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Abstract Post-disaster spectrum resource shortages and user mobility issues are the main challenges to the 
effective application of drone communications in emergency housing. This paper establishes a UAV-based D2D 
communication network system model to simulate post-disaster emergency housing scenarios. The 
communication link instability caused by frequent user mobility in emergency housing scenarios is transformed into 
the minimum perturbation problem in graph theory, and an interference model is established. To address load 
imbalance and link congestion in post-disaster emergency housing scenarios, a DDPG deep reinforcement 
learning method is developed by combining DQN and DPG methods, and a dynamic routing strategy based on 
DDPG is designed. This strategy can dynamically and adaptively adjust the routing overhead of wireless links 
based on the network status in the emergency housing scenario, thereby ensuring stable communication in the 
emergency housing scenario. Under the DDPG-based dynamic routing strategy, the average jitter of the routing 
algorithm remains below 3.0 ms, and the node death time is delayed (138 s), demonstrating superior stability and 
energy balancing capabilities. 
 
Index Terms emergency housing support, DDPG, drone communication, dynamic routing strategy 

I. Introduction 
Emergency housing assistance refers to housing measures provided by the government in the event of major 
natural disasters or other emergencies. As a new, efficient, foldable housing solution designed specifically for 
emergencies, emergency housing assistance demonstrates excellent response effectiveness in crisis situations 
[1]-[4]. Emergency housing assistance offers numerous advantages, such as rapid assembly, simple overall 
structure, and ease of transportation and relocation—features not found in conventional housing [5]-[7]. The 
emergence of emergency housing support enables us to quickly and efficiently construct housing in the face of 
natural disasters, such as earthquakes, or during outdoor construction projects, providing temporary work and 
living spaces for people [8]-[11]. However, during emergency housing support operations, challenges such as 
infrastructure damage caused by disasters and complex rescue environments result in low efficiency and 
ineffective outcomes for manual rescue efforts [12]-[14]. 

With the development of drone hardware and software technology, multi-drone swarm-based self-organizing 
drone ad hoc networks (FANETs) have garnered increasing attention from both academia and industry. Their 
flexible deployment and rapid response capabilities enable them to efficiently complete various tasks under 
disaster conditions [15]-[18]. UAV self-organizing network routing protocols are one of the most important methods 
for improving service quality (QoS). In emergency housing support, dynamic routing strategies for UAV 
self-organizing network communications utilize intelligent algorithms to optimize data transmission paths between 
UAVs in real time, addressing issues such as node movement and energy constraints, thereby ensuring stable 
communications in disaster-affected housing areas [19]-[22]. 

This paper first conducts mathematical modeling of post-disaster drone-to-ground user communication 
scenarios and constructs a drone-based D2D model network system. To address the issue of unstable 
communication links in the communication scenario, an interference graph is constructed to form an interference 
model. Next, the DDPG algorithm is introduced to design a solution method for the network model and interference 
model based on DDPG, thereby proposing a dynamic routing strategy based on DDPG. Furthermore, under 
different conditions of node quantity and node movement speed, this paper conducts simulation experiments 
comparing the average end-to-end latency, throughput, and packet loss rate between the proposed routing 
protocol and traditional routing protocols. Finally, by evaluating the average jitter performance and energy 
balancing capability of the designed dynamic routing algorithm, the feasibility and reliability of the proposed 
dynamic routing strategy are validated. 
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II. Communication Network System Model and Problem Statement 
II. A. Network Model 
This paper considers a communication model for emergency housing response scenarios (a drone-based D2D 
communication network system model), as shown in Figure 1. The figure depicts an emergency communication 
network composed of UAVs and ground users, including fixed-position tethered drone base stations and mobile 
sensing drones, disaster-affected individuals, and rescue personnel. The set of sensing UAVs is denoted by 

