
International Journal for Housing Science and Its Applications
Publish August 10, 2025. Volume 46, Issue 4 Pages 613-626

613

https://doi.org/10.70517/ijhsa46455

Research on sensitive data discovery and optimization
algorithm based on trusted execution environment
Junfang Sun1,*
1 State Grid Qinghai Information & Telecommunication Company, Xining, Qinghai, 810000, China

Corresponding authors: (e-mail: 13001041161@163.com).

Abstract Under the cloud computing environment, traditional security mechanisms are difficult to effectively protect
the confidentiality and integrity of sensitive data. Aiming at the security protection of sensitive data in cloud storage
environment, this paper proposes an optimization algorithm for sensitive data discovery and integrity checking
based on Intel SGX trusted execution environment. Methodologically, the SGX-based trusted execution
environment framework is constructed, the integrity verification scheme combining the multi-branch path tree (MBT)
data structure and bilinear pair algorithm is designed, and the third-party verification organization and blockchain
network are introduced to realize data integrity verification. The data verification in challenge-answer mode is
realized through the smart contract mechanism, and the file version verification is optimized by combining the
version sequence number parameter. The results show that when the number of files reaches 1900, the total
execution time of this paper's scheme is reduced by 51.29% and 32.76% compared with the B-PDP and SA-PDP
schemes, respectively. Tests based on the MNIST dataset show that the time overheads of the storage and
validation phases are 0.728ms and 0.291ms, respectively. The overall performance of the Trusted Execution
Environment network reaches 95.48% of the original Fabric, with only a 6.42% increase in latency and a 5.03%
decrease in throughput. The conclusion proves that the scheme can significantly improve the efficiency of sensitive
data verification under the premise of guaranteeing security, and provides an effective guarantee for data security
in cloud storage environment.

Index Terms Trusted Execution Environment, Intel SGX, Sensitive Data, Integrity Verification, Multi-branch Path
Tree, Blockchain

I. Introduction
With the development of mobile Internet and mobile terminal technology, smart phones and Internet of Things (IoT)
have begun to integrate into every corner of people's daily lives. While enjoying the convenience brought by these
technologies, they also bring a lot of security risks. While they provide rich functions, they also provide opportunities
for information leakage and malware attacks, and various security problems are becoming more and more
prominent [1], [2]. Most of the research reports in recent years show that the overall trend of sensitive information
leakage problem is increasing year by year [3], [4]. For example, sensitive data leakage jeopardizes users' privacy
and personal information security, and also seriously affects operators' core secrets, competitiveness in the same
industry, and market reputation [5], [6]. At present, the security problem of sensitive data has aroused widespread
concern from all walks of life.

There are more ways of sensitive data flow through the whole data life cycle, covering multiple links such as data
generation, analysis, statistics, transfer, and expiration, etc., and sensitive data leakage is most likely to occur in
the process of data flow to low-control environments, such as the production environment to the test environment
[7]-[9]. Therefore, identifying sensitive data throughout the data lifecycle in order to obfuscate sensitive data has
become a top priority [10]. Early identification of sensitive data by manual means, by the database administrator
based on personal experience to find and determine the sensitive data, the method is time-consuming and laborious,
and there is a high probability of missing sensitive data, after the introduction of intelligent technology and
application models, the probability of missing sensitive data is reduced, but due to the semantic fuzzy characteristics
of unstructured data, the differences in the classification of the sensitive data class in different environments, and
the sensitive data dynamic changes, the sensitive data identification technology still needs to be improved [11]-[15].
The construction of trusted execution environment is an effective measure to protect sensitive data. Migrating
sensitive data and applications to the trusted execution environment, establishing physical isolation from the
ordinary execution environment, and preventing them from being directly read or modified are widely used in the

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

614

fields of secure payment, identity authentication, digital copyright management, secure communication, data
sharing, encryption key management, etc. [16]-[19].

The widespread application of cloud computing technology has driven a fundamental change in the data storage
model, with organizations and individual users increasingly choosing to store their data in the cloud for cost-
effectiveness and convenience. However, the open and shared nature of cloud storage environments also brings
unprecedented security challenges, especially in the protection of sensitive data. When a user entrusts data to a
cloud service provider, the physical control of the data is transferred and the user loses direct control over data
access, and the asymmetry of this trust relationship becomes the core issue of cloud storage security. While
traditional encryption techniques can protect data confidentiality to a certain extent, plaintext data is still exposed to
potential security threats during data processing and computation. Malicious cloud service providers or insider
attackers may access user data through privileged software, and existing software-level security mechanisms are
often unable to defend against attacks from the operating system or hypervisor level. In addition, data integrity
verification in cloud environments faces many challenges, including inefficient verification, high communication
overhead, and difficulty in supporting dynamic data updates. Most of the existing data integrity verification schemes
are based on cryptographic techniques, and although they have security guarantees in theory, they often face
practical problems such as high computational complexity and high storage overhead in actual deployment,
especially in large-scale data environments, where the performance bottlenecks of the traditional verification
schemes are becoming more and more obvious.

Based on the above analysis, this paper proposes to use Intel SGX trusted execution environment technology to
build an optimization scheme for sensitive data discovery and integrity verification. The research is divided into four
levels: firstly, establish a trusted execution environment framework based on SGX to provide an isolated protection
environment for sensitive data processing through a hardware-level security mechanism; secondly, design an
integrity verification mechanism that combines a multi-branching path tree data structure and a bilinear pair
algorithm to improve the efficiency and accuracy of data verification; and thirdly, introduce the blockchain technology
and a smart contract mechanism to build a decentralized Third, blockchain technology and smart contract
mechanism are introduced to construct a decentralized data integrity verification system, and efficient data
verification is achieved through the challenge-answer mode; finally, the version control mechanism is combined to
optimize the integrity verification in dynamic data update scenarios to ensure the practicability and scalability of the
scheme.

