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Abstract In order to meet the demand for electricity in buildings, this project combines the DC power distribution 
equipment for buildings currently available on the market, and utilizes AC/DC converters (AC/DC), DC buses, 
distributed power supplies, DC loads, accumulators, switches, and protection devices to jointly complete the design 
scheme of the DC power distribution system for buildings. The corresponding fault feature quantities are extracted 
using the generalized S-transform as the input samples of the gated cyclic unit network, and the Adam optimization 
algorithm is used to optimize the model operation for the problem of accuracy degradation that may easily occur 
during the training process, while the safety protection technology based on the gated cyclic unit network is 
formulated. A science and technology park is selected as the case of this construction project, and the model is 
used to analyze the case. When Eline is greater than Ebus and EP is greater than EN, the model correctly 
recognizes a negative bus fault, corresponding to the R-value of [0,1,0,0,0,1,0], and the model repairs this type of 
fault by means of circuit breaker tripping. Even under the influence of transition resistance, the safety protection 
scheme of building DC distribution system in this paper still performs excellent. 
 
Index Terms building construction, building DC distribution system, fault identification, safety protection scheme, 
gated cyclic unit network 

I. Introduction 
Accompanied by the development of semiconductor technology and power electronics technology, DC distribution 
system has gradually become a research hotspot in various countries for its technical advantages such as being 
able to efficiently and reliably access DC loads, distributed energy generation and energy storage units [1]-[3]. DC 
distribution system can interconnect a large number of distributed power sources and energy storage systems 
through DC grid, directly supplying power to DC loads, or through power electronic converters, accessing AC loads, 
distributed power sources and AC power grids, and as the importance of the DC distribution system continues to 
highlight, its safety protection technology and fault identification methods have also attracted much attention [4]-[7]. 

DC distribution protection technology is one of the key technologies in the development of DC distribution. Unlike 
the traditional AC power distribution system which has mature and proven protection technology, the research of 
DC distribution protection technology is still in its infancy, and there is no actual experience and standard of DC 
distribution system protection configuration [8]-[11]. The protection technology, as the application bottleneck of DC 
distribution, is still in the theoretical research stage. Generally speaking, the protection of DC distribution network 
can be divided into three aspects: protection equipment, protection strategy and fault diagnosis, which should be 
coordinated and interdependent [12]-[15]. And in order to accelerate the fault recovery speed, reduce the customer 
outage time, and improve the reliability of the distribution network, it is also necessary to accurately locate the fault 
point and troubleshoot the fault, reduce the pressure of reversing operation and manual patrolling, and meet the 
requirements of the development of intelligent distribution network [16]-[19]. Although the DC distribution network 
has a short line distance, the method of manual patrol to find the fault point is almost difficult to realize. Therefore, 
it is of great significance to conduct research on rapid fault identification and accurate and reliable fault localization 
for DC distribution networks [20]-[23]. 

This paper uses the generalized S-transform method, which has a better extraction effect, to realize the accurate 
capture of fault characteristics, ensure the scientific and comprehensive conclusions of the study, and also improve 
the slow convergence speed of the gated cyclic unit network and local fitting problems. Based on the perspective 
of building electricity demand, the corresponding hardware is utilized to construct the building DC power distribution 
system, and the DC bus voltage control principle is also outlined. Based on the generalized S-transform method, 
the data of this study is collected, and the data is set as the input of the gated cyclic unit network, and in order to 
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improve the convergence speed of the model algorithm in the early stage, the learning rate decay strategy and the 
Adam optimization algorithm are introduced. Based on the protection initiation criterion, the protection program 
design task based on the gated recurrent unit network is completed, taking a science and technology park as an 
example, and using the gated recurrent unit network to explore the effectiveness of the system's safety protection 
and fault identification in an all-round way. 

II. DC distribution system safety protection and fault identification 
II. A. Exploration of Building DC Distribution Systems 
DC power distribution system is divided into unipolar and bipolar structure. Compared with AC power distribution, 
DC power distribution has the characteristics of simple form, easy control, high transmission efficiency, renewable 
energy and other distributed power sources can be flexibly and efficiently connected to the system, and unified 
deployment and control to improve the large-scale application and consumption of renewable energy. The voltage 
of the DC distribution system can be regulated at ±30%, and the power voltage can be adjusted according to the 
characteristics of the electrical equipment, if the power side adopts the electrical equipment with intelligent 
adjustment, the equipment can adjust its power according to the change of DC bus voltage, and the flexibility of the 
energy demand of the real terminal has gradually changed from the past "source with load" to "load with source" to 
adjust the energy consumption of the building. 
 
II. A. 1) Building distribution load composition 
Building electricity can be divided into the nature of use: residential electricity (residential electricity), residential 
public auxiliary power electricity (such as residential public lighting, elevators, sewage pumps, etc.), community 
auxiliary power (such as car pools, pump rooms, heat exchange stations, fire pump rooms, information rooms, etc., 
ancillary buildings, community street lights, monitoring, access control systems, etc.). Different nature of electricity 
consumption by different power distribution room is responsible for power supply, the residents by the low-base 
power distribution room power supply, community supporting by the high-base power distribution room power supply. 
 
