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Abstract This paper proposes a method for standardized collection of hydropower plant equipment data, and 
establishes a bi-directional long and short-term memory network (Bi-LSTM) model applying the attention 
mechanism. After the standardized collection of hydropower plant operation data and feature processing, an 
equipment fault diagnosis process is established, and a variety of fault pre-processing schemes are formulated 
according to the actual situation, such as adjusting parameters, distributing loads, hierarchical response and 
closed-loop feedback, etc. The Bi-LSTM model is also used in the experiments to verify the accuracy of the data 
collected. The experiments verified that the Bi-LSTM model surpasses the classical algorithms such as SVM, BP 
and CNN in fault identification accuracy, and its accuracy can reach 92.14% when the training set has 1000 
samples. Moreover, the performance test of the system also shows stable response time, high transmission 
efficiency, and possesses good real-time and scalability. The proposed research can supply theoretical basis and 
technical route for constructing intelligent and solid housing power system, and promote the management of 
hydroelectric power station equipment in the direction of intelligent forecasting and automatic maintenance. 
 
Index Terms hydropower plant equipment, equipment fault diagnosis, Bi-LSTM model, housing power system, 
automatic maintenance 

I. Introduction 
Accelerated urbanization has led to an increasing demand for electricity in residential houses, which has brought 
certain challenges to the operation of power systems [1]. Moreover, people have more stringent requirements on 
the stability and continuity of power supply [2]. As the main provider of clean energy, whether the hydroelectric 
power station can operate normally is directly related to the reliability of electricity for residents. Nowadays, in order 
to ensure the safety of traditional facilities, hydroelectric power plant enterprises pay great attention to the 
management of internal operations, and has taken a number of perfect measures to strive for economic interests 
and social benefits go hand in hand. However, the current fault diagnosis technology of hydropower plant 
equipment still exists the phenomenon of slow response and lack of accuracy, which cannot meet the standard of 
sustainable development of the housing power system [3]. Utilizing the excellent fault recognition function and fast 
response mechanism of deep learning algorithms, it is promising to be popularized and applied in the protection of 
the power system, which in turn promotes the sustainability of the housing power system [4]. 

The purpose of this paper is to study the use of deep learning algorithms to carry out intelligent analysis and 
processing, improve the speed of fault diagnosis and develop corresponding preventive measures, such as 
changing the operating parameters of the machine, making maintenance schedules, etc., to minimize the damage 
of faults to the residential power system, and put forward feasible solutions for the development of hydropower 
plants. 

II. Applications of deep learning 
II. A. Data Acquisition and Processing 
During the operation of hydropower plants, a wide variety of data from different sources are generated, and each 
type of data is stored with a unified sub-table format and configuration. For example, real-time data of water level 
and time period statistics, including hourly and monthly tables, contain sequences of features within different time 
periods. For the problems of insufficient calculation of various types of data of hydropower station equipment and 
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different sequences of eigenvalues, this paper is based on the eigenvalue calculation and system operation 
calculation, the data acquisition and processing flow is shown in Figure 1, and the main steps include: 

(1) In accordance with the type of operational data to categorize and organize the data, and clarify the specific 
data requirements in each type of data collection. 

(2) Preliminarily determine the processing standards for each type of data set by combining the prescribed 
standards for hydropower plant equipment, industry norms and work experience. 

(3) To strengthen communication and collaboration with residential, power grid and higher management units, 
and to uniformly determine data collection and processing rules. 

(4) To strengthen the communication and collaboration with the residence, the power grid and the higher 
management units to reach the consistency of the data collection and processing specifications. 

 

Figure 1: Data collection and processing flow 

II. B. Model Selection and Establishment 
Housing power system, hydroelectric equipment will generate a large amount of data, deep learning algorithms for 
a sufficient amount of data samples, with a certain effectiveness [5]. Deep learning in the long short-term memory 
network (LSTM) can not only predict the unidirectional text sequence information, but also over the hierarchical 
structure, extract sequence features, the introduction of the attention mechanism can accelerate the model training 
[6]. Therefore, in this paper, the attention mechanism and bidirectional long and short-term memory network 
(Bi-LSTM) model is constructed, and Figure 2 shows the Bi-LSTM network structure. The results of the collected 
and processed housing power data are used as an initialized weight matrix to analyze the dependencies before 
and after the sequence of hydroelectric power plant equipment in the word sequence encoding layer. 