II. Trusted execution environment construction based on SGX
In recent years cloud storage has received widespread attention from researchers and IT vendors, and many
applications use cloud storage to store data. However, both users and vendors have expressed concerns about the
security and privacy of cloud storage, the core of cloud storage security is the security and privacy of distributed file
system. In cloud storage, since the physical medium for storing data does not belong to the cloud storage user,
when the user hands over the data to the cloud storage provider, it is not the corresponding user who has priority
access to the data, but the cloud storage provider. At the same time, in the cloud storage platform the user's data
is in a shared environment, how to ensure the user's data privacy is a great concern.

II. A. Smart Contracts and the Hyperledger Fabric
II. A. 1) Definition of Smart Contract Behavior
Blockchain is a decentralized digital transaction ledger, which is jointly maintained by the nodes in the blockchain
network under the constraints of a consensus agreement. The consensus protocol ensures that honest nodes in
the blockchain network can reach consensus even when malicious nodes interfere, and the consensus process is
the process of nodes verifying and updating the ledger, and the result of the consensus is that the system provides
a unified ledger to the public. Transactions in a blockchain are stored in an ever-growing ordered list of “blocks”,
each of which also includes state metadata, creation timestamps, the Merkle hash of the transaction, the hash of
the previous block in the chain, as well as smart contract code and data [20].

In this paper, we propose a trusted verification mechanism for contract behavior to guarantee that the contract
behavior meets expectations, and we study how to construct a real-time metric and protection method for contracts
with reference to the definition of behavior in software behavioral science. The basic definition of smart contract
behavior contains the following elements:

(1) The set of blockchain system states
0 1(, , ,)nS s s s  , with the original state of the blockchain being

0s .
(2) The set of individual behavioral units A , where a behavioral unit a is an atomic operation that constitutes a

certain behavior.
(3) A single contract's behavior set B , where the behavior  is formed by concatenating all behavior units a .

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

615

(4) The expected behavior rule set ()P X , where the expected behavior rule set specifies the rules to be followed

when the contract behavior meets expectations, where X is the security condition to be met by the behavior  .

Contract behavior is defined as the subject's use of a function to operate on an object, i.e.,:




() () () () |

: , : , :

A action s applies f to obj in env s subjects

f functions obj objects env environment

  
 (1)

where subjects is the subject set, functions is the function set, objects is the object set, and environment is the

environment state. Where the subject mainly refers to the contract, the function set mainly refers to the built-in
function operations (initialization, invocation, deletion, etc.) of the contract, the object set mainly refers to the
blockchain ledger or external libraries, etc., and the environment mainly includes the sandbox, etc., and the contract
behavior is defined as the contract reads or writes to the blockchain ledger through the built-in functions.

Contract behavior sequence is defined as the sequence of system calls triggered by the contract during the
occurrence of a certain behavior, i.e:

1 2, , , na a a a system call    (2)

where  represents a behavior of a smart contract, and
1 2, , , na a a denote the sequence consisting of system

calls triggered during the execution of this behavior.
The functionality of a contract is realized through ordered code segments, and if the code is executed in an

incorrect order, the functionality will be faulty. Thus a particular function of a contract has a fixed sequence of
behaviors. System calls have a better property in detecting whether the behavior is as expected or not, and it is
only necessary to determine whether a contract is trustworthy or not by the difference between the system call
sequence and the expectation.

Behavioral trustworthiness is defined as behavior that meets expectations, i.e:

     0 0(1 ~), . , , , , (),i i i in Actual s a Expected s P a a        (3)

where  0 , , iActual s a denotes the actual execution result of the behavior  , and   0 , , (),i iExpected s P a a

denotes the expected outcome of the execution of the behavior  under the condition that the expected behavioral

rules are satisfied. If the equation holds, it means that for any system call in the behavior  the expected behavior
rule is satisfied, i.e., the contract behavior meets the expectation and thus is trustworthy. Whether a contract's
behavior is plausible or not is determined by the satisfaction of the system calls as its behavioral units with respect
to the expected behavioral rule ()P X . Trustworthy contract behavior not only discusses the condition satisfaction

of each behavior unit, but also considers its execution order, as well as the contract's own integrity, execution
environment, and so on, to satisfy the condition.

II. A. 2) Hyperledger Fabric
Hyperledger Fabric is an open-source permissioned distributed ledger technology platform customized for business
environments, and the open source community of Fabric is committed to providing a solution that includes strict
identity management and permission control mechanisms for enterprise-level applications, and effectively solves
the problems of inefficient transactions and poor identity management of public blockchains through modular and
plug-in architecture innovation [21].

Hyperledger Fabric's system architecture system empowers developers with a rich set of interfaces and tools that
enable upper layer applications to fully utilize blockchain technology. From an application layer perspective, Fabric
provides developers with the following key components and interfaces as follows:

(1) Identity management: Fabric is a permission-based blockchain, which means that participants need to be
authenticated before they can join the network and perform operations, and the identity management service
provides the functions of creating, managing, and verifying participants' identities.

(2) Ledger Management: Fabric uses a distributed ledger to record all transactions and status changes. The
ledger management service is responsible for maintaining the integrity, availability and consistency of the ledger.

(3) Transaction Management. Transactions are the basic operations on the blockchain that are used to change
the state of the ledger. The transaction management service is responsible for receiving, verifying, and executing
transactions to ensure their legality and correctness.

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

616

(4) Smart Contract Management. Smart contracts are automatically executed business logic used to define and
manage the behavior of assets on the chain, and the smart contract management service provides the deployment,
invocation, and upgrading functions of the chain code.