II. A. 2) Selection of DC distribution voltage 
Building low-voltage distribution system for a single large capacity load or important loads such as: elevator machine 
room, fixed communications equipment room and other equipment using radial power supply, for general loads 
using trunk and radial combination of power supply. Household power distribution is supplied in the form of trunking, 
with trunking cables leading from the distribution room and then branching out for distribution on each floor, and the 
loads carried by the trunking are mostly greater than 14kW. Common areas carry smaller loads, typically between 
5kW and 22kW. 

Most of the household electrical appliances ultimately in the form of DC power supply, household appliances DC 
transformer there are two levels of differentiation degree, portable low-power devices, such as cell phones, electric 
fans, computers, etc., the converted DC voltage between 12V ~ 110V, high-power devices, such as air conditioners, 
water heaters, washing machines, etc., the converted DC voltage between 295V ~ 450V, daily life of household 
inverter type appliances, DC voltage The DC voltage of daily household inverter appliances is between 310V and 
400V, and the voltage of small power appliances is between 20V and 50V. 

Comprehensive the above situation within the family DC power distribution should be used DC48V, DC375V dual-
voltage power supply to ensure that the equipment works in an efficient ideal voltage, but due to the family's 
electricity habits, in addition to air conditioning, water heaters, refrigerators and other fixed electrical equipment, 
power supply by the wall outlet, the rest of the appliances more by the wiring plug for power extension, multiple 
appliances centralized plug to use the wall AC socket using the AC250V10A specifications, distribution conductor 
cross-section of 2.5mm², the maximum plug can take 2.5kW electrical load, but the voltage in the DC48V this 
program with a load of about 0.8kW, it is difficult to meet the existing family power habits, if the amplification of the 
wire will lead to the increase in pre-buried pipeline, walls, floors will be thickened, improve construction costs. It is 
recommended to adopt DC distribution system, i.e. DC distribution is adopted between the transformer and 
distribution room to the regional distribution cabinet, and DC distribution is adopted from the distribution cabinet to 
the end of the electricity according to the form of loads, so as to ensure the electricity demand of each load. 

 
II. A. 3) General measures for security of building distribution systems 
For example, the impact of ambient temperature, reduce the temperature can increase the output power of the 
transformer and reduce transformer losses, such as the number of transformers and reasonable choice of technical 
and economic comparisons, etc. are all considerations affecting the selection of transformer capacity. From energy 
saving, economic, practical, safe and reliable, generally selected transformer load factor in 0.53-0.92 is appropriate. 
When the power distribution system for three-phase four-wire distribution, its cross-section should be twice the 
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cross-section of the phase line. Miniature circuit breakers (including leakage circuit breakers) closely without interval 
installation should be considered to reduce the capacity and test its interception capacity, usually 7 ~ 10 closely 
without interval installation of about 45% reduction in capacity, the ambient temperature on the switch of the rated 
current impact can not be ignored, which can be verified from the product's technical data and related information. 
Socket rated current for known use of equipment should be greater than 1.49 times the rated current of the 
equipment, unknown use of equipment should not be less than 12.72A. 

Prevention of fire leakage current action protector should be set in its protective range of normal leakage current 
less than or equal to 200mA parts. High-rise buildings, low-voltage power distribution system is mostly three-level 
distribution, fire leakage protector should be located in the second level of power distribution box switch. For high-
rise residential buildings should be set in each residential power inlet main switch to prevent fire leakage protector. 

 
II. B. Components of a building DC distribution system 
Currently commercially available distributed power sources of practical use in buildings include building photovoltaic 
BIPV and elevator regenerative power generation. In the future, there will be more distributed power sources (e.g., 
micro-gas turbines, wind power, fuel cells, etc.) used in buildings, and the control strategies for different distributed 
power sources will be different. 
 
II. B. 1) System components and corresponding technical issues 
The building DC distribution system composition is shown by Figure 1. By the AC / DC converter (AC / DC), DC 
bus, distributed power supply, DC loads, accumulators, switches and protection devices (not shown in the figure) 6 
parts. AC / DC converter can be composed of 6 IGBT bi-directional converter circuits, the role of which is to provide 
controlled rectification to the DC bus when the distributed power supply in the building can not meet the DC load 
power. The rectifier overcomes the low power factor and harmonic problems of traditional diode bridge rectifier 
circuits, and can achieve PF=1 and minimize EMC harmonics. The AC/DC converter can invert the DC side power 
to the grid when the distributed power source generates excess power. When the distributed power supply capacity 
is small, the power grid may not allow the return of power, at this time, the AC / DC converter can be used in a 
simple structure, inexpensive bridge rectifier circuit, at this time, the power can only be unidirectional transmission 
to the DC load. The AC/DC converter output should be lower than the DC bus voltage, and put into operation when 
the bus voltage falls below a set threshold. 

