistent with the calculation method in the microgrid model. Eqs. (33) 
and (34) are the formulas for the loss cost ,k ESSCost  and the network loss cost 

kJossCost  of the energy storage 

system in the microgrid, respectively. Eq. (35) and Eq. (36) are the calculation formulas of the interaction cost 

,k gridcost  with the main power grid, the cost of energy interaction between the microgrid k  and the microgrid n  

kncost , respectively, where ,k gindP  is the interaction energy between the multi-microgrid system and the main 

power grid, and the main grid supplies power to the system when its value is greater than 0. 
kn  and 

knP  denote 

the trading tariff and the interacting power between microgrids and microgrids, respectively. 
In order to guarantee the efficiency and stability of the multi-microgrid system, certain constraints should be 

satisfied. Like the single microgrid model, the power balance constraints of each microgrid, the protection control 
constraints of the energy storage system, and the output constraints of each micro-source are specified. Therefore, 
the constraints of the multi-microgrid system consider the internal interaction power and add the power balance 
constraints and the inter-microgrid interaction power constraints as follows: 

(1) Power balance constraint: the distributed power output and interacting power in each microgrid within the 
system should meet the load side demand: 
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1 1,

G K
i
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(2) Upper and lower bound constraints on the interaction power: the power flowing between the microgrids is 
between the maximum value of the tradable power between the two parties, max

knP , and the minimum value, min
knP : 

 min max
kn kn knP P P   (38) 

III. B. Algorithm for solving the microgrid energy storage scheduling model 
III. B. 1) Pareto-based multi-objective sparrow search algorithm 
Multi-objective problems need to optimize multiple objective problems, and usually there is no single solution that 
can optimize all the objectives at the same time. Therefore, in this paper, the Pareto dominance relation is used to 
obtain the Pareto optimal frontier consisting of non-inferior solutions, and the global optimal solution is selected 
through the Pareto frontier. The mathematical model for a multi-objective optimization problem with z -dimensional 
objective function and dim-dimensional variables is shown in Eq. (39): 
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where x  is the decision variable in dimension, ( )F x  is the objective function in dimension z , and 
min max,x x  are 

the upper and lower bounds on the values of the decision variable, respectively. For this mathematical model, the 
relevant definition of Pareto is as follows: 

Pareto dictates that for [1, ]p z  , there is 1 2( ) ( )p pf x f x  and [1, ]q z   such that 1 2( ) ( )q qf x f x , then 
1x

Pareto dominates 
2x , denoted as 

1 2x x . 

Pareto optimal: if there is no vector x  dominating the vector *x  in the decision space, it is called a Pareto 

optimal solution. 
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Pareto front: the surface formed by the values of the corresponding objective function is a Pareto front. 
 

III. B. 2) Adaptive Grid-Based Multi-Objective Sparrow Search Algorithm 
Since there is no direct priority relationship between the individuals in the external archive set, it is difficult to 
determine the optimal solution for the sparrow population. Therefore, the adaptive grid algorithm is used in the 
sparrow search algorithm to partition the dominant solutions in the external archive set into multiple grids, take the 
number of populations contained in each grid as the density information of the individuals, and then select the 
individuals in the sparse space as the global optimal solution according to the density information, thus ensuring 
the diversity of the dominant solutions and improving the algorithm's global search capability. 

The non-dominated solutions in the external archive set are updated with the number of iterations, so the 
algorithm adaptively adjusts the grid size to update the positioning of individuals in the archive set to ensure that 
the population number of the grid where each individual is located is greater than 1. The three-dimensional 
objective space minimization optimization problem is used as an example to illustrate the process of generating the 
grid information by the adaptive grid algorithm: 

Step 1: Calculate the boundary values of the fitness functions 
1 2 3, ,f f f  at the t th iteration: 

1 1 1 2 2 2(min , max ), (min , max )f f f f f f      and 
3 3 3(min , max )f f f  . 

Step 2: Equalize the target space into ( )Num Num D D D    lattices and compute the modes of the lattices 

respectively: 
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Step 3: Iterate over the populations in the external archive set and number them, the 3D sequence pairs of 
individual i  are shown in equation (43): 
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where ( )Int   is the rounding function. 

Step 4: Calculate the grid information and the density information of individuals. 
In order to make the sparrow optimal individuals fully utilize the non-dominated solution information in the 

external archive set, for the individuals in the archive set, if the density information is lower, the probability of being 
selected is higher, and vice versa, the probability is lower. This can improve the diversity of nondominated solutions 
and avoid falling into local optimal solutions during the optimization search process. 