II. B. SGX-based trusted execution environment
II. B. 1) Intel SGX Key Technology
Intel SGX is a new extension to the Intel architecture that adds a new set of instruction sets and memory access
mechanisms to the original architecture. These extensions allow an application to implement a container, called an
Enclave, to carve out a protected area in the application's address space, providing confidentiality and integrity
protection for the code and data within the container from malware with special privileges [22]. The overall
architecture of SGX is shown in Figure 1. The implementation of SGX requires hardware and software collaboration
such as the processor, memory management component, BIOS, driver, runtime environment, and other hardware
and software to work together. In addition to providing memory isolation and protection security attributes, the SGX
architecture also supports remote authentication and sealing features, which can be used in the design of secure
software applications and interaction protocols.

SGX
module

Page tables

Platform

EPC EPCM

Application

environment

Privileged

environment

Exposed

hardware

Instructions
EEXIT
EGETKEY
EREPORT
EENTER
ERESUME

Instructions
ECREATE
EADD
EEXTEND
EINIT

EBLOCK

Enclave

SGX user
runtime

Enclave

SGX user
runtime

ETRACK
EWB
ELD
EPA
EREMOVE

How date structure

Runtime

Application

OS data structure

Hardware

Figure 1: Architecture description of SGX

With SGX technology, developers can ensure the integrity and confidentiality of data code during application
execution based on application code in trusted processors and secure execution areas. SGX technology mainly
contains two core mechanisms, namely, isolated execution and remote authentication, as follows:

(1) Isolated execution mechanism. sGX technology allows (part of) the application code to be executed in a secure
execution environment called Enclave. sGX technology can protect the code and data in Enclave from being
tampered with and listened to by other application programs or high-level system software during the operation
process. In order to realize the protection of application code and data from high-level system software attacks
during operation, the application code, data, and Enclave-related key data structures in the Enclave are encrypted
and stored in memory during operation. SGX technology does not affect the management and allocation of platform
resources by the traditional operating system, and therefore realizes that the Enclave's access to the pre-preserved
memory space (EPC) frames is not affected. Therefore, the page table for realizing frame mapping in the Enclave
to the pre-reserved memory space (EPC) is still managed by the operating system.

(2) Remote Authentication Mechanism
In order to provide users with the function of verifying the integrity of the remote program, SGX technology

provides a remote authentication mechanism, which is mainly accomplished by two commands, EGETKEY and
REPORT, and the REPORT structural information mainly contains the identity information and some user data of
Enclave A. The MAC value is generated by a report key, which is only valid for the target Enclave B. is only visible
to the target Enclave B and the EREPORT command of the same platform. When Enclave B receives the REPORT
message, it calls the EGETKEY instruction to obtain the key used to compute the MAC value of the REPORT
structure, and then compares the recomputed MAC value with the MAC value of the received REPORT to confirm

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

617

that Enclave A is running on the same platform. Once the trusted hardware part is confirmed, Enclave B then
authenticates Enclave A's identity with the information in the REPORT. Finally, Enclave A verifies the identity of
Enclave B in the same way to complete the mutual authentication within the platform.

II. B. 2) Trusted Execution Environment Framework
The overall architecture of the SGX-based trusted execution environment is shown in Figure 2. In the hardware
layer, the CPU maintains and provides EPC, a physically isolated memory area, through the extended instruction
set of Intel SGX technology and the EPCM structure. Based on the change of memory access semantics of Enclave
and the protection of application address mapping relationship, these two functions together complete the protection
of confidentiality and integrity of Enclave internal code and data. At the kernel layer, the SGX driver provides a large
number of interface services for the application program, such as the creation and destruction of Enclave, trusted
cryptography library, data sealing, remote authentication and other functions. In the application layer, user code and
data are encrypted and decrypted in the secure zone by means of a trusted cryptography library, which ensures
that the user code and data are in plaintext only in the secure zone and remain encrypted when stored in the cloud.

Cloud Resource Management System

Kernel SGX Driver

User

Code &
Data

Cloud Node Task (Container)

Untrusted Area
(Memory/Disk)

Code and data
(ciphertext)

Cluster Private
Key (Sealed)

Trusted Region
(Enclave)

Code and data
(plaintext)

Cryptographic
libraries

Hardware
EPC

Memory
CPU EPCM

Third Party Trusted
Organisations

Cluster certificate
(public key)

User applies for service, sends cluster certificate

Remote

Authentication

Generation/

Registration

Regular

Maintenance

Figure 2: The architecture of the trusted execution environment based on SGX

Its specific functions are as follows:
(1) The user's data is executed in the secure container Enclave provided by SGX technology, which can effectively

prevent attackers from inside the cloud from using privileged software, ensuring confidentiality and integrity.
(2) The cryptographic library and sealing mechanism provided by the SGX driver generates cluster certificates,

forming a set of secure and efficient data transmission encryption and decryption scheme through a third-party
trusted organization to ensure that user code and data are always encrypted by the user-generated key in cloud
transmission, and decrypted and executed only in the security zone.

(3) The security of the software and hardware environment of the cloud platform can be ensured through the
authentication and maintenance of a third-party trusted organization. Meanwhile, remote authentication through the
third-party trusted organization ensures the authenticity and effectiveness of the trusted environment of the cloud
platform and solves the problems of false certification, result forgery and identity impersonation in the traditional
trusted cloud.

(4) Through Enclave's isolation mechanism, secure data transmission scheme, and unified security standards
and certification by the third-party trusted organization, it achieves the purpose of using the cloud platform's
computing resources and not leaking information to the cloud platform, so that users can trust it.

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

618

(5) Only sensitive user code and data are put in the safe zone for execution to minimize the performance overhead
caused by the use of SGX technology.

III. Sensitive data integrity verification program design
With the rapid development of the Internet era and the popularization of the mobile Internet, all kinds of computing
platforms and cloud platform security issues have grown, and all kinds of malicious attacks threaten information
security, but also lead to many enterprises and individuals suffer from the danger of privacy and property
infringement. It is difficult to solve these problems simply by using software, and the trusted computing environment
with hardware security chips as the root of trust provides a new way of thinking.

