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Abstract Hepatocellular carcinoma (HCC) is a common and fatal malignant tumor worldwide, which is difficult to 
diagnose early and has a low survival rate. In this paper, we investigated the temporal expression pattern of 
AKR1B10 gene in patients with hepatocellular carcinoma (HCC) and constructed a GL-TGRN model using LSTM 
neural network combined with gene regulatory network. By analyzing multiple sets of student data (including mRNA 
expression data, miRNA data, and DNA methylation data), we conducted an in-depth exploration of the temporal 
expression of the AKR1B10 gene and its relationship with hepatocellular carcinoma development. The results 
showed that the GL-TGRN model performed excellently in inferring AKR1B10 gene expression, and the AUROC 
and AUPR values were increased by 26.23% and 35.69%, which were significantly higher than the comparison 
methods (e.g., GC-SIN and JUMP). In addition, through differential expression analysis, we screened 786 
differential genes and 14 miRNAs related to hepatocellular carcinoma, and these molecules are closely related to 
hepatocarcinogenesis. Ablation experiments demonstrated that the fusion of multi-omics features in the GL-TGRN 
model significantly improved the accuracy of gene regulatory inference. This paper provides new data support for 
early diagnosis and personalized treatment of hepatocellular carcinoma. 
 
Index Terms Hepatocellular carcinoma, AKR1B10 gene, gene regulatory network, LSTM neural network, temporal 
expression analysis, multi-group biomarker data 

I. Introduction 
Hepatocellular carcinoma is the most common primary liver malignancy and is the leading cause of cancer-related 
deaths worldwide [1]. As of 2024, 865,000 people have been diagnosed with liver cancer worldwide. Importantly, 
the main causes of hepatocellular carcinoma are hepatitis B and C infections, alcoholic liver disease, and the 
incidence of hepatocellular carcinoma will continue to rise as the incidence of clinical nonalcoholic steatohepatitis-
associated cirrhosis tends to increase with dietary structure and standard of living [2]-[5]. Hepatocellular carcinoma 
has a very poor prognosis due to its advanced stage at initial diagnosis, high rate of postoperative recurrence and 
metastasis as well as multidrug resistance [6], [7]. Currently, the treatment of choice for hepatocellular carcinoma 
remains surgical, but only less than 20% have access to surgical resection [8]. Despite extensive research on the 
molecular mechanisms of hepatocellular carcinogenesis, knowledge of the genetic alterations that lead to the 
development and progression of hepatocellular carcinoma remains fragmented. The key drivers of its 
carcinogenesis remain unknown, which limits the development of targeted therapies for hepatocellular carcinoma 
[9]. In addition, the overlap of the most notable dysregulated genes in multiple studies is very low, and the 
inconsistency of the results is due to a variety of factors such as measurement errors, small sample sizes, and 
different statistical methods [10], [11]. 

The TCGA database discloses a large number of clinical and molecular phenotypes of several tumor patients, 
and also lists several genes with significant temporal expression patterns. one of these genes is the AKR1B10 gene, 
which is a novel protein for identifying human hepatocellular carcinoma, and whose dynamic changes are of value 
in the early diagnosis of hepatocellular carcinoma, and can inhibit the proliferation and metastasis of cancer cells 
by regulating related signaling pathways [12]-[14] The high expression of AKR1B10 in hepatocellular carcinoma 
tissues enhances cellular resistance to aldehyde-containing antitumor drugs, such as zorubicin and mitomycin, 
which may be due to the fact that these drugs are similar to the AKR1B10 substrates, which are cytotoxic 
compounds containing carbocytes, aromatic compounds containing aldehydes, and aliphatic compounds, to which 
AKR1B10 has a powerful reducing and detoxifying function, and thus resistance arises [15]-[18]. AKR is induced in 
rat hepatocellular carcinoma and it is thought that it may have a crucial detoxification role for harmful metabolites 
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produced by rapidly growing cancer cells [19], [20]. A protein called Spot17, which is highly homologous to rat AKR, 
is induced by rat hepatocellular carcinoma, and approximately 29% of hepatocellular carcinomas overexpress AKR, 
and about 54% of this is overexpressed AKR1B10 [21]. However, AKR1B10 gene expression inflection point 
detection has a continuous and intensive sampling requirement, and traditional qPCR technical means are costly 
[22]. Meanwhile, due to the small sample size of liver cancer studies, conventional machine learning models have 
low adaptability and face high bias in nonlinear time-series prediction results and dynamic detection [23]. And the 
LSTM neural network model has the advantages of small sample size, long period, and feature capture, which 
breaks through the above bottleneck [24].  

Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality worldwide, and its etiology 
is diverse, including hepatitis virus infection, aflatoxin exposure, and chronic alcohol abuse. Although the diagnosis 
and treatment of hepatocellular carcinoma have advanced with the development of medical technology, early 
symptoms of hepatocellular carcinoma are not obvious and diagnosis is often lagging behind, resulting in the 
majority of patients being in the advanced stage at the time of diagnosis, which makes treatment more difficult. 
Therefore, how to realize early screening and diagnosis of liver cancer has become the key to improve the survival 
rate. 

Currently, commonly used clinical screening methods for liver cancer include serum alpha-fetoprotein (AFP) test, 
imaging examination and liver function test. However, these methods have some limitations, especially in AFP-
negative or low value patients, with low diagnostic accuracy. Therefore, finding new biomarkers for the early 
diagnosis of hepatocellular carcinoma is of great clinical value.The AKR1B10 gene is an enzyme in the aldo-keto 
reductase family, and studies have shown that it exhibits a high level of expression in a variety of tumors, and 
especially in hepatocellular carcinoma, the level of expression of AKR1B10 is significantly increased, suggesting 
that it may play an important role in hepatocarcinogenesis and development. 