 

Figure 2: Bi-LSTM network structure 
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  1,tw t N  denotes the word vectors of the faulty signal i  at time step t , and the hidden state of each word 

vector in the output signal of the Bi-LSTM after learning by preprocessing h  is: 

      1,i th Bi LSTM w t N      (1) 

Considering that only some of the words in the fault signals are informative for fault type diagnosis, the attention 
mechanism assigns weight it  to the word hidden states according to the importance difference and weights all 

the hidden states ith  of a single warning signal i  to generate an average generated signal vector is  with the 

following formula: 

  tanhit w it wu W h b   (2) 
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where wW  and wb  are the weight parameter matrix and the bias vector of ith , respectively, itu  is the output of 

ih  after the signal-attention layer, and wu  is the randomly initialized sequence based on the housing power 

system vector [7]. 

In the signal sequence coding layer, the input to each time step is the signal vector   1,is i L . Since the timing 

of fault signals in equipment data acquisition is implicitly correlated, the sequence correlation between fault signals 
can be learned through this layer, and the output signal coding vector ih : 

      1,i th Bi LSTM w t L      (5) 

Fault warning events are multi-signal sequential textual data, and redundant signals have little effect on the type 
judgment, so it is important to distinguish different signals by the signal attention layer. Firstly, the key semantic 
features of the signals are extracted, then the implicit state weights of each time step output from the signal 
sequence coding layer are calculated to generate the event feature vector Ev , E  denotes the warning event, and 

the formula is as follows: 

  tanhi s i su W h b   (6) 
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where s  denotes the warning signal, sW  and sb  are the weight parameter matrix and the bias vector of ih , 

respectively, iu  is the output of ih  through the single-layer sensing machine, and su  is the output of the 

single-layer sensing machine based on housing power system initialized signal vector. 
The warning type determination layer then generalizes the deep features learned by the upstream network, and 

the softmax classifier is used to output the warning event type label with the following formula: 

  soft max E E Ep W v b   (9) 

where EW  and Eb  are the weight parameter matrix and bias vector of the layer, respectively, and p  is the 

probability of the label of the equipment warning type, and the warning type corresponding to the largest element of 
p  is selected by the softmax function as the final fault location, cause, etc. Based on the Bi-LSTM model, the 

hydroelectric power plant equipment fault categories are identified, so as to target the treatment strategy. 
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II. C. Model Training and Validation 
Using the eigenvalues and system operation data, the operation data of the hydropower plant equipment are 
categorized and divided into a training set and a validation set in the ratio of 7:3 or 8:2 [8]. The purpose of the 
training set is to adjust the parameters and learn the features of the Bi-LSTM model, so that the model can 
recognize the hidden abnormal tendency and the precursor of faults in the operating conditions of the equipment. 
The validation set is used to test the performance of the model during the training process, to examine the ability to 
predict the unknown data, and to avoid overfitting in the training set. Through the dynamic observation of validation 
error, loss function and accuracy, the model parameters are adjusted in real time to ensure that the deep learning 
algorithms have good generalization and provide technical support for the normal operation and continuous 
progress of the residential power system. 
 
II. D. Fault pre-processing strategy 
When deep learning models accurately detect anomalies or hidden faults in the operation of the equipment, 
immediate and appropriate pre-developed countermeasures are necessary to minimize the negative impact on the 
normal operation of the residential power system and energy supply. Pre-established countermeasures can be 
implemented from the following perspectives: 

(1) In the early stages of a fault, immediate analysis of the model output data can be used to quickly detect any 
tendency of abnormal operation of the equipment. Once abnormalities are detected, the operating parameters are 
immediately adjusted, such as reducing load, current, voltage and other important parameters, so that the 
equipment does not remain in an abnormal operating state for a long period of time, which in turn reduces the 
accumulation of stress on the main components, and achieves the purpose of slowing down the aging or 
re-damage of the machine. And this dynamic change of parameters can also achieve the effect of energy saving, 
and increase the stability and safety of the whole system [9]. 