Grid

AC/DC

DC/DC DC/DC DC/DC DC/DC

Power source 
1 Building 

photovoltaic

Power 2 
Elevator

Power supply 
n

Supercapacito
r

Load 1 
Inverter space

Load 2 
Elevator

Load 3 Car 
charging pile

Load n

DC/DC DC/DC DC/DC DC/DC

DC bus

……

……

 

Figure 1: Building DC power distribution system 

II. B. 2) DC bus voltage control process 
The distributed power supply outputs are protected from static and dynamic circulating currents between the 
individual power supplies by redundant impedances located inside the DC/DC converter. The accumulator should 
also be viewed as a distributed power supply, acting as an energy throughput. The output of each power supply 
uses the same voltage to form a voltage source, and its output power is measured by the output current. When the 
DC bus voltage fluctuates upward, the DC/DC converter of the accumulator accumulates energy by adjusting the 
charging current, thus reducing the DC bus voltage and maintaining a constant bus voltage. If the bus voltage 
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continues to rise when the accumulator is full, the AC/DC feed to the grid should be activated or part of the distributed 
power supply should be shut down. When the DC bus voltage fluctuates downward, the accumulator discharges to 
the bus through the DC/DC converter to maintain a constant bus voltage. When the accumulator discharges to the 
limit value and the bus voltage continues to fall to the minimum threshold of bus voltage, AC/DC puts into rectification 
work. DC bus voltage fluctuations should be in the millivolt range, otherwise the redundant resistor losses will be 
too high. 
 
II. C. Fault feature quantity extraction based on generalized S-transform 
II. C. 1) Principle of the generalized S-transform 
The corresponding fault feature quantities are extracted using the generalized S-transform and used as input 
samples for the deep learning model. The detailed generalized S-transform principle is explained as follows: 

The generalized S   transform introduces adjustable factors    and    for higher time-frequency resolution 

compared to the conventional S  transform. The discrete form of the generalized S  transform of signal ( )x t  is 

shown in equation (1): 
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The signal ( )x t  is generalized S  transformed to obtain a complex time-frequency matrix [ , ]S p q  whose row 

vectors represent the time-domain characteristics of the signal at a particular frequency and the column vectors 
represent the amplitude-frequency characteristics of the signal at a particular moment in time. Define the transient 
energy sum E  of the generalized S  transform of the signal at a particular time-frequency band as: 

   2

0 1

[ , ]
QP

p q

E abs S p q
 

  (2) 

where  [ , ]abs S p q  is expressed as the absolute value of the [ , ]S p q  matrix element. 

 
II. C. 2) Fault feature volume extraction 
In order to avoid measurement errors and to continuously accumulate the variability of the fault characteristic 
quantities, the proposed scheme uses the generalized S-transform to extract the transient voltage energy sums in 
specific frequency bands as the network input quantities. 

(1) Fault identification feature quantity 
In the initial stage of the fault, using the variability of the high-frequency component of DC voltage and the high-

frequency component of bus voltage, the in-zone and out-of-zone fault identification function can be realized. 
Select a specific frequency window of 1500~3000Hz and use Eq. (2) to obtain the high-frequency transient energy 

sum of DC voltage 
12dcU , 

lineE , and the transient energy sum of bus voltage 
1dcU , 

busE , which are used as the 

fault identification characteristic quantities. Define the ratio of high-frequency transient energy and 
line busN E E . 

Line fault, 
HN  . Bus fault, 

LN  . Out-of-area fault, 
L HN   . Where 

H  and 
L  are the high and low 

thresholds of the fault identification criterion respectively, which are adjusted by the GRU network itself. 
(2) Fault selector characteristic quantity 
In the initial stage of the fault, the difference between the low-frequency components of the positive and negative 

reactance voltages can be utilized to realize the fault pole selection function. 
Select the data window of a specific frequency band from 0 to 300 Hz and use Eq. (2) to obtain the low-frequency 

transient energy sum of the positive reactance voltage, 
PE , and the low-frequency transient energy sum of the 

negative reactance voltage, 
NE , which are used as the fault selection characteristic quantities. Define the ratio of 

the low-frequency transient energy sum /P NM E E  . In case of positive-pole ground fault, M   . In case of 

negative-pole ground fault, 1/M  . In case of bipolar short-circuit fault, 1/ M   . In Eq.   is the threshold 

value of the fault selection criterion, which is adjusted by the GRU network itself. 
The high-frequency transient energy of the bus voltage and 

busE , the high-frequency transient energy of the DC 
voltage and 

lineE  , the low-frequency transient energy of the positive reactance voltage and 
PE  , and the low-

frequency transient energy of the negative reactance voltage and 
NE  are used as four inputs to the deep learning 
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model. Using the above fault feature quantities to train the network model, fault identification and fault pole selection 
functions can be realized. 

 
II. D. Deep learning model based on gated recurrent cell networks 
The GRU (gated recurrent unit network) deep learning model has strong nonlinear fitting and feature learning 
capabilities, which can accurately extract deep fault features from time sample data under the coupling of complex 
influencing factors, improve the accuracy of fault identification, and enhance the anti-interference capability of the 
protection scheme. 
 
II. D. 1) Principle of the gated cycle unit 
The long short-term memory network's forgetting gates and inputs are merged into a single update, while the data-
hidden state and the state of the unit are unified, simplifying the structure of the LSTM, and the simplified structure 
of the network is called a gated recurrent unit (GRU) The main difference between a gated recurrent unit and a long 
short-term memory network is that only two control units, the merged update gate and the reset gate, are utilized to 
control the network's forgetting and updating states [24], [25]. The simplified structure of the gated loop unit not only 
retains the effect of the long- and short-term memory network, but also makes its internal structure simpler, improves 
efficiency, and has higher scalability. The loop structure of the gated loop unit is shown in Fig. 2. 