In this study, a gene regulatory network-based analysis model (GL-TGRN) was constructed to infer the temporal 
expression pattern of AKR1B10 gene in hepatocellular carcinoma patients by combining multi-omics data, including 
mRNA, miRNA and DNA methylation data, and LSTM neural network.LSTM neural network can effectively capture 
the time-dependence in gene expression, and combined with the graph neural network's topological features, 
provided more precise analysis results. Through the application of this model, we are able to further understand the 
complexity of gene regulation in hepatocellular carcinoma patients on the basis of multi-omics data, mine the gene 
features closely related to hepatocarcinogenesis, and provide new clues for early diagnosis. 

II. Theoretical basis of AKR1B10 gene regulatory network 
Hepatocellular carcinoma (HCC) is the most common primary liver cancer (referred to as hepatocellular carcinoma), 
which seriously jeopardizes human health. The main causative factors of primary liver cancer include chronic 
infection with hepatitis viruses (HBV, HCV), aflatoxin exposure, alcoholism, etc., among which liver cancer caused 
by non-alcoholic steatohepatitis is showing a significant rising trend. In recent years, despite advances in treatment, 
the overall survival rate of hepatocellular carcinoma is still far from satisfactory. In addition to the malignant 
characteristics of the tumor, liver cancer often loses the chance of treatment when it is detected due to its insidious 
onset, which is also an important factor contributing to the poor survival rate of liver cancer patients. Therefore, how 
to detect liver cancer at an early stage has been an important challenge for the medical community. 

 
II. A. AKR1B10 gene in hepatocellular carcinoma patients 
II. A. 1) Common liver cancer serum markers 
(1) Protein markers 

Alpha-fetoprotein (AFP) is located on chromosome 4, arm q (4q25), and is a member of the albumin-like gene 
superfamily.AFP is one of the most abundant proteins in fetal plasma and is synthesized in large quantities by the 
fetal yolk sac and liver, and begins to decline gradually in the second and third trimesters of pregnancy, but at the 
same time albumin begins to increase. This phenomenon often leads to AFP being viewed as the albumin of the 
fetus, and studies have also found a high degree of homology between the sequences encoding the two proteins. 
In normal individuals, AFP usually decreases to normal levels by 9 to 11 months of age, but it rises again in the 
presence of liver disease, especially in the presence of primary tumors of the liver, germ cell tumors, or benign liver 
disease [25]. 

De-gamma-carboxy prothrombinogen (DCP) is an abnormal thrombospondin protein that is highly expressed in 
the serum of HCC patients. Studies have shown that DCP is an effective diagnostic marker for hepatocellular 
carcinoma, and its level is related to the prognosis of the patients. The diagnosis of hepatocellular carcinoma is 
more accurate when AFP is used in combination with DCP than when it is used alone, and the abnormal elevation 
of DCP due to a number of factors may interfere with the diagnosis of the disease [26]. 
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(2) Liquid biopsy 
Liquid biopsy is the detection of circulating tumor cells, mainly including cell free DNA (cfDNA), extracellular 

vesicles and other markers. cfDNA refers to the DNA molecules that are released into the body fluids by the cells 
undergoing apoptosis, necrosis, or active secretion, which are presented as a double-stranded fragment with a 
length of about 160~240 bp. The cfDNA from tumor cells, i.e., circulating tumor DNA (ctDNA), has even 
demonstrated its potential and value in reflecting the tumor ontology from different dimensions, and has been widely 
used in various aspects of tumor diagnosis, treatment, and prognosis. Genetic and epigenetic alterations are 
important factors driving the occurrence, development and metastasis of HCC. As DNA fragments derived from 
tumor cells, ctDNA should share the same molecular alterations as the tumor cells from which it originates. The 
feasibility of detecting HCC-specific genetic or epigenetic alterations in plasma DNA has been confirmed, making it 
possible to use ctDNA to determine the extent of the patient's hoar tumors as well as genetic information about the 
primary tumor [27]. 

 
II. A. 2) AKR1B10 and liver cancer diagnosis 
(1) Structure of AKR1B10 

Aldo-keto reductase family 1 member B10 (AKR1B10), whose coding gene is localized in the region of 
chromosome 7q33, encodes a protein consisting of 316 amino acid residues, and AKR1B10 is a member of the 
aldo-keto reductase (AKR) superfamily [28]. AKR is an oxido-reductase that uses reduced nicotinamide adenine 
dinucleotide phosphate (NADPH) as a cofactor and catalyzes the conversion of aldehydes and ketones to the 
corresponding alcohols, the specific process of which is shown in Figure 1.AKR may be involved in different 
biological processes in different organisms, including carbonyl detoxification, osmoregulation, hormone metabolism, 
lipid synthesis, diabetic complications, tumorigenesis, and therapy. As a member of AKR, AKR1B10's also has the 
physiological function of reducing aldehydes and ketones, which can reduce the damage to nucleic acids and 
proteins by carbonyl compounds in order to reduce cell mutation and tumorigenesis. 
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Figure 1: The working principle of AKR enzyme 

All AKRs use NADPH as a coenzyme for their catalytic function, and the binding sites of AKR1B10 to coenzyme 
NADPH are Ser159, Asn160, Gln183 and Lys263, with hydrogen bonding provided by Tyr48 and His110, and 
Cys299 can serve as a binding site for AKR1B10 inhibitors and play an important role in the regulation of AKR1B10 
activity. 