(2) Once a hydroelectric power plant equipment failure occurs, it is necessary to rely on the central dispatching 
system to quickly dynamically adjust the energy load. With the combination of deep learning technology and big 
data control platform, it can intelligently analyze the current operating conditions of nearby hydropower plants, grid 
nodes or standby energy facilities, and make reasonable load distribution, so that the load in the fault area can be 
transferred in a timely manner. This not only maintains the uninterrupted power supply to residents, but also 
improves the resistance and adaptability of the residential power network, prevents the cascading effect caused by 
localized failures, and reduces the risk of large-scale power outages. 

(3) Based on the results of the deep learning model's prediction of fault types, fault probabilities and 
development trends, the fault risk level can be accurately assessed. Accordingly, operation and maintenance 
personnel can deploy maintenance plans in advance for high-risk areas, and carry out key inspections and repairs 
for potential fault points. For the mild faults detected, adjustments can also be made through remote control or local 
intervention to avoid further expansion. Precision maintenance not only improves maintenance efficiency, but also 
effectively shortens downtime and resource loss [10]. 

(4) It is important to formulate hierarchical countermeasures for different levels of faults. For example, ordinary 
software failures can use remote reboot, such as low-cost methods to quickly restore the system to normal. 
Electrical system emergencies use medium-intensity methods such as isolation and temporary power supply. 
Major equipment damage requires the activation of back-up units and the replacement of parts or equipment. The 
multi-tiered response plan allows for flexibility and efficiency, minimizing the impact on residential electrical system 
operations. 

(5) In order to achieve closed-loop management, all troubleshooting tools and their effectiveness should be 
uploaded to the central control platform immediately. The comparison of the model's determination with the results 
of actual repairs can improve the parameters of the model as well as the algorithmic construction, so that the 
prediction accuracy and reaction speed can be improved. Moreover, the feedback system is helpful for the 
establishment of a fault database, which is conducive to the rapid response to similar problems in the future [11], 
[12]. In this way, an intelligent cycle system of “prediction-intervention-feedback-optimization” is formed, which 
greatly improves the level of intelligent maintenance management of hydropower stations and the sustained 
security of the power supply system in residential areas. 

The above multi-level fault pre-processing measures can significantly improve the safety and response 
sensitivity of hydropower plant equipment operation, thus laying a solid foundation for the continuity of power 
supply and intelligent management in residential areas. 
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III. Analysis of application results 
III. A. Experimental setup 
In this paper, the arithmetic data are derived from the operation data of a hydropower plant centralized control 
center for the years 2020-2024, as well as fault warning signals, which are stored in the form of a database. In the 
preparation stage of the experiment, the operational data of the hydropower plant involved in the training is divided 
into two groups, of which the training stage and the testing stage are each used in general. The data of both 
phases were expanded by data acquisition and processing, and the length of the sampling window was 1024, and 
the offset was set to 60. According to the training of the Bi-LSTM, there were 500 training samples for each case as 
well as 20 test samples, and there were no repetitions between these samples. In the experimental process, the 
Bi-LSTM model calculation method is compared with other methods to demonstrate its advantages in solving the 
fault diagnosis of hydropower plant equipment. 
 
III. B. Performance evaluation 
In order to verify the effectiveness of the improved Bi-LSTM algorithm, the other fault analysis and processing 
models were set up as a control group, from which 100, 200, 300, 400, and 500 samples were randomly selected 
and divided into five groups, and comparison experiments were conducted. The sample selection process was 
repeated five times during training, using five different training sets generated to reduce the bias of small sample 
data due to randomness. Table 1 shows the results of the comparison of the accuracy of different models, 
comparing with machine learning algorithms (SVM), neural networks (BP), and convolutional networks (CNN), the 
accuracy of deep learning Bi-LSTM is more prominent, and has a greater advantage in fault diagnosis. Taking the 
training set of 500 samples as an example, it has an accuracy rate of 92.14%, which is far more than other models. 