Compared with the simplified structure of LSTM the gated loop cell calculation is shown by Eqs. (3) to (6): 

  1t xu t hu t uu W x W h b     (3) 

  1t xr t tr t rr W x W h b     (4) 

    1t xh t rh t t hh W x W r h b     (5) 

  1 1t t t t th u h u h     (6) 

where 
tu   is the update gate. 

tr   is the reset gate. 
tx   is the input vector at time point t  . 

1th 
  is the output 

response at the previous time point. W   and b   are the weight matrix and bias vector, respectively.    is the 

sigmoid function.   is the tanh  function. The update gate controls how much of the current state 
th  considers 

the information referenced from the previous time point state 
1th 
 and how much information is charged from the 

candidate state 
th , while the reset gate controls whether the candidate state 

th  considers the previous time point 

state in its computation 
1th 
. The gated loop unit generates a hidden pre-state 

th  at each time point, which is also 

seen as a memory state at each time point, that allows information to flow along the network without losing or 
bursting elements. At each time point, the current hidden pre-state is iterated through the time points to the next 
time loop, thus passing the previous useful information backward sequentially, a mechanism that can uncover 
hidden correlations between information. 
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Figure 2: The cycle structure of the gated cycle unit 
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II. D. 2) Training algorithm for GRU network models 
Conventional GRU neural network uses stochastic gradient descent algorithm to iteratively update the weights of 
the neural network, the convergence speed of this model algorithm in the early stage is slow and it is prone to 
accuracy degradation [26], [27]. In order to improve the accuracy of prediction and accelerate the convergence 
speed of the model in the early stage, the paper adopts the Adam optimization algorithm and introduces the learning 
rate decay strategy to optimize the GRU neural network model. 

(1) Adam optimization algorithm 
Adam designs independent adaptive learning rates for different parameters by calculating the first-order and 

second-order moment estimates of the gradient. 
The algorithm is as follows: 
First, the decay averages for 

tm  and 
tv  are computed: 

First-order moment estimates: 

  11 1 1t tm beta m beta dx      (7) 

Second-order moment estimation: 

    2

12 1 2t tv beta v beta dx      (8) 

where 1beta  is the exponential decay rate of the first-order moment estimate. 2beta  is the exponential decay rate 
of the second-order moment estimate, and dx   is the gradient. The paper makes parameters 1 0.9beta   , 

2 0.999beta  . 
The second step performs bias correction, which corrects the first and second moment estimates by calculating 

the bias. 
The bias correction for the first-order moment estimates, second-order moment estimates: 
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
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(2) Learning rate decay strategy in Adam algorithm 
The paper introduces the learning rate decay strategy on the basis of Adam algorithm, which can speed up the 

updating speed of parameters, make Adam algorithm converge faster in the early stage, and can improve the 
accuracy of the model. 

The paper adopts the fractional decay method, and the formula for fractional decay is: 

 1

1
t

t

alpha
alpha

decayrate epoch


 
 (11) 

where epoch  represents all the data within the sample set trained once. decayrate  is the decay rate. The text 
makes parameters 1decayrate  , 1epoch  . 

As the number of iterations increases, the learning rate will decay in a fractional decay manner, and the global 
optimal solution is sought through the decayed learning rate. The purpose of using this method is to reduce the 
oscillation of the convergence curve during the iteration process, improve the convergence speed and stability of 
the model, and obtain the global optimal solution. 

In order to avoid the situation that the learning rate decays to zero when the learning rate decay strategy is used, 
the minimum learning rate is made to be 0.0001. In the iteration process of the algorithm, when the learning rate is 
less than 0.0001, the learning rate decay will not be carried out again. 

 
II. D. 3) Improved GRU network model construction 
The input of GRU network is a time series, and the training needs to split the normalized data into multiple sub-
sequences, which are fed to each input unit separately to extract the temporal feature information, and finally 
recognized by the classifier. In order to weaken the co-adaptation of neurons and solve the overfitting problem, 
Dropout layer is introduced in the network. However, Dropout used before the recurrent layer will generate noise 
and hinder the learning process, so Dropout will be used after the update gate of the GRU, and the same Dropout 
mask is used for all time steps. 
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The fully connected layer (Dense) belongs to the feature learning layer, which can change the features extracted 
from the network in a nonlinear way to improve the learning generalization ability of the network model. Due to the 
high dimensionality of the power system fault data, which is generally a linear indivisible problem, the SVM classifier 
is better than the softmax classifier to deal with the effect, therefore, this paper uses the SVM classifier and 
introduces the Gaussian kernel function. The improved GRU network model is shown in Fig. 3, where 

i NX X  is 
divided into multiple time sub-sequences, N  is the number of sequence steps, and the number of data in each 
sub-sequence is called the sequence step, 

i my y  is the output of the GRU network, and ~i ng g  is the input of 
the SVM classifier. 
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Figure 3: Improved GRU network model 