(2) Relationship between AKR1B10 and hepatocellular carcinoma diagnosis 
In normal humans, AKR1B10 is expressed in the small intestine and colon, with a small amount of expression in 

thymus, prostate and testis tissues, and negative expression in other human tissues.AKR1B10 is highly expressed 
in a variety of tumors such as hepatocellular carcinoma, lung carcinoma, breast carcinoma, and colorectal 
carcinoma, suggesting that it has a correlation with human cancers. Existing studies have found that the expression 
level of AKR1B10 protein increases in human normal liver, paraneoplastic liver and hepatocellular carcinoma tissues 
in a sequential order, and the expression rate is higher in hepatocellular carcinoma tissues, especially serum alpha-
fetoprotein-negative hepatocellular carcinoma tissues, which suggests that it has a potential clinical application in 
early diagnosis of hepatocellular carcinoma and assessment of its prognosis. In addition, it has been reported that 
silencing of AKR1B10 in hepatocellular carcinoma cells by siRNA technology resulted in the down-regulation of 
proliferation-related genes and up-regulation of pro-apoptotic genes in hepatocellular carcinoma cells, suggesting 
that AKR1B10 may be involved in the regulation of hepatocellular carcinoma cell proliferation by altering the 
expression of apoptosis-related genes. 

 
II. B. Multi-group Biological Data and Gene Regulatory Networks 
II. B. 1) Multi-group student biology data 
Histological data refers to data that are comprehensively measured and analyzed by high-throughput techniques 
on the composition and function of molecules at multiple levels within an organism. These data provide detailed 
information about biomolecules such as genes, transcription, proteins and metabolism, as well as their interactions 
and regulatory relationships. Histomics data include genomics, transcriptomics, proteomics, and metabolomics at 
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multiple levels.The TCGA database provides a wide range of cancer-related histomics data types. In this paper, we 
focus on mRNA expression data, miRNA expression data, and DNA methylation data. 

(1) mRNA expression data. Gene expression refers to the process by which genes are transcribed into mRNA in 
cells and then converted into proteins and RNA molecules through the translation process. Genes are units of 
genetic information in the DNA molecule, and they carry the instructions necessary for the cell to synthesize proteins. 
The process of gene expression consists of three main steps, namely transcription, RNA processing and translation. 
The study of gene expression is important for understanding cellular functions, mechanisms of disease occurrence, 
and the development of drug therapy. 

(2) miRNA expression data. miRNAs are a class of short non-coding RNA molecules, about 20 to 25 nucleotides 
in length. miRNAs regulate gene expression by interacting with the mRNA of target genes. They play important 
regulatory functions in cells and participate in the regulation of a variety of biological processes, including cell 
proliferation, differentiation, apoptosis and metabolism. 

(3) DNA methylation data.DNA methylation is achieved by the addition of methyl groups to cytosine bases at the 
CpG site by DNA methyltransferases. This process is reversible and can be replicated by DNA replicase during cell 
division and replication. Under normal conditions DNA methylation plays an important role in the maintenance of 
genome stability, regulation of gene expression, gene silencing and cell differentiation etc. Abnormalities in DNA 
methylation can lead to abnormalities in gene expression and the development of diseases. Abnormal DNA 
methylation patterns are common in diseases such as cancer, where specific gene regions may be aberrantly 
methylated or unmethylated, leading to abnormal gene expression and cellular dysfunction. 

 
II. B. 2) Gene regulatory networks 
The intensive development of molecular biology has revealed that complex life phenomena are the result of the 
interaction of gene activities. Gene regulatory networks are the manifestation of life functions at the level of gene 
expression. The completion of whole genome sequencing in many species and the development of high-throughput 
experimental techniques have yielded functional genomic data such as genome expression profiles, protein 
interactions, RNAi analysis of genome expression, and protein-DNA binding, which have made it possible to study 
gene regulatory networks at the system level. The biggest challenge encountered during the study is to find the 
location of genes and their products on functional pathways, circuits and networks. 

A successful biochemical model should be able to characterize the relationships among the components of a 
cellular interaction network. These biochemical networks can be constructed from different perspectives to 
demonstrate the corresponding type of action. Usually one considers three types of biochemical networks: 

(1) Metabolic networks, which mainly demonstrate the chemical reaction chains between various metabolic 
substrates and products in the cell. 

(2) Protein networks, which mainly demonstrate the interactions between various proteins in the cell, e.g., the 
formation of protein complexes and protein modification during signaling. 

(3) Gene transcriptional regulatory networks, which demonstrate an abstract interaction relationship among all 
genes, i.e., the effect of the expression level of one gene on the expression of other genes. Each of these types of 
networks is only a simplification of the cellular life system. 

 
II. C. Theories related to neural networks 
II. C. 1) Graph Neural Network Foundations 
A graph neural network is a type of neural network specialized for processing graph-structured data.Many real-world 
problems can be naturally represented by graphs, including social networks, molecular structures, transportation 
networks, biological networks, and so on. Graph neural networks can capture the relationships and interactions 
between entities in these networks. A graph neural network consists of two main parts, information aggregation and 
feature update, which are included in every graph neural network layer. In the aggregation step, each node collects 
information from its neighboring nodes, a process often referred to as “message passing”, and the aggregated 
information from its neighbors can be used to obtain structural features of the graph, which are generally aggregated 
by summing, taking the mean, or taking the most. The update step consists of stitching together the node's own 
features and neighborhood messages to update the feature representation of the current node, which is generally 
accomplished using a neural network or transformation function. 