 1 2, , , nU u u u   and the ground user set is denoted by  1 2, , , mD d d d   respectively. Communication links 

exist between sensing UAVs, between sensing UAVs and assisting/rescue personnel, and between assisting 
personnel and rescue personnel. Each device node in the network is equipped with a wireless interface. 
Additionally, communication services between devices include data transmission, voice calls, and video 
transmission. In this scenario, due to damage to some base stations, spectrum resources face significant 
challenges, and it is assumed that all communication links reuse POCs. The technology used in this paper is based 
on partially overlapping channels of the IEEE 802.11b/g standard, which supports 2.4 GHz links and up to 11 
available channels, where channels 1, 6, and 11 are mutually orthogonal and do not interfere with each other. 
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Figure 1: Unmanned aerial vehicle (UAV) joint D2D communication network model 

II. B. Interference Model 
Since the spectral overlap reduction of POCs decreases the occupied bandwidth, it is beneficial for improving 
spectral efficiency. However, it also introduces a new issue: if channel allocation is performed improperly, it may 
lead to more severe interference and cause network congestion. Therefore, effective allocation of POCs is one of 
the key challenges. Before allocation, the first consideration is how to characterize the interference of POCs in the 
network. To this end, this paper constructs an interference graph topology to characterize the interference of POCs 
in the network as follows. 

Let p  and q  denote the channel numbers in POCs, and let ( )t  denote the absolute interval between 
channel p  and channel q  at time slot t  , i.e., Equation (1): 

 ( )t p q    (1) 

( ( ))IR t  indicates the interference range when the channel p  and the channel q  are separated from each 

other at ( )t . Suppose p  is the channel occupied by node i  in the t  time slot, and q  is the channel allocated 

by node j  in the t  time slot. In addition, there is no communication link between node i  and node j , and the 

distance between the two nodes in the t  time slot is ( )ijd t , based on the interference range table, the 

interference edge can be established according to the channel spacing and distance between the two nodes, and 
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( )ijI t  is used to represent whether there is interference between node i  and node j  in the t  time slot, if node 

i  and node j  If the distance between them is less than the interference range ( ( ))IR t  when the channel 

interval is ( )t , then there is interference, otherwise there is no interference, which is expressed as Eq. (2): 

  
1, ( ( )) ( )

0, ( ( )) ( )
ij

ij
ij

IR t d t
I t

IR t d t




  
 (2) 

III. Dynamic routing strategy based on DDPG 
III. A. Routing Protocols 
III. A. 1) Routing Concepts 
Routing is the process of transmitting information from a source through a network to a destination, passing 
through at least one intermediate node during transmission. The main difference between routing and bridging is 
that bridging occurs at the second layer (link layer) of the OSI reference model, while routing occurs at the third 
layer (network layer). This distinction means that the two use different information during the transmission process, 
thereby accomplishing their tasks in different ways. 

The concept of routing has been around in the computer industry for a long time, but it wasn't until the mid-1980s 
that it achieved commercial success. The main reason for this delay was that networks in the 1970s were relatively 
simple, and larger networks became more common later on. 

 
III. A. 2) Routing Components 
Routing involves two basic actions: determining the optimal path and transmitting information over the network. 
During the routing process, the latter is also referred to as (data) switching. Switching is relatively simple, while 
path selection is complex. 

(1) Path Selection 
A metric is a measurement standard used by routing algorithms to determine the optimal path to the destination, 

such as path length. To assist in path selection, routing algorithms initialize and maintain routing tables containing 
path information, which varies depending on the routing algorithm used. Routing algorithms use various pieces of 
information to populate the routing table. The destination/next-hop address pair informs the router that the best 
way to reach the destination address is to send the packet to the router representing the “next hop.” When a router 
receives a packet, it checks its destination address and attempts to associate this address with its “next hop.” The 
routing table may also include other information. Routing tables compare metrics to determine the best path, and 
these metrics vary depending on the routing algorithm used. Common metrics will be discussed below. Routers 
communicate with each other by exchanging routing information to maintain their routing tables. Routing update 
information typically includes all or part of the routing table. By analyzing routing update information from other 
routers, the router can construct a network topology map. Another example of information exchanged between 
routers is link-state broadcast information, which notifies other routers of the sender's link status. Link information 
is used to build a complete topology map, enabling routers to determine the optimal path. 