II. E. Protection schemes based on gated cyclic cell networks 
II. E. 1) Protection activation criteria 
In order to ensure that the protection starts quickly after a fault, and at the same time to avoid repeated detection, 
this paper utilizes the DC voltage change rate to construct the protection startup criterion: 

 
/dc set

set set deN

IdU dt

k U




 


 (12) 

where 
set  is the threshold value of the protection algorithm startup criterion, 

dcNU  is the rated voltage of the DC 
line, and 

setk  is the constant value coefficient. In order to prevent the false action of the starting element, the 
protection starting criterion should be established continuously for 0.35ms before confirming the detection of the 
fault. Since the voltage change rate is susceptible to noise interference and other influences, the startup criterion 
should be improved subsequently. 
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II. E. 2) Training and Testing of GRU Network Models 

In this paper, 
busE , 

lineE , 
PE  and 

NE  are used as GRU network input vectors, i.e., 
bus line p NX E E E E    , and the 

deep learning model is trained to realize the fault identification and pole selection functions. 
(1) Acquisition of training sample data 
In this paper, the selection of sample data takes into account the influence of different fault sections (DC line 

faults, bus faults and out-of-area faults), different fault locations (0%~100% from the first section), different fault 
types (positive-pole grounding faults, negative-pole grounding faults and bipolar short-circuit faults), different 
transition resistances, noise disturbances (50 dB) and distribution capacitances  0.62 /F km  in order to ensure 
that the samples are balanced and sufficient. , and then the adequate sample data are used to train the GRU deep 
learning model, which extracts and fuses the fault feature information and puts it into the SVM classifier for fault 
identification and fault pole selection. 

(2) Sample data window selection 
The higher the sampling frequency, the more obvious the fault sample characteristics, the higher the fit of the 

network, but the sampling frequency is limited by equipment and other factors. The sampling frequency is selected 
as 50 kHz. In this paper, we select the voltage data (transient voltage energy sum of specific frequency bands) of 
0.68 ms after the fault, i.e., 100 sample point data, at this time, the dimension of input vector X   is 

4 4 0.68 100 272n t f       . 

(3) Sample data preprocessing 
Due to the large differences in training data values, the distribution of fault characteristics is not uniform. Therefore, 

the training dataset X  is normalized to maximize the fault features and improve the network training accuracy, Eq: 

 
 

   
minˆ

max min
i i

i
i i

E E
E

E E





 (13) 

where ˆ
iE  is the normalized sample data (transient energy sum). 

iE  is the original sample data. min  and max  

denote the minimum and maximum values of 
iE . The preprocessed sample input vector is: 

    
bus line p NX E E E E   

 (14) 

For training, the sample data is divided into multiple time sub-sequences, where the number of sequence steps 

is 50 and the step length is 4. Take    
1 2bus bus bus busbE E E E   

  as an example, where b   is the number of data 

( 60)b   , after dividing it into multiple time sub-sequences,    
1 2bus bus bus busNE E E E   

 , N   is the number of 

sequence steps ( 15)N  , and the step length of each time sub-sequence vector ˆ
busNE  is 15, and the multiple time 

sub-sequences are put into the GRU unit for training. 
(4) Fault detection 
After offline training of the deep learning model is completed, the model is saved, and after a fault occurs, the 

startup criterion is established, the protection is started, and the sample data are collected and processed to obtain 
the sample input vector X , which is then fed into the saved GRU model, and the model outputs the results after 
calculation. The six outputs of the network model are line fault, bus fault, out-of-area fault, positive fault, negative 
fault and bipolar fault, i.e., network output  1 2 3 4 5 6R R R R R R R , and the outputs are represented by “1” and “0”. After 

successful fault detection, the corresponding protection action needs to be initiated, based on the protection scheme 
of the gated loop unit network as shown in Figure 4. 

III. Example analysis of a building DC power distribution system 
III. A. Overview of construction works 
At present, medium and high voltage DC transformers and other equipment are still immature and expensive in 
terms of economy and reliability, so medium and high voltage DC distribution grids are not as economical and 
reliable as traditional AC distribution grids. However, low-voltage DC equipment has been relatively mature, and 
although the current medium and high voltage DC distribution is still in the demonstration and validation stage, it 
can be expected that in the future there will be more projects adopting DC distribution, i.e., buildings will be 
introduced from the municipal grid to the DC power supply. The article takes a science and technology park as an 
example, and uses a network of gated circulating units to explore the effectiveness of the system in terms of security 
protection and fault identification. 
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Figure 4: Protection scheme based on gated circulation unit network 

In a science and technology enterprise park, there are single buildings such as production office building, expert 
apartment building, staff canteen, etc. In front of the staff canteen, there is an electric vehicle charging station, and 
solar photovoltaic power generation equipment is set up on the roof of the staff canteen and the roof of the expert 
apartment building, and there is an enterprise data center in the production office building. The production office 
building has 30 floors above ground and two floors below ground, with a building height of 120 meters. The first 
floor below ground is a garage and equipment rooms, and the floors above ground are offices, meeting rooms, 
laboratories and other rooms. The expert apartment is a multi-storey residential building with 9 floors above ground 
and 1 floor below ground. There are three units in the expert apartment, with two households on each floor of each 
unit. The staff canteen is three floors above ground with a building height of 16.1 meters. 