The graph filtering based on the null domain is similar to the traditional convolution, and the node features are 
updated by aggregating the features of the neighboring nodes and the center node to pass the information. Among 
them, GraphSAGE and GAT belong to the null-domain based graph filtering methods.GAT introduces the attention 
mechanism into the process of aggregating the neighbor information of the graph.This method allows the model to 
measure the importance of each neighboring feature.Compared to taking the average and the maximum, the 
attention mechanism can better access the information provided by different neighbors through weighted 
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aggregation. The attention mechanism generally measures the importance of information originating from 
neighboring nodes by measuring the relevance of neighboring nodes relative to the central node as an attention 
coefficient between neighboring nodes and the central node. The attention coefficient is usually computed using an 
inner product, and the nodes are transformed into key features required for downstream tasks by linear mapping 
before computation to improve the expressiveness of the attention mechanism. Specifically, it is computed as: 
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 denotes that node i  and node j  are improved in expressiveness by the shared parameter 

matrices, and Ta
  is a single-layer feed-forward neural network used to extract the two node vectors of the Key 

information. 
ija  denotes the attention weight of node i  for node j , which is normalized according to the 

neighborhood of node i , and the obtained weight is weighted with the corresponding node vectors to obtain the 

updated node i  vectors 
ih 


. 

 
II. C. 2) Long and short-term memory neural networks 
Long Short-Term Memory (LSTM) is a temporal recurrent neural network for processing sequential data.LSTM is a 
special variant of Recurrent Neural Network (RNN), which has a “gate” structure and is designed to overcome the 
limitations of RNN in long-term memory.LSTM achieves the filtering of memories by dividing memories into two 
types: long-term and short-term, which store information important to the model output and the current time-step 
output, respectively. LSTM can filter memories by dividing them into long-term and short-term, storing information 
that has an important effect on the output of the model and the output of the current time step respectively.The basic 
unit of the LSTM neural network is the memory cell, which consists of the forgetting gate, the input gate, and the 
output gate, and the LSTM is composed of countless memory cells connected in a series. 

The role of the forgetting gate is to screen long-term memories. The incoming long-term memory 
1tC 
 from the 

previous memory cell is multiplied by a memory factor 
tf  with a value domain of [0,1] , so that it retains a portion 

of useful long-term information; and through learning, the memory factor is optimized so that the model can better 
handle long-time dependent data. The formula for 

tf  is: 

  1[ , ]t f t t ff sigmoid W h X b    (3) 

where 
1th 
 is the short-term information of the previous memory cell, 

tX  is the input of the current time step, 
fW  

is the weight matrix of the forgetting gate, and 
fb  is the bias term of the forgetting gate. 

The role of the input gate is to decide how much information at the current time step needs to be added to long-
term memory. The information of the current time step consists of 

1th 
 and 

tX  together, which is multiplied by 
ti  

with a value domain of [0,1]  through the nonlinear transformation of tanh . In this way, the information that is most 

useful for the prediction of the current time step is filtered out and added to the long-term memory to obtain a new 
long-term memory 

tC . The formulae for 
ti  and 

tC  are: 

  1[ , ]t i t t ii sigmoid W h X b    (4) 

  1tanh [ , ]t C t t CC W h X b    (5) 

where 
iW  is the weight matrix of 

ti , 
CW  is the weight matrix of 

tC , 
ib  is the bias term of 

ti , and 
Cb  is the bias 

term of 
tC . 

The role of the output gate is to filter the most effective information for the current time step from the long-term 
memory for the prediction of the current time step. The long-term memory 

tC  of the current time step is nonlinearly 
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transformed and multiplied by 
to  with value domain [0,1]  to get 

th  as the output of the current time step. The 

formulae for 
tC , 

to , and 
th  are: 

 
1t t t t tC C f C i     (6) 

  1[ , ]t o t t oo sigmoid W h X b    (7) 

 tanh( )t t th C o   (8) 

where 
oW  is the weight matrix of 

to  and 
ob  is the bias term of 

to . 

The LSTM with the introduction of gating mechanism has better nonlinear fitting ability and is able to handle long-
term dependencies. However, its computational resource consumption is large, and gradient explosion is still 
possible if the sequence is too long. 

III. Gene regulatory networks based on integrated neural networks 
Hepatocellular carcinoma is one of the common malignant tumors, characterized by high degree of malignancy, 
rapid progression, poor prognosis and high mortality rate, and early detection, early diagnosis and early treatment 
are the keys to improve the therapeutic effect of hepatocellular carcinoma. At present, the diagnosis of this disease 
mainly relies on serum AFP, AFU indexes and imaging examination, but some scholars pointed out that some 
hepatocellular carcinoma patients have negative or low detection values of serum AFP and AFU. In order to explore 
the significance of AKR1B10 protein in the early diagnosis of hepatocellular carcinoma, this paper analyzed and 
compared the expression of AKR1B10 protein in hepatocellular carcinoma tissues and tissues of benign hepatic 
lesions, and analyzed the relationship between the positive expression rate of AKR1B10 protein in hepatocellular 
carcinoma tissues and patients' preoperative serum AFP and AFU levels. 