III. A. System Security Model and MBT Algorithm
III. A. 1) System security model
The system model designed in this paper contains three entities, i.e., user, cloud server and trusted auditor. The
user is the data owner with the need to store personal data on the cloud server, which is provided and managed by
the CSP and is capable of providing cloud storage services. The auditor can be a trusted third party organization
that can check the correctness of the user's data stored on the cloud server. The system uses homomorphic
verification technology that can compress the data blocks to a fixed length, so it is ideal for network environments
with limited communication bandwidth.

In the system model, the user uploads the data to the cloud server and deletes the local copy of the data, which
reduces the storage burden of the user. The user can also delegate the task of data integrity checking to an auditor,
which is able to perform the task of data integrity checking instead of the user when the auditor passes the user's
authorization authentication. Then, the said auditor sends an audit request to the CSP asking the CSP to perform
an integrity check on the user's data in order to compute an evidence to return it to the auditor. Finally, the auditor
verifies the correctness of this evidence and informs the user of the verification result. If the CSP passes the auditor's
data integrity check then it means that the user's data is correctly stored on the cloud server. Otherwise, it indicates
that the user's personal data has been corrupted.

In cloud storage service system, it is not only necessary to be sure about the integrity of the personal data in the
cloud, but also to fulfill the user's request to update the data. In addition, since the cloud server is untrustworthy or
semi-trustworthy and there is insecurity in dynamic operations, the possible forms of attacks on the system are as
follows:

(1) Replay Attack and Forgery Attack. When the Hash function is of the form H(i), the value of its Hash function
remains H(i) after updating the ith data block. If the CSP dishonestly updates the user's “data-block-tag”, then the
CSP can use an outdated version of the “data-block-tag” to calculate the evidence. When the auditor wants to check
the integrity of the user's cloud data, the CSP can use the above evidence to deceive the auditor.

(2) Deletion Attack: A CSP may delete a portion of a user's data block and then pre-calculate an aggregated
“block-label”. When the auditor wants to perform a data integrity check, the CSP will use the pre-computed
aggregated “block-label” to deceive the auditor.

III. A. 2) MBT and bilinear pairs
Each node of a Multi-branch Path Tree (MBT) has multiple child nodes, i.e., the out-degree is greater than or equal
to 2. This data structure ensures the correctness of the data block at the storage location in the cloud and the
verifiability of the dynamic updates, and for the same number of leaf nodes, the depth of the constructed MBT is
much less than that of the MHT. In MBT, the authentication path refers to the set of nodes in the path from the target
node to the root node, and the The auxiliary information, on the other hand, refers to the set of sibling nodes of all
the nodes in that authentication path.

The depth of the MBT tree is set to 2 and the out-degree is n. Then the number of leaf nodes is 2n , which

corresponds to the hash values of 2n data blocks, respectively. The hash value of the intermediate node
1W ,

 
1 1 2() () ()w nh H H m H m H m  , with the rank value n , and the root node R corresponds to a hash value of

 1 2 nR w w wh H h h h  , with rank value 2n . The authentication path constructed by the cloud storage server for the

data block
2m is  2 1(),H m W , and the auxiliary information to authenticate this data block is:

  2 1 3 2 3(), (), , (), , , ,n nH m H m H m W W W    (4)

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

619

Based on the leaf node corresponding to the data block
2m contained in the challenge information and the

corresponding auxiliary information, the hash value of the root node R in the MBT can be computed as

 2 2(),Rh H m   . Then, it is compared with the true root node R hash value
Rh to verify that the data block is

correct in terms of location, and thus whether the cloud storage server has correctly performed the dynamic update
operation.

Assuming that
1G and

2G are cyclic groups of order both prime q , and P is any generating element of the

group
1G , the bilinear mapping

1 1 2:e G G G  from
1G to

2G satisfies the following properties:

(1) Bilinearity: the equality (,) (,)a b abe P Q e P Q holds for any group elements
1,P Q G and variables , Na b .

(2) Non-degeneracy: there exists
1P G such that (,) 1e P P  holds.

(3) Computability: for any
1,P Q G , there exists a polynomial time algorithm to compute (,)e P P .

III. B. Sensitive data integrity verification program
III. B. 1) Design of integrity checking program
In this paper, we propose a cloud storage data integrity verification scheme based on Intel SGX technology for the
data integrity problem as shown in Fig. 3. A third-party validation authority (TPAI) is introduced to verify the data
integrity of the requests from users and cloud storage providers (CSPs). The scheme includes users, CSPs and
Blockchain Network (BCN) in addition to TPAI. The user is the user who uses the cloud storage service, which can
be an individual user or a small or medium-sized enterprise. The CSP provides the cloud storage service, which
provides the user with highly reliable, secure, low-cost, and easy-to-scalable data storage service. The BCN
provides the storage and validation service, which stores the user's data integrity proof and auxiliary validation
information into the block and provides the data with legally valid integrity proof based on the tamper-resistant
feature of the blockchain. The BCN provides the storage and validation service. The smart contract in BCN forwards
the user-initiated integrity challenge to CSP and verifies the CSP's response. TPAI, as a trustworthy and legally
valid verification organization, can verify the data integrity of the arbitration initiated by the user and CSP.

CSP

TPAI

User

B
lock

B
lock

B
lock

B
lock

Returns arbitration results

Initiate arbitration

Return to Arbitration Results

Initiate Arbitration

Integrity Verification

Upload data

Download Data

Return
Challenge

Results

Initiate
Integrity

Challenge

Challenge-

Verification
BCN

Block

Node Node

Node

Node Node

Node

Figure 3: Sensitive data integrity verification scheme

The whole scheme can be divided into three parts:
(1) Data uploading. User encrypts the data before uploading it and generates a data integrity proof tree (DIPT)

and an auxiliary verification information tree (AVIT), and then uploads the DIPT and AVIT into the blockchain network.
(2) Challenge-Answer: User initiates integrity verification challenge, smart contract in BCN forwards User's

challenge to CSP, CSP receives and answers the challenge, and then sends the answer result to smart contract.