Table 1: Comparison of accuracy of different models 

Model Name 100 samples 200 samples 300 samples 400 samples 500 samples 

Bi-LSTM 94.51 94.47 94.36 93.25 92.14 

SVM 87.85 85.47 84.32 83.38 82.26 

BP 88.54 86.48 86.21 82.47 80.65 

CNN 86.25 86.14 85.40 84.23 83.31 

 
Performance testing of software or hardware platforms is essential when analyzing hydropower plant equipment 

failures, and is important to ensure the continued development of the housing power system. Performance testing 
is a continuous task throughout the fault analysis cycle. JMeter, an open source Java-based performance testing 
tool, is utilized to evaluate the performance and stability of the model. Table 2 shows the results of the performance 
test. The average response time obtained from the platform test is 1800ms, and the median response time is 
1910ms. It can be seen that the response rate of Bi-LSTM is quite stable during the operation of the hydropower 
plant equipment. 90% of the requests have a response time of no more than 2506ms, while 99% of the requests 
are completed within 6413ms. It can be seen that the response time of the majority of requests is acceptable, only 
a few requests have long response time, and the study of such abnormal requests is helpful to find out the 
improvement measures. In addition, the throughput is 99.8 requests per second with 325.65 receive KB/sec and 
46.20 transmit KB/sec, which indicates that the Bi-LSTM has a stable processing efficiency for the housing power 
system, and it can select appropriate solutions according to the different nature of the equipment faults. 

Table 2: Platform test results 

Performance indicators Index value Performance indicators Index value Performance indicators Index value 

Number of samples 1000 90% response time percentile 2506ms Data receiving rate 325.65KB/sec 

Average response time 1800ms 99% response time percentile 6413ms Data sending rate 16.20 KB/sec 

Median response time 1910ms Minimum/maximum response time 15 / 6026ms Throughput (processing rate) 99.88 / sec 

 
III. C. Troubleshooting 
Category 1 is the normal state of hydropower equipment operation, and categories 2-category 4 are bearing wear, 
voltage instability and signal loss, respectively. Fig. 3 shows the confusion matrix of fault diagnosis results, Fig. 3(a) 
shows the Bi-LSTM algorithm, which can be visualized that Bi-LSTM has higher prediction accuracy and performs 
well on fault 2 and fault 3 categories. Fig. 3(b) shows the SVM algorithm, in contrast this model has more 
classification errors on categories with a higher level of confusion. 
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(a) Bi LSTM algorithm (b) SVM algorithm 

Figure 3: Confusion matrix of fault diagnosis results 

IV. Conclusion 
In this paper, deep learning techniques are used to explore the ways in which fault analysis and pre-processing of 
hydroelectric power plant equipment can be applied to the sustainable development of power systems in 
residential areas. With the design and implementation of Bi-LSTM model with attention mechanism, the accuracy 
of fault detection as well as the immediate response of the system are improved. Experiments have demonstrated 
that this model has excellent performance in categorizing the operating conditions of equipment, especially in 
identifying important fault types such as bearing wear and voltage fluctuation, which significantly outperform the 
traditional approach. The systematic integration of fault pre-treatment schemes, including dynamic parameter 
adjustment, load distribution, hierarchical countermeasures, and immediate feedback mechanisms, makes the 
whole system operation more robust and control more flexible. In terms of performance tests, the model 
demonstrates good performance in terms of response speed and other criteria, thus proving its engineering utility. 
In conclusion, the deep learning algorithm proposed in this paper is applied to the monitoring of hydropower plant 
equipment, which not only makes the fault disposal intelligent, but also provides scientific and technological 
support for the safe, stable, and low-emission operation of the power system in residential areas, and has a 
positive impact on the promotion of the construction of smart grids and sustainable energy systems. 
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