 
III. A. Hepatocellular carcinoma AKR1B10 gene data processing and characterization 
III. A. 1) AKR1B10 gene data processing 
In this paper, the time-sequence expression analysis of AKR1B10 gene in hepatocellular carcinoma was mainly 
carried out on the basis of multi-omics student data. However, before reusing the multi-omics data to do gene time-
sequence expression analysis, it is necessary to preprocess a large amount of raw data generated by the 
experimental group, the specific steps of which are as follows: 

(1) Quality control is the first step in analyzing multi-omics biology data, and is used to exclude barcodes that are 
unlikely to represent intact cells, including the number of counts (count depth), the number of genes, and the 
proportion of mitochondrial gene counts for each barcode, as well as to filter out anomalous peaks that may 
correspond to dead cells, cells with ruptured cell membranes, or two cells through a threshold value. 

(2) Normalization is performed to ameliorate differences due to uneven sequencing depths to obtain the correct 
relative gene expression abundance between cells. This effect is more pronounced in multiple sets of biomass data, 
as the RNA abundance of each cell may be significantly different due to the cell cycle or other biological factors. 

(3) The purpose of data correction is to further remove differences caused by nonbiological factors such as 
experiment time, experimenter or reagent differences. Batch effects are a common problem in biology and are 
technical confounders that must be considered for downstream single-cell data analysis tasks in order to discover 
true biological signals. 

(4) Feature selection is designed to reduce the dimensionality of multi-group biomarker data and reduce the 
computational burden of downstream analysis tasks. Also, feature selection reduces noise in the data and facilitates 
visualization of the data. 

(5) Dimensionality reduction is designed to embed the expression matrix into a low-dimensional space to capture 
the underlying structure in the data with the lowest possible dimensionality, which works on the principle that multi-
group student biology data is inherently low-dimensional. In other words, the biofluidic shape in which the cellular 
expression profile resides can be efficiently described in much fewer dimensions than the number of genes. 

 
III. A. 2) Multi-omics data feature extraction 
(1) Gene network reconstruction and feature selection 

Assume that there are n  genes in the gene regulatory network, i.e., 
1 2{ , , , }nG G G G  , and 

iG  denotes gene 

i . 
iG  is regulated by other genes and can be expressed as: 

 
1 2( ) ( ( ), ( ), , ( ))i nG t f G t G t G t   (9) 
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where ( )iG t  denotes the expression level of gene i  at time t . If the f  function is assumed to be a linear model, 
then: 

 
1 1 2 2( ) ( ) ( ) ( ) ( )i i i ni nG t j G t j G t j G t b t      (10) 

where 
mij  denotes the strength of regulation of gene m  on gene i  and ( )b t  denotes the external perturbation 

or input. 
Reconstruction of the network in the framework of linear modeling is actually to find, one by one, the set of 

transcription factors that are regulatory for  1, 2, ,iG i n  , i.e., to find out, one by one, the strength of regulation 

of the gene by the transcription factors. This can be regarded as a feature selection problem, according to the 
calculated regulatory strength 

mij  to sort, selected intensity greater than the threshold of the regulatory edge is 

regarded as the existence of regulatory relationship, the intensity below the threshold is regarded as the absence 
of regulatory relationship. To screen out transcription factors for a target gene that are important for its influence, if 
transcription factors are considered as features, is to reconstruct the gene regulatory network using the feature 
selection method. 

The problem is redefined as a learning data (LS) set 
1 2{ , , , }NLS x x x  , 1 2{ , , , }n T

i i i ix x x x   denoting the 

expression data of n  genes in the i rd sample. In the learning samples, n  learning is performed to compute all 

mij  and the entire gene regulatory network is reconstructed after weight ordering filtering. 

(2) Feature extraction of multi-group student biology data 
The multi-group student data used in this paper are mainly the time series expression data of genes, protein 

sequence data, promoter sequence data and CDS data. Similarly, due to the different types of data corresponding 
to different genetic characteristics and data forms, they need to be processed separately in different ways. For 
protein sequence data, we used the combined triad (CT) coding method for coding processing. In this paper, the 
data filling method is to fill the previous value or the next value in the sequence data. Because there is a dependency 
between the previous and next values of the time series data, it is better to use this filling method than mean value 
filling. The time series expression data of each gene is represented as: 

 
exp 1 2[ , , , ]Tt t t tnV e e e   (11) 

Here ( 1, , )tpe p n   denotes the expression value of the gene at the p th time point. 
By merging the time series data feature vector, protein data feature vector, promoter data feature vector and CDS 

feature vector of a transcription factor we can get the overall biological data feature representation of a transcription 
factor as: 

 
exp[ , , , ]Ttf t tf pep tf prom tf cds tfA V D D D     (12) 

Such an overall biological data feature representation vector can also be obtained for each target gene as: 

 
exp[ , , , ]Ttg t tg pep tg prom tg cds tgA V D D D     (13) 

For each transcription factor-target gene pair (TF-TG), by splicing the time series expression feature vectors of 
the transcription factors and target genes therein, protein sequence feature vectors, promoter sequence feature 
vectors, CDS feature vectors, and overall data representation feature vectors, respectively, the following five feature 
representations can finally be obtained for each pair of transcription factor-target gene pairs, viz: 

 
( , ) exp exp[ , ]TT G t tf t tgExp V V   (14) 

 
( , ) [ , ]TT G pep tf pep tgPep D D   (15) 

 
( , )Pr [ , ]TT G prom tf prom tgom D D   (16) 

 
( , ) [ , ]TT G cds tf cds tgCDS D D   (17) 

 
( , ) [ , ]TT G tf tgA A A  (18) 
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where 
( , )T GExp  represents the TF-TG temporal expression value feature vector, 

( , )T GPep  represents the TF-TG 

protein sequence feature vector, 
( , )Pr T Gom  represents the TF-TG promoter sequence feature vector , 

( , )T GCDS  

denotes the CDS feature vector of TF-TG, and 
( , )T GA  denotes the overall data feature of TF-TG. 