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

620

The smart contract verifies the answer based on the AVIT stored in the block and sends the verification result to
User.

(3) Data Integrity Verification: After receiving the successful challenge result from the smart contract, User initiates
data integrity verification to TPAI, which utilizes DIPT stored in the block to verify the integrity of the data on the
CSP and returns the verification result to User; meanwhile, the CSP can initiate verification to TPAI against the
illegal challenge of User.

III. B. 2) Integrity check specific constructs
For ease of description, define the notation: G and

tG are 2 q -ordered multiplicative cyclic groups, q is a large

prime, g is the generating element of G , : () te G G G  is a bilinear mapping from G to
tG ;   *

phash Z  is

the anti collision hash function, chal is the set of challenges,  is the labeling evidence,  is the data evidence,

and u and v are the 2 public keys.
(1) () (,)Setup sk pk  . After DO inputs the security parameter  , a probabilistic algorithm is executed to

generate DO's private and public keys. Randomly select *
pZ  and compute v g , select random element

u G to get DO's private key sk  and public key (, ,)pk g v u , and make pk public.

(2) (,)TagGen sk M  . DO uses the private key sk to split the encrypted file M into n data blocks of fixed

size, and then calculates the corresponding data block tag for each data block ([1,])im i n according to Eq. (5).

DO puts all the data block tags into the tag set to be merged and uploaded with the data file for storage. uploaded
to the CSP cloud space for preservation. i.e:

  ()* im
i hash i u


  (5)

(3) ()ChalGen M chal . DC arbitrarily chooses the set of random numbers

 1 1 2 1 2 (1) 1(, , ,) , () ,i i in i n i n i nR R r r r R r c       is sent to the CSP, where R is the number of n linearly independent

vectors in n dimensions and c is the number of challenge blocks. To further reduce the computational burden on
DC, the generation of R can be realized using the lookup table method, while DC can simply retrieve the set of
random numbers from the table 1 at a time. The CSP receives R and uses

2R to construct a new n -dimensional

vector

1(1)

2(1)

(1)

n

n

n n

r

r
y

r







 
 
   
  
 


. The CSP uses

1R and y to obtain a vector of random numbers a according to equation (6),

and publishes a random number
1 2 nr a a a  , by which the set of blocks of data to be extracted is determined.

If the total number of data blocks is n and c data blocks need to be extracted for validation, the data is divided
into c regions of capacity (/)n c (rounded down). The subscripts of the extracted data blocks are obtained

according to Eq. (7), and then the corresponding random numbers
iv are selected from the finite field to obtain the

challenge set, i.e.,
0{ , }i i cchal i v   .

1

11 12 1 1

21 22 2 2

1 2

(, , ,)

(, , ,)
, mod

(, , ,)

n

n

n n nn n

r r r a

r r r a
a y p

r r r a


   
   
    
   
   
   





 



 (6)

 %(/) *(/)i r n c i n c  (7)

(4)  Pr , , ProofGen M chal oof  . After the CSP obtains the set of challenges chal , it generates the evidence

of data completeness according to Eqs. (8) and (9)  Pr ,oof   . I.e:

(,)

() i

i

v
ii v chal

 


 (8)

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

621

(,)i i ii v chal

v m


  (9)

CSP computes
(,)

(())i

i

v

i v

C H i u  , noting that A  , with B g and D v . CSP verifies the evidence by

computing
1 (,)z e A B and

2 (,)z e C D , comparing
1z and

2z are equal or not, and send the result along with

1z and
2z to DC.

(5)
1 2(, ,Pr , ,) /Verify pk chal oof z z true false . DC verifies the validity of the challenge sets chal ,

1z ,
2z , and

Pr oof one by one after receiving them from CSP. For the challenge set chal , the DC verifies the validity of r by

equation (10) using
1 1{ }i i nR V   , where

1 2(, , ,)i i i inV r r r  . If the validation fails, it indicates that the CSP has

provided false random numbers, and the DC refuses to continue the validation and reports this result to the DO and
the CSP, otherwise the validation continues. I.e:

1

2
1 2 (1)(, , ,)i i i in i n

n

a

a
V a r r r r

a



 
 
    
 
 
 




 (10)

For
1z ,

2z and Proof, DC randomly selects *
1 px Z , *

2 px Z , *
1 py Z and *

2 py Z , and computes the

following parameters (
1X ,

2X ,  and  can be computed in advance, and look up the table during validation)

obtained): 1
1

xX g , 2
2

xX g ; 1 2(,)x xe g g  ; 21/
1 1

xT A X  , 11/
2 2

xT B X  ; 1
1

yY g ; 2
2

yY g ; 1 2(,) y ye g g  ;

21/
1 1

yU C Y  ; 11/
2 2

yU D Y  . DC sends
1 2 1 2(, , ,)T T U U  to the CSP. The CSP computes Eqs. (11) and (12) and

sends
3 4{ }i iz  

 to the DC. I.e:

 1
3 1 2(,)[(,) (,)]z e T T e g B e A g  (11)

 1
4 1 2(,)[(,) (,)]z e U U e g D e C g  (12)

DC determines whether both Eq. (13) and Eq. (14) are valid, if they are valid then the CSP has truly performed
the bilinear pair operation in the evidence validation computation, otherwise the validation is terminated and the
result of this validation is recorded as false . DC then compares whether

1z is equal to
2z , if it is equal then the

result of this validation is true , otherwise it is false . After the DC validation is complete, the validation result

 true false is reported to the DO. ie:

 1 21/()
3 1

x xz z   (13)

 1 21/ ()
4 2

y yz z   (14)

III. B. 3) Optimization of integrity checking scheme
In order to avoid server-side spoofing and to reduce storage pressure on the client side, a new parameter is
introduced on top of the basic scheme: the block identifier BI . When generating tag , the client generates the

corresponding BI for each file block based on the held secret and adds it to the original tag . This computation is

done in the preparation phase by the following function:

 (, ,) iBIgenerate sk i filename BI (15)

1 2Pr (, ,) { { }, { }, , { }}separeUpdate sk pk F T t M t M t M  (16)

In this scheme, { } modim
i it M BI g N  .