(2) Switching 
Switching algorithms are relatively simple and are the same for most routing protocols. In most cases, when a 

host decides to send data to another host, it obtains the router's address through certain methods and then sends 
a data packet to the physical address (MAC) of the router. The protocol address of the packet is directed to the 
destination host. The router examines the destination protocol address of the packet and determines whether it 
knows how to forward the packet. If the router does not know how to forward it, it typically discards the packet. If 
the router knows how to forward it, it changes the destination physical address to the next-hop physical address 
and sends it there. The next hop may be the final destination host, or it may be another router, which will perform 
the same steps. 

 
III. B. Model solving based on DDPG 
III. B. 1) Algorithm Principles 
Since the state space and action space of the system are continuous in the network model and interference model 
mentioned above, this paper adopts deep reinforcement learning methods to solve the problem. The DDPG 
algorithm is considered an effective means for learning optimization strategies in high-dimensional continuous 
spaces, exhibiting good stability and convergence. The DDPG algorithm is based on the AC framework. Since the 
state and action spaces are continuous, neural networks are used to fit the policy function and the Q  function. 
The Actor network represents the policy network, which generates actions, while the Critic network represents the 
Q  network, which evaluates the quality of the policy and updates the parameters of the Actor network by 
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calculating the error function. Compared to other AC algorithms, DDPG is based on deterministic policies, so the 
Actor network directly outputs actions rather than probability distributions of actions. DDPG stores historical data 
such as state transitions and immediate rewards from the interaction between the agent and the environment in an 
experience replay pool through experience replay. When updating parameters, random samples are drawn from 
the experience replay pool for use as training data. Due to the randomness of sample extraction, the correlation 
between training data is reduced, and high temporal correlation between data can cause the neural network to get 
stuck in a local optimum. Additionally, DDPG employs target network technology, which involves decoupling the 
network used to compute target values during algorithm training. A separate target network with the same structure 
as the training network is used to compute target values, and the target network's parameters are updated by 
copying from the training network's parameters, thereby stabilizing the algorithm's iterative training process. 
Therefore, this chapter employs the DDPG algorithm to solve the model. This algorithm is applicable to continuous 
state and action spaces, suitable for dynamic environments, and the routing algorithm is easily scalable, resulting 
in a more stable and effective routing algorithm model. In this study, the DDPG algorithm is considered for solving 
the MDP model, and a corresponding intelligent dynamic adjustment algorithm for link weights is designed. 

The basic logical architecture of the DDPG algorithm is shown in Figure 2. Similar to the AC algorithm, the 
DDPG algorithm also consists of two modules: Actor and Critic. Both the Actor and Critic modules contain two 
neural networks, namely the online network and the target network, and they share the same network structure. 
The online network is used for real-time learning and training, while the target network is used to reduce the 
correlation between training data. The parameters of the target network are periodically updated based on the 
parameters of the online network. During training, an experience replay pool is used to store interaction data. The 
neural networks of the online Actor and online Critic are trained using sampled data, while the parameters of the 
target Actor and Critic networks are updated based on the parameters of the online Actor and Critic networks. The 
target network uses soft updating to update its parameters, meaning it copies a portion of the parameters from the 
online network rather than copying all of them. 
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Figure 2: The logical architecture of DDPG 

III. B. 2) Actor Network 
As shown in Figure 2, the Actor network is used to output actions. There are two Actor networks in DDPG. The 
online Actor network is used to generate the current action a  based on the current state s , and is responsible for 
updating the policy parameters  . The action interacts with the environment to produce the next state s  and 
obtain the reward value r . This interaction information  ,  ,  ,  s a s r  is stored in the experience replay pool. Based 
on the sampled next state s  from the experience replay pool, the target Actor network is input to obtain the 
optimal next action a . The parameters of the online Actor network are updated using the action gradients 
obtained from the online Critic network, while the parameters of the target Actor network are updated using soft 
updating based on the parameters of the online Actor network. Since the action space is continuous, this study 
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uses a neural network to learn and obtain actions from the system state. In this study, the input to the online Actor 
network is the state of all links, and the output is the weights of the links. A portion of data ( , , , )s a s r  is sampled 
from the experience cache pool. To update the parameters of the online Actor network, backpropagation of the 
policy gradient is required, with the policy gradient calculated as in Equation (3): 
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Among these, [ ]grad Q  represents the action gradient obtained from the online Critic network, which is used to 

characterize the adjustment direction of the online Actor network in order to achieve higher returns. Meanwhile, 
[ ]grad   is the parameter gradient of the online Actor network, which is used to characterize how the online Actor's 

neural network adjusts parameters to select high-return actions. Here, 
bN  denotes the number of randomly 

sampled samples, and equation (4) applies: 