 
III. B. Methods for constructing time-sequenced gene regulatory networks 
III. B. 1) GL-TGRN network model construction 
In order to achieve the effect of analyzing the temporal expression of AKR1B10 gene in hepatocellular carcinoma 
patients, this paper combines LSTM with GraphSAGE and establishes GL-TGRN for analyzing the temporal 
expression of AKR1B10 gene in hepatocellular carcinoma patients. Figure 2 shows the specific architecture of the 
GL-TGRN model.The main structure of GL-TGRN can be divided into three main parts.The first part is the part of 
the null domain graph convolution method using GraphSAGE as an application example, which is used to learn 
useful network topology features from the temporal gene regulatory networks from the first T moments and generate 
network node feature representations for gene nodes at each moment. The second part is the recurrent neural 
network part with LSTM as an application example, this part of the algorithm content is based on the fact that 
recurrent neural networks can learn the relevant features of the data in the presence of a time dependency, and 
generate and update the hidden state for the node feature representation of the gene nodes at each moment. The 
third part is a feature fusion task to make predictions about the structure of the gene regulatory network at future 
moments. 

GraphSAGE

GraphSAGE

GraphSAGE

LSTM

LSTM

LSTM

G1

G2

GT

 

Figure 2: GL-TGRN procedure 

The first part of the graph, Graph SAGE, receives inputs from multiple momentary gene regulatory networks, 
which are represented here in the mean aggregator as an aggregator formalism with its computational formula as: 

   1 1 { } { , ( )}

, [1, ]

t t t

l l l l
v v u t t t

t

x W MEAN x x u N v

v V t T

     

 
 (19) 

In this paper, it is assumed that the number of genes is the same at all moments, then  [1, ]tv t T  refers to the 

same set, and the subscript t  is a feature representation of gene 
tv  that is convenient to distinguish genes at 

different moments, that is, 1

t

l
vx
  is the feature representation of gene v  after the processing of the layered 

convolutional network of 1l  . 
tu  is the set of all the genes in the regulatory network at the t th moment that have 

a regulatory relationship with gene 
tv . 1lW   denotes the weight matrix of the 1l  th graph convolution layer, and 

  is the activation function. This formula indicates that for each graph convolutional layer, all the gene regulatory 
networks from 1 to T  moments use the same weight matrix to extract the topological information of the regulatory 
network and generate a corresponding node feature representation for each gene. When the algorithm is initialized, 
it first generates a unit matrix of | | | |V V , where each row of the unit matrix represents the initialized features of a 

gene, i.e., all genes contain only their own information when they have not been processed by the graph 
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convolutional network. Finally the first part outputs the node feature representations , , [1, ]
tv tx v V t T   of all genes 

at the corresponding moments after ( 1)l l   layers of graph convolutional network processing. 

The second part of the recurrent neural network part of the figure can directly receive the processing results of 
the first part of the graph convolutional neural network for further learning, generating feature representations with 
temporal information for all genes at different moments, which is mathematically processed by the following formula: 

  1,
tt f t v fF W h x b      (20) 

  1,
tt i t v iI W h x b      (21) 

  1tanh ,
tt c t v cC W h x b     (22) 

 
1* *t t t t tC F C I C    (23) 

  1,
tt o t v oO W h x b      (24) 

 * tanh( )t t th O C  (25) 

where 
tv V ,  1,t T , the LSTM will process the features that are organized into different time snapshots of the 

same gene with temporal structure. In the formula, 
tF , 

tI , 
tC , 

tC , and 
th  represent the states of the LSTM units 

when gene 
tv  is processed by LSTM, and the specific meanings can be directly referred to the interpretation of 

the LSTM formula. Where 
tv

O  is the feature representation of gene 
tv  containing temporal information after LSTM 

processing at t . 
After the third part of the figure obtains the feature representation of all genes at different moments, the algorithm 

can use a variety of measures for different node pairs to generate the probability of generating a concatenation of 
edges between two and two or other metrics, this algorithm ultimately uses the vector inner product to generate the 
probability of having a regulatory relationship between genes and genes, which is computed by the formula: 

 1 1( , ) ( )
t tt t v up v u O O     (26) 

where 
1tv 
 and 

1tu 
 are the two genes that need to be predicted whether there is a regulatory relationship or not 

at the moment 1t  , and 
tv

O  and 
tu

O  are the node feature vectors of the two genes that have been processed 

by LSTM at the moment t , respectively.   is the Sigmoid activation function and ( )  is the inner product 

operation of the vectors. 
 

III. B. 2) Time-Sequenced Gene Regulatory Network Training Strategy 
Probabilistic augmented program evolution algorithm is an algorithm used to train the structure of the proposed 
model. The probabilistic augmented program evolution algorithm consists of three parts, i.e., incorporating program 
instructions encoded in probabilistic vectors, population-based incremental learning, and tree-structured 
programming. The probabilistic augmented program evolution algorithm consists of two learning processes, 
population-based learning (GBL)) and elite learning (EL). Among them, population-based learning is the main 
learning process and elite learning is used to get the best structure. 