In the validation phase, the client needs to first remove BI of the specified file block from Y before performing
the verification of content consistency and integrity. Therefore, before performing the verification process, the client
first executes the following function:  , ,removeBI sk S P P .

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

622

Because the client removes only the BI of the specified data block, all credentials computed using non-specified
data blocks fail to satisfy consistency and integrity. The server is also unable to spoof the user with the computed
results of non-specified file blocks.

In some cases, a user needs to update a file on a file server to a new version. However, each version of the file
is complete and consistent, and it is possible for the server to maintain the old version of the file and still be able to
validate the file at all times. Therefore, customers need to be able to verify the correct version of a file.

To fulfill this need, this solution introduces a new parameter: version serial number s , which helps the user to
verify the version serial number. When the client prepares a file for upload, unlike the basic scheme, the key at the
time of generation of tag is updated from g to sg . When the content of the file block remains unchanged but

the version is updated, the client only needs to use /s s as the re-encryption key and perform the corresponding

re-encryption computation to complete the update of the version number. For a data block with updated content,
the user is required to re-update tag . The related functions are as follows:

  ln ,Seria umber sk i s (17)

 (, ,) iBIgenerate sk i filename BI (18)

1 2Pr (, ,) { { }, { }, , { }}separeUpdate sk pk F T t M t M t M  (19)

In this scheme, { } modism
i it M BI g N  , (, /)Tagupdate t s s t  is the corresponding re-encryption algorithm.

By utilizing the version number parameter, this scheme can easily update the version information of a file block
with unchanged content, and can prevent the server from deceiving the user by utilizing the old version of the file.

IV. Program validation for trusted execution environments
In order to solve the security problems existing in the traditional architecture, trusted computing came into being.
The goal of trusted computing is to introduce a root of trust in the computing system, and then establish a chain of
trust that extends the trust relationship from the underlying hardware to the upper layer applications, in order to
enhance the security of the computing system. Trusted computing plays an important role in protecting terminal
security and has now become a standardized technology.

IV. A. Calibration efficiency and program evaluation
IV. A. 1) Audit efficiency tests
In this paper, a trusted execution environment framework based on Intel SGX technology is implemented using the
PBC library, developed in C. The system parameters are Ubuntu Linux, 32GB of RAM, and 160GB of hard disk. In
each sensitive data verification cycle, files with different hotness are generated and randomly corrupted in
accordance with the law of two-eighths, and the size of the test file is 0.5MB.Select B-PDP and SA-PDP as a
comparison program, set the test time to 48 hours, the number of files is set to 600~1900, and the total execution
time of the files in the process of sensitive data verification is counted. Figure 4 shows the comparison results of
the efficiency of sensitive data integrity verification.

As can be seen from the figure, when the sensitive data verification files reach 1900, the total execution time of
the sensitive data integrity verification scheme given in this paper is reduced by 51.29% and 32.76% compared to
the total execution time of the files of B-PDP and SA-PDP, respectively, and the audit time of this paper's sensitive
data integrity verification scheme has a flat growth trend. This is because the B-PDP scheme audits documents
according to a fixed frequency causing documents to be audited frequently, and the SA-PDP scheme distributes
the document audit tasks over multiple time cycles according to the document audit requirements, which increases
unnecessary audits to some extent. The more time the sensitive data integrity verification scheme saves, the more
files can be verified. The verification execution time in the B-PDP scheme is slightly higher than in the SA-PDP
method because, with the B-PDP scheme, the files require the system to respond to their verification requests,
resulting in an increase in the number of file verifications, and the SA-PDP scheme sacrifices some of the verification
efficiency to increase the intensity of file verification.

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

623

Figure 4: Comparison of the efficiency of integrity verification for Sensitive data

Set the test time as 48h, every hour to the verification system to add 2000 files, the test system can verify the
number of files, the comparison results are shown in Figure 5. As can be seen from the figure, in the early stage of
sensitive data integrity verification, the B-PDP program checks the number of files more than the SA-PDP program,
while the sensitive data integrity verification program designed in this paper checks more files than the other two
programs. In this paper, the scheme distributes the sensitive data verification tasks in multiple cycles, and at the
early stage of verification, some files are not verified because they are not in the verification cycle. At the later stage
of verification, the B-PDP scheme wastes a large amount of computational resources by frequent verification, which
makes the system reach the verification limit prematurely, while the SA-PDP scheme sacrifices part of the
computational resources with its positive verification characteristics, so that the number of verified files is lower than
that of the sensitive data integrity verification scheme designed in this paper.

Figure 5: The comparison of the number of verifiable files

IV. A. 2) Overall program assessment
The above experimental data are used randomly generated data, and each data is set to be 0.5MB. In order to
enhance the diversity of the data, this paper uses the MNIST dataset for the experiments, which is divided into the
test dataset and the training dataset, in which the test dataset contains 12,000 samples of data with a data size of
7.5MB, and we divide it into 30KB/strip and 60KB/strip of data for experiments. The training dataset contains 50,000
sample data with a data size of 45MB, which is divided into 100KB/bar and 200KB/bar for experimentation. Table 1
shows the time overhead of this paper's scheme on MNIST dataset under different stages.