 
III. B. 3) External archive set maintenance strategy 
As the number of iterations of the algorithm increases, more and more nondominated solutions are saved in the 
external archive set, so the size of the external archive set needs to be set. In order to maintain the diversity of 
solutions in the archive set, this paper adopts a truncation algorithm based on the adaptive grid algorithm to 
eliminate redundant individuals and ensure that the number of non-inferior solutions in the archive set does not 
exceed the upper limit. The size of the external archive set is set to 

cS , and when the number of particles in the 

archive set 
1| |t cA S  , the lattice with a population greater than 1 is deleted from the redundant individuals 

according to Eq. (44): 
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where [ ]Grid j  is the number of population individuals contained in grid j  and 
NP  is the number of individuals 

to be deleted from this grid. 
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III. C. Analysis of the results of the optimized energy storage scheduling methods 
III. C. 1) Energy storage charge/discharge curves 
The optimization effect before and after the implementation of the energy storage optimization scheduling method 
is shown in Fig. 5, Figs. (a) and (b) are non-co-optimization scheduling strategies, and Figs. (c) and (d) are 
co-optimization strategies. Under the non-co-optimization mode, the shared energy storage and plant storage carry 
out decision-making independently according to their own objectives, and the charging and discharging behaviors 
of the shared energy storage follow the change of the electricity price, charging at the moment of low electricity 
price (00:00-08:00 hours), and discharging arbitrage in the peak electricity price interval (09:00-14:00 hours), when 
the maximum power of discharging is close to 2.5MW. The energy storage of the plant and station follows the load 
change, and the load valley is charged to absorb wind power, such as (00:00-08:00, 16:00-17:00 and 21:00-22:00), 
and the load is increased to discharge to reduce the output of thermal power and reduce costs, such as 
(09:00-15:00 and 20:00-21:00). It can be seen that in the non-cooperative mode, the charging and discharging 
selection of bilateral energy storage is completely independent of its own goals. 

  

(a) Uncoordinated optimization of storage energy 
storage 

(b) Non-collaborative optimization of Shared energy 
storage 

  

(c) Collaborative optimization of factory station storage (d) Collaborative optimization of Shared energy storage 

Figure 5: Double side storage and discharge in collaborative and non-coordinated mode 

III. C. 2) Comparison of simulation results of scheduling strategies 
By analyzing the energy scheduling and demand response scheduling, it can be concluded that the algorithm 
proposed in this paper can effectively reduce the operating cost, customer dissatisfaction and CO2 emission 
simultaneously. The scheduling strategies of other algorithms cannot simultaneously optimize the multi-objective 
values under their respective objective weights. 

A comparison of the simulation results of the scheduling strategies is presented in Table 2, which shows the 
compromise scheduling results for the three objectives on one day. The total operating cost, total dissatisfaction 
and emissions obtained by the proposed algorithm are lower than the other methods. For example, the running 
cost, customer dissatisfaction, and pollution emission in summer are 3052.518, 4.416, and 4064.249, respectively. 
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Although the total customer dissatisfaction of the MOPSO algorithm is 6.585% lower than that of the SSA algorithm 
in winter, the running cost and CO2 emission of the SSA algorithm are 5.193% and 31.98% lower than that of the 
MOPSO algorithm. 

Table 2: Comparison of scheduling strategy simulation results 

Season Target function SSA MOPSO GBDT Deep residual network 

Summer 

Operating cost 3052.5184 4290.5485 5984.4865 3884.8345 

User dissatisfaction 4.4159 5.2896 7.9485 7.0468 

Pollution discharge 4064.2485 7163.4852 10786.8698 5516.9485 

Winter 

Operating cost 4896.6648 5164.8695 6548.5368 5453.6345 

User dissatisfaction 4.8596 4.5396 8.4569 8.8495 

Pollution discharge 7923.5948 11648.9544 12953.4648 9315.7645 

 

IV. Conclusion 
Microgrid load forecasting shows good performance in practical applications. By comparing with GBDT and deep 
residual networks, the deep learning model proposed in this paper achieves the minimum prediction error in 
several microgrids. In particular, the model achieves the lowest MAPE value of 2.0485% in Microgrid 1, and the 
performance is more stable in Microgrid 2 with a MAPE value of 5.5169%. Although the prediction error is larger in 
Microgrid 3 and Microgrid 4, the model is still able to provide more accurate load forecasts overall. In future 
applications, the model can provide effective support for real-time scheduling and optimization decision-making in 
microgrids, especially when dealing with sudden load fluctuations and uncertainties, which can achieve more 
accurate load allocation. In addition, the introduction of the model in this paper not only improves the accuracy of 
load forecasting, but also enhances the intelligence level of the microgrid management system by synthesizing 
different deep learning techniques, which provides technical support for the efficient use of renewable energy. 
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