A probabilistic prototype tree is a complete n -forked tree with each node containing a random constant 
elP , a 

vector of probabilities of variables 
jP


, and l k  sets of instructions (where l  sets of terminal instructions and k  

sets of function instructions). The probabilistic prototype tree is generated by the following two steps: (1) generating 
the random constant U[0,1]elP  ; (2) for all sets of terminal instructions ( ) /j TP I P l  and for all sets of functional 

instructions ( ) (1 ) /j TP I P k  , where 
TP  denotes the probability of using the set of terminals. 

One of the procedures for including the very important update and mutation probability prototype trees in training 
is as follows: 

 ( )
( ) (1 ( ))

( )

el
ROG

TARGET ROGb ROGb r
ROG

FIT P
P P P P P l

FIT P





    


 (27) 
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The process of updating the probabilistic prototype tree is denoted as: 

  ( ( )) ( ( )) 1 ( ( ))rl
j j ROGb j j ROGb r j j ROGbP I P P I P c l P I P      (28) 

The process of variational probability prototype tree is denoted as: 

 ( ) ( ) (1 ( ))j j r jP I P I m P I     (29) 

where 
ROGbP  represents an individual, el

ROGP  represents the best individual, ( )j ROGbI P  represents the instruction 

of individual 
ROGbP , and 

rl  represents the learning rate, which is a well-defined constant. rlc  is a constant that 

affects the number of iterations, and 
rm  represents the mutation rate. Repeat until ( )ROGb TARGETP P P . When 

( )j pP I T , the pruning probability prototype tree, generally taken as 0.85pT  . 

 
III. C. Results and analysis of gene regulation experiments 
III. C. 1) AKR1B10 gene inference 
Based on the previously selected multi-group biomarker dataset of hepatocellular carcinoma patients, single-cell 
transcriptional data and knockdown data of AKR1B10 gene were selected as inputs from them, so as to infer the 
regulatory relationship between AKR1B10 genes in hepatocellular carcinoma patients.AURO and AUPR are the 
two most commonly used assessment indexes for evaluating the inference method of the gene regulatory 
network.The values of AUROC and AUPR are able to show the inference AUROC and AUPR values can show the 
accuracy of the inference methods, and the higher the value, the more accurate the inference results. Therefore, 
AUROC and AUPR are used in this paper to quantitatively evaluate the performance of this method. 

Comparison experiments were conducted using RITIES, JUMP, GENIE, and GC-SIN. where GENIE utilizes a 
holistic tree-based strategy with multifactor perturbation data, and JUMP uses a hybrid strategy combining a 
nonparametric decision tree approach with a dynamics on/off model with time-series expression data. The data 
used in both methods are averages of gene expression, and RITIES, GC-SIN, and GL-TGRN designed in this paper 
used single-cell transcriptional data to infer AKR1B10 gene expression in hepatocellular carcinoma patients. 

Figure 3 shows the results of AKR1B10 gene regulation inference by different methods, in which Figure 3(a)~(b) 
shows the comparison results of AUROC and AUPR, respectively. The results showed that the accuracy of GL-
TGRN, GC-SIN and RITIES inference results were better than that of JUMP and GENIE, indicating that the single-
cell transcriptional data were more effective for inference of AKR1B10 gene expression compared to the mean gene 
expression values. This is due to the fact that single-cell transcriptional data contains the gene expression levels of 
multiple cells, and analyzing this data can capture the cellular differential information to infer the gene expression 
of AKR1B10 more accurately.GL-TGRN improved the AUROC and AUPR by 26.23% and 35.69%, respectively, 
compared with the comparative method GC-SIN. This indicates that the method proposed in this paper to classify 
genes using knockout data before analyzing single-cell transcriptional data is effective. The gene knockout data 
contains steady-state gene expression information, which makes up for the deficiencies in the single-cell data, and 
the results of gene classification directly identify many non-existent regulatory relationships, which provides a great 
contribution to the improvement of the inference accuracy. In summary, the GL-TGRN model designed in this paper 
showed better performance results than the comparative methods on the multi-omics data of AKR1B10 gene in 
hepatocellular carcinoma patients, either AUROC or AUPR performance results, which indicated that the inferred 
results of the temporal sequencing of AKR1B10 gene in hepatocellular carcinoma patients had a higher accuracy 
rate, i.e., the inference was closer to the temporal expression of the AKR1B10 gene in the liver cancer serum 
proteins. The higher accuracy of the extrapolation indicates the more accurate the originally unknown intergenic 
regulatory roles reduced by analyzing the expression levels of genes that can be observed in the cells. 
III. C. 2) Gene-modulated ablation experiments 
In the GL-TGRN model established in this paper, three modules, GraphSAGE, LSTM and feature fusion (FF), are 
mainly included as a way to ensure the model's ability to optimize the prediction of AKR1B10 gene temporal 
expression in liver cancer patients. In order to further analyze the effect of different structures on enhancing the 
regulatory network of AKR1B10 gene, the ablation experiments were designed based on the GraphSAGE network 
and the introduction of the LSTM and feature fusion modules, respectively, on the basis of the data of multiple 
groups of student organisms from hepatocellular carcinoma patients obtained in the previous paper. The results of 
the above two ablation experiments were compared with the performance of the GL-TGRN model for the purpose 
of ablation experiments. AUROC and AUPR were chosen as evaluation indexes to obtain the effect of AKR1B10 
gene regulation under different features, and Figure 4 shows the ablation experiments of the model under different 
evaluation indexes. 
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(a) AUROC (b) AUPR 

Figure 3: Inference results of AKR1B10 gene regulation 

From the comparison of the experimental results in the figure, it can be seen that the AUROC and AUPR values 
obtained from the GL-TGRN model are significantly higher than those of a single model or two network structures, 
then it indicates that the GL-TGRN model designed in this paper can realize the precise analysis of the time-
sequence expression of the AKR1B10 gene in hepatocellular carcinoma patients. The ablation experiments verified 
that the addition of the fusion multi-omics feature module to the GL-TGRN model is useful for improving the accuracy 
of the model in inferring the regulatory network of the AKR1B10 gene in hepatocellular carcinoma patients. This 
suggests that fusion multi-omics gene features not only enriched the input information of the model, but also 
enhanced the ability of the model to predict the regulatory relationships among genes. 