As can be seen from the table, the insertion and query operations of the sensitive data integrity checking scheme
designed in this paper are basically unaffected by the size of the data volume inserted and queried, and the
execution time of the trusted execution environment is affected by the size of the data volume. Therefore, the same
total data volume is divided into multiple data for cloud storage, the larger the single data volume, the longer the
trusted execution environment execution time will be, but the number of times it needs to be stored will be relatively
reduced. The smaller the amount of individual data, the shorter the execution time of the trusted execution
environment, but the number of times it needs to be stored increases. In addition, for the overall verification of the
program in different stages of storage and verification time overhead, based on the support of the trusted execution

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

624

environment technology, it can be seen that the storage and verification phase of the time overhead of only 0.728ms
and 0.291ms, to a certain extent, can be obtained with a high degree of time efficiency.

Table 1: Integrity verifies the time overhead of each phase

Time overhead (ns)
Test dataset Training dataset

30KB 60KB 100KB 200KB

Storage stage
Execute 1281057 1759428 3827916 2402961

Store 1306 1115 1158 1072

Verification phase
Execute 850342 1314126 3128217 4894237

Store 938 998 990 1030

IV. B. Verification of Trusted Execution Environment
IV. B. 1) Implementation environment performance
The trusted execution environment designed in this paper is developed based on Intel SGX and Hyperledger Fabric,
built using EGov, SGX DCAP driver and efabric/base:0.1 image. The host device uses an Intel Core (TM) i5-10300
CPU with 4 cores and SGX support, and the entire network was built and tested on Ubuntu. Two organizations are
used to simulate three enterprises or institutions in the blockchain network respectively, with a total of six Peer
nodes and three Orderer nodes, and all clients and nodes are deployed on the same host.

In this paper, Hyperledger Caliper is used to test the Trusted Execution Environment network. First, this paper
selects the high throughput chain code in the Hyperledger Fabric sample to test the variation of latency and
throughput during the increase of the number of users from 1 to 256, and then compares this variation with the
original Fabric network. In order to exclude the effect of network fluctuations, 10 sets of data were tested in each
round and the average value was taken as the final data. Reading the ledger information (Fabric Query operation)
does not create new blocks or endorsements, and it returns the reading result directly, which is characterized by
low latency and high efficiency. Writing book information (Fabric Invoke operation) requires endorsement,
distribution and verification, and its overhead is higher. These two operations are very different in performance, so
this paper tests for these two cases separately. The relationship between network latency and the number of clients
is shown in Fig. 6, where Figs. 6 (a)~(b) show the time delays of Query and Invoke operations, respectively. The
relationship between the throughput rate and the number of clients is shown in Fig. 7, where the throughput rate
refers to the number of transactions per second, and Fig. 7 (a)~(b) shows the throughput rate of Query and Invoke
operations, respectively.

From Fig. 6 and Fig. 7, it can be seen that the latency of the trusted execution environment network designed in
this paper is elevated by about 6.42%, the throughput rate is decreased by about 5.03%, and the overall
performance reaches about 95.48% of the original Fabric performance, which is within the acceptable range. In the
case of both read ledger and write ledger operations, the latency of the trusted execution environment network
designed in this paper is slightly higher than that of the original Fabric network, and its throughput rate is slightly
lower than that of the original Fabric network. Considering that Enclave creation and operation need extra overhead,
and the trusted execution environment network designed in this paper adds the remote authentication process
between Peer node and chain code, and the information interaction between the two needs to be
encrypted/decrypted, which all need extra overhead. Therefore, it is normal that the performance of the trusted
execution environment network in this paper decreases appropriately.

(a) Query operation time delay (b) Invoke operation time delay

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

625

Figure 6: The relationship between network latency and the number of clients

(a) Query operation throughput rate (b) Invoke operation throughput rate

Figure 7: The relationship between throughput rate and the number of clients

IV. B. 2) Different network performance
In order to further illustrate the performance of the trusted execution environment network designed in this paper,
the FPC network is chosen as a comparison, and its specific comparison results are shown in Table 2. Compared
with FPC, the trusted execution environment framework in this paper is more lightweight and has a smaller TCB.FPC
uses Go language and C language to reconstruct the whole Fabric architecture, which requires the creation of
classified ledger Enclave and chain code Enclave, and the system consists of about 3,000 lines of trusted C/C++
code, of which the ledger Enclave has about 2,400 lines of code and the chain code Enclave has about 600 lines
of code. In addition to the system code, the FPC also needs to load the chain code written by the user into the
Enclave, which has 1,000~4,000 lines of code, so the total number of lines of trusted code is 4,000~8,000 lines.
Based on the test results in the existing literature, it can be seen that the overall performance of FPC reaches 90.24%
of the original Fabric. Compared with FPC, the trusted execution environment designed in this paper uses 2 chained
code Enclave and is extended at runtime without adding trusted code to the system. The Enclave only loads the Go
language chain code written by the user, and the number of lines of code is 300~4000 lines, so it has a smaller
TCB. Therefore, the overall performance of the Trusted Execution Environment constructed based on the SGX
technology in this paper is better, and it can provide a reliable support for realizing the effective discovery and
verification of sensitive data.

Table 2: Different network performances

Name Number of enclaves The number of trusted codes Performance

FPC 4 4000~8000 90.24% of the original Fabric

Ours 2 300~4000 95.48% of the original Fabric

V. Conclusion
In this paper, the key technical problems of sensitive data protection in cloud storage environment are effectively
solved by constructing a trusted execution environment framework based on Intel SGX and a multi-branch path tree
integrity verification mechanism. The experimental results show that the scheme reduces the total execution time
by 51.29% compared to the traditional B-PDP scheme and 32.76% compared to the SA-PDP scheme when
processing 1900 files, which significantly improves the data verification efficiency. Performance tests based on the
MNIST dataset show that the time overhead of the system is only 0.728ms in the storage phase and 0.291ms in
the verification phase, demonstrating good time efficiency characteristics. The overall performance of the Trusted
Execution Environment network reaches 95.48% of the original Hyperledger Fabric, maintaining high system
performance while introducing security protection mechanisms.