 
III. B. System Failure Identification 
III. B. 1) Busbar fault identification 
The above simulation mainly verifies that the protection scheme designed in this paper can reliably recognize the 
faults in the zone and carry out fault pole selection, in order to verify the bus fault recognition capability based on 
the CRU model. A bus Bus1 ground fault is set up in a science and technology enterprise park, and the bus fault 
identification simulation results are shown in Fig. 5. As can be seen from the figure, it is found that Eline is greater 
than Ebus, and EP is greater than EN, at this time, the output of CRU model is R[0,1,0,0,0,1,0], which indicates that 
the CRU model recognizes the building DC distribution system fault as a bus negative fault, and all the circuit 
breakers close to this bus on the lines connected to it trip to remove the fault. 
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Figure 5: Bus fault identification simulation results 

III. B. 2) Line fault identification 
This subsection takes the distribution system line of a science and technology enterprise park as a test point, and 
Eline, Ebus, EP, and EN are put into the trained gated recurrent unit neural network to get the line fault detection 
results, and the simulation analysis of the distribution system line fault detection is shown in Fig. 6. Based on the 
data performance in the figure, it can be seen that when Eline is greater than Ebus, the corresponding EP is greater 
than EN, at this time, the fault detection model based on the gated recurrent unit neural network outputs 
R[1,0,0,1,0,0], and the corresponding fault detection result is the positive pole fault of the line, and the building 
distribution system sends out the tripping command, and the positive pole circuit breaker operates to remove the 
fault. 

 

Figure 6: Distribution system line fault detection simulation analysis 

III. B. 3) Out-of-area fault detection 
Assuming that an out-of-area single-pole ground fault occurs in the construction project sample, the same method 
described above is adopted to detect the out-of-area fault for this sample, and the out-of-area fault detection results 
are shown in Fig. 7, with the horizontal axis being the time series and the vertical axis being the energy value. 
Through the data performance in Fig. 6, it can be seen that when Eline is greater than Ebus, the corresponding EP 
is equal to EN, and the output result of the fault detection model R is [0,0,1,0,0,0,0], and the corresponding type of 
fault is out-of-area fault, which verifies that the GRU network is capable of realizing the function of fault identification 
and fault pole selection of the building distribution system, and that the protection is correctly operated. 

  

Figure 7: Out-of-area fault detection result 
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III. C. Identification of recognition effects of different models 
In order to improve the reliability of the fault identification model of building distribution system based on GRU 
network, four groups of control models are set up, which are LSTM, CNN, RNN, and DNN. Combined with the value 
of evaluation indexes, the identification effect of different models is compared and analyzed. 
 
III. C. 1) Evaluation indicators 
At present, for the comparative analysis of recognition models, the commonly used evaluation indexes are accuracy, 
precision, and recall, and their corresponding formulas are shown below: 

 0 1

0 1 0 1

Accuracy
a a

a a b b




  
 (15) 

 1

1 1

Precision
a

a b



 (16) 

 1

1 0

Recall rate
a

a b



 (17) 

The correct numbers 
0a  and 

1a  indicate the number of correctly categorized types 0 and 1, respectively, while 
the incorrect number 

0b  indicates the number of types that were originally classified as type 1 but were categorized 
as type 0, and 

1b  indicates the number of types that were originally classified as type 0 but were categorized as 
type 1. 

 
III. C. 2) Analysis of results 
Using the evaluation indexes mentioned above, the identification effect of different models is compared and 
analyzed, and the comparison results of the identification effect of different models are shown in Fig. 8, where the 
horizontal axis corresponds to the six fault types (line fault R1, bus fault R2, out-of-area fault R3, positive fault R4, 
negative fault R5, and bipolar fault R6), and the vertical axis is the value of the evaluation indexes, in which (a) to 
(c) denote the accuracy rate and precision, respectively, Recall. The values of accuracy, precision, and recall of this 
paper's model are all between 0.85 and 0.95, and the performance of the six types of fault identification is more 
outstanding compared with the other four types of models, which further confirms that the GRU network in deep 
learning model has high priority in building distribution system fault identification, and provides guidance for 
intelligent fault diagnosis of building distribution system. 

  

(a)Accuracy (b)Precision 
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(c)Recall 

Figure 8: Different model recognition results 

III. D. Protection Program Validation Analysis 
According to the above protection initiation criterion, it can be seen that the threshold value for initiating the GRU-
based protection scheme for building DC distribution system is 0.35 ms. In this section, the out-of-area fault is 
mainly used as an example to verify the practical usefulness of the protection scheme in this paper, and the main 
content contains the simulation analysis of out-of-area fault protection, and the analysis of the impact of transition 
resistance. 
 