 

Figure 4: Ablation experiments of the model 

III. C. 3) AKR1B10 gene differential expression analysis 
After obtaining gene and microRNA expression data for hepatocellular carcinoma, the data were subjected to 
differential expression analysis to screen for differential genes and microRNAs that contribute to the development 
of hepatocellular carcinoma.In practice, the observed data for genes and microRNAs are discrete values containing 
random errors, and comparisons of the differences in expression levels between conditions are generally 
considered as comparisons of two distributions, which, in addition to considering the mean value, also Consider the 
effect of variance on the analysis of differences. In this paper, we choose the R language and call the function of 
edgeR package of Bioconductor to help carry out variance analysis. 

The exactTest() function of edgeR is called to accurately test the differential genes and microRNAs in normal and 
diseased samples, where the null hypothesis of the exactTest is that the relative abundance of microRNAs or genes 
g in normal and diseased samples are equal, and those that are contrary to the null hypothesis are considered to 
be unequal. exactTest() uses the FDR-corrected q-values to analyze the variance of the samples. FDR-corrected 
q-value as the criterion for selecting differential genes and microRNAs associated with hepatocellular carcinoma, 
and the FDR-corrected q-value was chosen to have a significant level of 0.01. 

In order to reduce the false positives of the data, this topic simultaneously used the logarithmic fold change (logFC) 
to determine the differential genes and differential microRNAs in the two samples and averaged the logFC values 
of the genes or microRNAs in each group of comparisons after removing the very large and very small values. In 
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this case, the absolute value of logFC was chosen to have a significant level of 1, i.e., a difference of two times was 
considered a significant difference, and when the ratio value was greater than 2, it was considered to be up-
regulated in normal samples, and when the ratio value was less than -2, it was considered to be down-regulated in 
diseased samples. The expression levels of genes and microRNAs were considered significantly different when 
they met the criteria for differences in both logFC and FDR values under both samples. Tables 1 and 2 show the 
results of the differences of the first 20 differential genes and 14 microRNAs, respectively. After processing and 
analysis, 786 significantly different genes and 14 microRNAs were obtained in this study, and these biomolecules 
were considered to be significantly associated with liver cancer development. 

Table 1: Top 20 differential genes 

Name Name Name Name 

CD5LS CTD-2573B13 RP12-532J6 LMAN12L2 

FAM8C9A SPICT63 KCNT1Y7 RP11-878D25 

STAB78B2 CD16BET2 NKX3-1H SLCF9E5 

GPTR189 CXCR3P21 CTB-135C14 MMP13E2 

RP11-1213A24 IDI2-ASI1A ITG1AD8 FEF1A2P35 

 

Table 2: Differential microRNA 

Name Name Name Name 

HCC-miR-443b HCC-miR-452a HCC-miR-138 HCC-miR-141 

HCC-miR-145 HCC-miR-428 HCC-miR-129 HCC-miR-485-2 

HCC-miR-12b HCC-miR-486-7 HCC-miR-207 HCC-miR-4612 

HCC-miR-892b HCC-miR-195-2 - - 

 
Figure 5 shows the volcano plots of AKR1B10 gene expression, where Figure 5(a)~(b) shows the volcano plots 

of differential genes and differential microRNAs, respectively. The horizontal coordinate of the volcano plot is taken 
as the negative logarithm of FDR with 5 as the base (-log5), and the larger the horizontal coordinate is, the smaller 
the FDR value is, and the more different the molecule is in the two samples. The vertical coordinate is taken as 
logFC and when the value is greater than 2, it is the point of up-regulation in the normal sample, labeled as blue, 
and the point less than -2 is the point of up-regulation in the diseased sample, labeled as purple. Based on the 
volcano plot, it can be seen that the differential expression of AKR1B10 gene in hepatocellular carcinoma patients 
can be clearly understood, which provides reliable data support for clarifying the prevalence of hepatocellular 
carcinoma patients. 

  

(a) Differential genes (b) Differential microRNA 

Figure 5: Volcano map of AKRIB10 gene expression 
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IV. Conclusion 
The study demonstrated that the GL-TGRN model showed significant advantages in the temporal expression 
inference of AKR1B10 gene in hepatocellular carcinoma patients. Compared with the traditional method, GL-TGRN 
improved the AUROC and AUPR values by 26.23% and 35.69%, respectively, indicating that the model can more 
accurately capture the temporal features of gene expression in hepatocellular carcinoma patients. The comparison 
with the contrasting methods indicated that the fusion of multi-omics data plays an important role in improving the 
accuracy of gene regulatory network inference. In addition, the results of differential expression analysis screened 
786 differential genes and 14 miRNAs, molecules that were significantly associated with hepatocarcinogenesis. It 
was further verified by ablation experiments that the fusion of multi-omics features effectively enhanced the model 
performance. The study in this paper provides strong data support and new research perspectives for the early 
diagnosis and precise treatment of hepatocellular carcinoma. 
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