The solution realizes confidentiality and integrity protection of sensitive data during cloud processing through
hardware-level security mechanisms, effectively resisting attack threats from privileged software. The application of
the multi-branch path tree data structure reduces the depth of the authentication path and lowers the verification
overhead, while the integration of the bilinear pair algorithm further enhances the security of the checksum. The

Research on sensitive data discovery and optimization algorithm based on trusted execution environment

626

integration of blockchain technology builds a decentralized trust mechanism, avoids the single-point-of-failure
problem, and improves the reliability and transparency of the system. The optimization of the version control
mechanism supports the integrity verification requirements in dynamic data environments and enhances the
practicality of the scheme.

This research provides innovative solution ideas for the security protection of sensitive data in cloud storage
environment, which has important theoretical value and practical application prospect.

Funding
This work was supported by Science and Technology Project of State Grid Qinghai Electric Power Company (No:
52281424000D).

References
[1] Issa, I., Wagner, A. B., & Kamath, S. (2019). An operational approach to information leakage. IEEE Transactions on Information Theory,

66(3), 1625-1657.
[2] Qamar, A., Karim, A., & Chang, V. (2019). Mobile malware attacks: Review, taxonomy & future directions. Future Generation Computer

Systems, 97, 887-909.
[3] Shiau, W. L., Wang, X., & Zheng, F. (2023). What are the trend and core knowledge of information security? A citation and co-citation

analysis. Information & Management, 60(3), 103774.
[4] Wang, M., & Jiang, Z. (2017). The defining approaches and practical paradox of sensitive data: An investigation of data protection laws in

92 countries and regions and 200 data breaches in the world. International Journal of Communication, 11, 20.
[5] Sargiotis, D. (2024). Data security and privacy: Protecting sensitive information. In Data governance: a guide (pp. 217-245). Cham:

Springer Nature Switzerland.
[6] Levina, A., Mostovoi, R., Sleptsova, D., & Tcvetkov, L. (2019). Physical model of sensitive data leakage from PC-based cryptographic

systems. Journal of Cryptographic Engineering, 9, 393-400.
[7] Guri, M., Zadov, B., & Elovici, Y. (2019). Odini: Escaping sensitive data from faraday-caged, air-gapped computers via magnetic fields.

IEEE Transactions on Information Forensics and Security, 15, 1190-1203.
[8] Sha, L., Xiao, F., Chen, W., & Sun, J. (2018). IIoT-SIDefender: Detecting and defense against the sensitive information leakage in industry

IoT. World Wide Web, 21, 59-88.
[9] Cam, N. T., Pham, V. H., & Nguyen, T. (2019). Detecting sensitive data leakage via inter-applications on Android using a hybrid analysis

technique. Cluster Computing, 22(Suppl 1), 1055-1064.
[10] Verma, V. (2023). Cutting-Edge AI Techniques for Data Anonymization and Privacy Protection in Sensitive Data Contexts. Eastern

European Journal for Multidisciplinary Research, 2(1), 50-57.
[11] Yang, Z., & Liang, Z. (2018). Automated identification of sensitive data from implicit user specification. Cybersecurity, 1, 1-15.
[12] Yi, Y., Zhu, N., He, J., Jurcut, A. D., Ma, X., & Luo, Y. (2024). A privacy‐sensitive data identification model in online social networks.

Transactions on Emerging Telecommunications Technologies, 35(1), e4876.
[13] Kužina, V., Petric, A. M., Barišić, M., & Jović, A. (2023). CASSED: context-based approach for structured sensitive data detection. Expert

systems with applications, 223, 119924.
[14] Yang, R., Gao, X., & Gao, P. (2021, January). Research on intelligent recognition and tracking technology of sensitive data for electric

power big data. In 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) (pp. 229-234).
IEEE.

[15] Cui, Y., Huang, Y., Bai, Y., Wang, Y., & Wang, C. (2024). Sensitive data identification for multi‐category and multi‐scenario data.
Transactions on Emerging Telecommunications Technologies, 35(5), e4983.

[16] Khan, N., Nitzsche, S., López, A. G., & Becker, J. (2021). Utilizing and extending trusted execution environment in heterogeneous SoCs
for a pay-per-device IP licensing scheme. IEEE Transactions on Information Forensics and Security, 16, 2548-2563.

[17] Siddiqui, H., Idrees, M., Gudymenko, I., Le Quoc, D., & Fetzer, C. (2021, October). Credentials as a service providing self sovereign
identity as a cloud service using trusted execution environments. In 2021 IEEE International Conference on Cloud Engineering (IC2E) (pp.
210-216). IEEE.

[18] Xie, H., Zheng, J., He, T., Wei, S., & Hu, C. (2023). TEBDS: A trusted execution environment-and-blockchain-supported IoT data sharing
system. Future Generation Computer Systems, 140, 321-330.

[19] Cheng, J., Li, J., Xiong, N., Chen, M., Guo, H., & Yao, X. (2020). Lightweight Mobile Clients Privacy Protection Using Trusted Execution
Environments for Blockchain. Computers, Materials & Continua, 65(3).

[20] Zhenzhou Tian,Yudong Teng,Xianqun Ke,Yanping Chen & Lingwei Chen. (2025). SolBERT: Advancing solidity smart contract similarity
analysis via self-supervised pre-training and contrastive fine-tuning. Information and Software Technology,184,107766-107766.

[21] Zahra Yaqoubi,Behrouz Shahgholi Ghahfarokhi,Faegheh Seifhashemi & Mojtaba Mahdavi. (2025). Mobile crowd sensing based spectrum
monitoring with privacy protection and malicious behavior detection using hyperledger fabric and identity mixer. The Journal of
Supercomputing,81(7),850-850.

[22] Changhee Han,Taehun Kim,Woomin Lee & Youngjoo Shin. (2024). S-ZAC: Hardening Access Control of Service Mesh Using Intel SGX
for Zero Trust in Cloud. Electronics,13(16),3213-3213.