 ( ) ta s N
   (4) 

s  denotes the agent's state, a  denotes the action, 
  denotes the policy function, and 

tN  denotes random 

noise. Since the action space is continuous, the policy function can be fitted using a neural network, with the neural 
network parameters denoted as  . The parameters of the online Actor network are updated using 

backpropagation, as shown in Equation (5): 

  Y 
 

 
       (5) 

Here,   denotes the parameter update step size of the Actor network. Due to the deterministic behavior 
generated by the policy function, random noise 

tN  is introduced to explore the environment. By introducing 
random noise on top of the deterministic behavior in the output, the agent can randomly explore the unknown 
action space, thereby enhancing the algorithm's learning performance. Therefore, the action strategy is 
transformed into a stochastic process, and actions are sampled from the stochastic process to obtain the 
corresponding actions, as shown in Figure 3. In this study, Gaussian noise is used as the introduced random noise 
to drive the agent to randomly explore unknown states. At the same time, since the state space studied in this 
paper is continuous, a neural network is used to fit the action value function, where Q  is the parameter of the 
online Q  network. 

Online strategy
Network 
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Action: a
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Figure 3: Action decision-making process 

III. B. 3) Critic Network 
The Critic network outputs the action value function. In DDPG, there are two Critic networks, one of which is the 
online Critic network responsible for updating the parameters of the value network. It calculates the Q  value of 
the current state and current action sampled from the experience replay pool, and this Q  value is used to update 
the parameters of the online Actor network. The target Critic network is used to calculate the Q  value for the next 
state s  sampled from the experience replay pool and the next action a  selected from the target Actor network. 
The two Q  values are used to calculate the loss for updating the online Critic network, while the target Critic 
network adopts soft updates based on the parameters of the online Critic network. Since the state space is 
continuous, this study fits the Q  function using a neural network. The online Critic network is updated using mean 
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squared error, which can be calculated using the TD bias. In DDPG, the TD bias can be obtained from both the 
online network and the target network as shown in Equation (6): 

   2
21 1

, | Q
i i i ii i

b b

L y Q s a
N N

      (6) 

Among these, 
bN  is the random sampling batch size, and 

iy  is the target Q  value, representing the Q  

value obtained by taking action 
1ia 
 in the target network when calculating the next state 

1is 
. The next action is 

obtained from the target Actor network, with the next state as its input. 
i  denotes the TD error. The calculation of 

iy  is as shown in Equation (7): 

  1 1, ( | ) | Q
i i i iy r Q s s     

     (7) 

Among them, 
ir  represents the reward value obtained by the agent when taking action 

ia  in state 
is . The 

parameters of the target Q  network are Q   and the parameters of the target Actor network are    . The next 
action can be obtained according to the target strategy, that is, equation (8): 

7 

[0,1]   represents the discount factor. The parameters of the online Critic network are updated using the 
gradient descent method, as shown in equation (9): 

 ( , | )Q Q Q
aQ s a       (9) 

where   represents the parameter update step size of the Critic network, and   represents the TD bias. 
In the DDPG algorithm, soft updates are used to update the parameters of the target Actor network and the 

target Critic network, resulting in equations (10)-(11): 

  1          (10) 

  1Q Q Q        (11) 

Here,   denotes the target network update parameter,   is a constant, and 0 1  . 

IV. Evaluation of the effectiveness of dynamic routing strategies 
IV. A. Testing of operational performance 
To evaluate the performance of the dynamic routing strategy described in this paper, we compare the routing 
protocol based on this dynamic routing strategy (M3) with the classic AODV routing protocol (M1) and the 
ACO-AODV routing protocol (M2). We compare the performance of three metrics—average end-to-end delay, 
packet loss rate, and throughput—under different node numbers and node movement speeds. 
 