III. D. 1) Out-of-area faults 
Assuming that a single-pole grounding fault occurs on the out-of-area line in the science and technology park to 
verify the selectivity of the protection scheme, the simulation results of the out-of-area fault protection scheme are 
shown in Fig. 9, and (a) to (d) are the rate of change of the voltage at the right end, the rate of change of the voltage 
at the left end, and the ratio of the current and voltage, respectively. After the fault occurs, the zero mode voltage of 
the line increases, and in Fig. 9 (a) and (b), the rate of change of the zero mode voltage measured at the protection 
installation at the left and right ends of the faulty line tends to grow first and then decline, and the fault occurs at 
0.35ms, and the rate of change of the zero mode voltage measured at the bus exceeds the protection startup 
threshold. In Fig. 9(c), after the fault protection scheme is activated, the line zero-mode differential current is 
calculated by the GRU model based on the measured zero-mode voltage and the in-zone and out-of-zone models, 
and the data time window is 1 ms, so that the GRU model outputs the first /dcdU dt  ratios after the fault occurs for 
0.35 ms. The measured values of the line zero-mode differential current and the calculated values obtained based 
on the out-of-zone model have a high degree of similarity, while the measured values and the calculated values 
obtained based on the in-zone model have a low degree of similarity. From Fig. 9(d), it can be seen that the input 
is much larger than the output and the ratio of the two is much larger than 1. Therefore, the protection of the line 
reliably determines that the fault occurs outside the zone. 
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(a)Right (b)Left 

  

(c)Electric current (d)Voltage ratio 

Figure 9: Simulation results of out-of-area fault protection scheme 

III. D. 2) Effect of transition resistance 
In order to verify the action of the protection under different fault points and different transition resistances, the 
following fault scenarios are set up in the simulation platform (bus, line, and out-of-area), and the simulation results 
of the effect of transition resistance are shown in Table 1. In the table, the voltage change rate ratio is the maximum 
value within 0.35ms after the protection start, in the three fault scenarios, as the fault transition resistance increases, 
even if there is a transition resistance of 100 , the voltage change rate ratio is much less than 1, indicating that in 
the face of a stronger resistance to transition resistance, this paper can also play a good role in the protection of 
the building DC distribution system protection scheme. 

Table 1: Effect of transition resistance on simulation results 

Fault location Transition resistance /Ω Ratio of voltage change rate 

Bus bar 

0 0.00419 

50 1.092×10-4 

100 1.784×10-4 

Line 

0 0.00407 

50 1.151×10-4 

100 1.377×10-4 

Out-of-area 

0 0.00408 

50 1.392×10-4 

100 1.279×10-4 

 

IV. Conclusion 
In this paper, we design the DC power distribution system of a building, propose the fault variables of this system 
using the generalized S-transform, construct a gated cyclic unit network oriented to safety protection and fault 
identification, and validate and analyze the model by combining with the actual situation of a sample of the building 
project. 

(1) The input values satisfy Eline>Ebus, EP>EN at the same time, and the CRU model fault identification result 
R[0,1,0,0,0,1,0], which indicates that at this time, the building DC distribution system exhibits a negative bus fault, 
and the model gives a circuit breaker tripping protection scheme. 

(2) The three evaluation index values of this paper's model for six types of fault identification are maintained in 
the range of 0.85~0.95, which is particularly effective in fault identification relative to the other four types of models. 

(3) Under the action of 0 , 50  and 100  transition resistors, the ratio of the voltage change rate between 
input and output does not exceed 1, indicating that the protection scheme based on the CRU model still has good 
performance in the face of this type of situation. 



Deep Learning Based Safety Protection Technology and Fault Identification Method for Building DC Distribution System 

3958 

Funding 
This work is supported by the 2021 Guangxi Research Capacity Enhancement Program for Young and Middle-aged 
Teachers, under the project "Research on the Detection and Management of Power Quality in Civil Buildings" 
(Project No. 2021KY1077). 

References 
[1] Mackay, L., Blij, N. H. V. D., Ramirez-Elizondo, L., & Bauer, P. (2017). Toward the universal DC distribution system. Electric Power 

Components and Systems, 45(10), 1032-1042. 
[2] Prabhala, V. A., Baddipadiga, B. P., Fajri, P., & Ferdowsi, M. (2018). An overview of direct current distribution system architectures & 

benefits. Energies, 11(9), 2463. 
[3] Nasirian, V., Davoudi, A., Lewis, F. L., & Guerrero, J. M. (2014). Distributed adaptive droop control for DC distribution systems. IEEE 

Transactions on Energy Conversion, 29(4), 944-956. 
[4] Feng, X., Qi, L., & Pan, J. (2017). A novel fault location method and algorithm for DC distribution protection. IEEE Transactions on Industry 

Applications, 53(3), 1834-1840. 
[5] Kersting, W. H. (2018). Distribution system modeling and analysis. In Electric power generation, transmission, and distribution (pp. 26-1). 

CRC press. 
[6] Lee, J. Y., Kim, H. S., & Jung, J. H. (2019). Enhanced dual-active-bridge DC–DC converter for balancing bipolar voltage level of DC 

distribution system. IEEE Transactions on Industrial Electronics, 67(12), 10399-10409. 
[7] Mishra, R., Vaghasiya, K. M., & Agarwal, V. (2019, September). Improved modular multilevel converter with output voltage boosting 

capability for medium voltage DC distribution system. In 2019 IEEE Industry Applications Society Annual Meeting (pp. 1-6). IEEE. 
[8] Jing, G., Zhang, A., & Zhang, H. (2018, November). Review on DC distribution network protection technology with distributed power supply. 

In 2018 Chinese Automation Congress (CAC) (pp. 3583-3586). IEEE. 
[9] Farhadi, M., & Mohammed, O. A. (2017). Protection of multi-terminal and distributed DC systems: Design challenges and techniques. 

Electric Power Systems Research, 143, 715-727. 
[10] Chandra, A., Singh, G. K., & Pant, V. (2020). Protection techniques for DC microgrid-A review. Electric Power Systems Research, 187, 

106439. 
[11] Sarangi, S., Sahu, B. K., & Rout, P. K. (2021). A comprehensive review of distribution generation integrated DC microgrid protection: issues, 

strategies, and future direction. International journal of energy research, 45(4), 5006-5031. 
[12] Blaabjerg, F., Yang, Y., Yang, D., & Wang, X. (2017). Distributed power-generation systems and protection. Proceedings of the IEEE, 

105(7), 1311-1331. 
[13] Feng, X., Xiong, Q., Wardell, D., Gattozzi, A. L., Strank, S. M., & Hebner, R. E. (2019). Extra-fast DC distribution system protection for 

future energy systems. IEEE Transactions on industry applications, 55(4), 3421-3430. 
[14] Wang, M., Abedrabbo, M., Leterme, W., Van Hertem, D., Spallarossa, C., Oukaili, S., ... & Kuroda, K. (2017, October). A review on ac and 

dc protection equipment and technologies: Towards multivendor solution. In CIGRE Winnipeg 2017 Colloquium (pp. 1-11). Cigré. 
[15] Jia, K., Zhao, Q., Feng, T., & Bi, T. (2019). Distance protection scheme for DC distribution systems based on the high-frequency 

characteristics of faults. IEEE Transactions on Power Delivery, 35(1), 234-243. 
[16] Xiong, Q., Feng, X., Gattozzi, A. L., Liu, X., Zheng, L., Zhu, L., ... & Hebner, R. E. (2019). Series arc fault detection and localization in DC 

distribution system. IEEE Transactions on Instrumentation and Measurement, 69(1), 122-134. 
[17] Hallemans, L., Van den Broeck, G., Ravyts, S., Alam, M. M., Dalla Vecchia, M., Van Tichelen, P., & Driesen, J. (2019, May). Fault 

identification and interruption methods in low voltage dc grids—A review. In 2019 IEEE Third International Conference on DC Microgrids 
(ICDCM) (pp. 1-8). IEEE. 

[18] Oh, Y. S., Kim, C. H., Gwon, G. H., Noh, C. H., Bukhari, S. B. A., Haider, R., & Gush, T. (2019). Fault detection scheme based on 
mathematical morphology in last mile radial low voltage DC distribution networks. International Journal of Electrical Power & Energy 
Systems, 106, 520-527. 

[19] Mohanty, R., & Pradhan, A. K. (2018). Faulted section identification for DC distribution systems using smart meter data. IET Generation, 
Transmission & Distribution, 12(4), 1030-1037. 

[20] Dhar, S., Patnaik, R. K., & Dash, P. K. (2017). Fault detection and location of photovoltaic based DC microgrid using differential protection 
strategy. IEEE Transactions on Smart Grid, 9(5), 4303-4312. 

[21] Bhargav, R., Bhalja, B. R., & Gupta, C. P. (2019). Novel fault detection and localization algorithm for low-voltage DC microgrid. IEEE 
Transactions on Industrial Informatics, 16(7), 4498-4511. 

[22] Xu, Y., Liu, J., Jin, W., Fu, Y., & Yang, H. (2018). Fault location method for dc distribution systems based on parameter identification. 
Energies, 11(8), 1983. 

[23] Geddada, N., Yeap, Y. M., & Ukil, A. (2017). Experimental validation of fault identification in VSC-based DC grid system. IEEE Transactions 
on Industrial Electronics, 65(6), 4799-4809. 

[24] Nana Jia,Tong Jia & Zhiao Zhang. (2025). A residual GRU method with deep cross fusion for Alzheimer’s disease progression prediction 
using missing variable-length time series data. Biomedical Signal Processing and Control107253-107253. 

[25] Mehmet Bilgili,Engin Pinar & Tahir Durhasan. (2024). Global monthly sea surface temperature forecasting using the SARIMA, LSTM, and 
GRU models. Earth Science Informatics(1),10-10. 

[26] Wang Jiechen,Gao Zhimei & Ma Yan. (2022). Prediction Model of Hydropower Generation and Its Economic Benefits Based on EEMD-
ADAM-GRU Fusion Model. Water(23),3896-3896. 

[27] Md. Mahfuz Ahmed,Md. Maruf Hossain,Md. Rakibul Islam,Md. Shahin Ali,Abdullah Al Noman Nafi,Md. Faisal Ahmed... & Md. Khairul Islam. 
(2024). Brain tumor detection and classification in MRI using hybrid ViT and GRU model with explainable AI in Southern Bangladesh. 
Scientific Reports(1),22797-22797. 