IV. A. 1) Impact of Different Node Numbers 
In the experiment, the node speed was set to 5 m/s, with the number of nodes ranging from 10 to 50. Each set of 
five drone nodes constituted an experimental point. Ten simulations were conducted under different node 
configurations, and the final results were obtained by averaging the data from the ten simulations. 

The impact of different node counts on average end-to-end latency is shown in Figure 4. As the number of nodes 
increases, the average end-to-end latency of all routing protocols gradually increases. The (M3) routing protocol, 
which comprehensively considers network node signal reception strength, congestion, and hop count, reduces 
average end-to-end latency by 16–21 ms compared to the traditional AODV routing protocol, thereby reducing 
network latency. 
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Figure 4: The influence of different node numbers on the average end-to-end delay 

The impact of different numbers of nodes on throughput is shown in Figure 5. As the number of nodes increases, 
the throughput of the drone network gradually decreases. This is because an increase in the number of nodes 
leads to an increase in the number of routing messages transmitted by the drone network, resulting in network 
congestion. The (M3) routing protocol selects more stable routing links by considering factors such as node 
congestion, thereby transmitting more data packets. Compared to the traditional AODV routing protocol, 
throughput can be increased by up to 15.23%, improving the throughput performance of the routing protocol. 

 

Figure 5: The influence of different node numbers on throughput 

The impact of different node numbers on packet loss rate is shown in Figure 6. The packet loss rate of the drone 
network gradually increases. Only by discarding packets during data transmission can the packet loss rate be 
reduced. The (M3) routing protocol selects routing links with fewer link breaks by combining factors such as signal 
reception strength. Compared with the traditional AODV routing protocol, the packet loss rate is reduced by 5.23%, 
thereby reducing data loss during data transmission. 

 

Figure 6: The influence of different node numbers on packet loss rate 
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IV. A. 2) Impact of different node movement speeds 
The average end-to-end latency performance comparison of different protocol networks under varying node 
movement speeds is shown in Figure 7. As the node movement speed increases, the average end-to-end latency 
exhibits an upward trend. Compared to the (M1) classic AODV routing protocol and the (M2) ACO-AODV routing 
protocol, the (M3) routing protocol reduces the average end-to-end latency by at least 23.78% and up to 39.86%. 
The (M3) routing protocol further reduces the probability of data packets encountering routing holes, decreases the 
number of link switches, and lowers the probability of nodes going offline. Therefore, it not only improves data 
forwarding efficiency but also enhances communication reliability and efficiency. 

 

Figure 7: Average end-to-end delay 

Figure 8 shows the packet loss rate comparison of different protocol networks under different node movement 
speeds. Although the packet loss rate of the three routing protocols increases with the increase in node speed, the 
packet loss rate of the (M3) routing protocol is still at least 15.79% lower than that of the other two traditional 
routing protocols and can be reduced by up to 27.13%, which can effectively improve the success rate of data 
forwarding and enhance the reliability of network transmission. 

 

Figure 8: Packet loss rate 

The throughput performance comparison of different protocol networks under varying node movement speeds is 
shown in Figure 9. Overall, as the node movement speed increases, the throughput of all three protocol networks 
decreases. However, the (M3) routing protocol still shows an improvement compared to the other two traditional 
routing protocols, with an increase of at least 6.93% and up to 23.95%. This is because the (M3) routing protocol in 
this paper takes longer to send data, resulting in larger data volumes and higher throughput in the network, which 
further enhances network reliability. 
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Figure 9: Throughout 

IV. B. Verification of the effectiveness of dynamic routing strategies 
IV. B. 1) Average jitter performance 
The average jitter performance of different algorithms at various drone movement speeds is shown in Figure 10. 
Overall, the average jitter of all three algorithms decreases as the drone's movement speed increases. Among 
them, the (M3) routing protocol algorithm consistently exhibits lower average jitter than the other two traditional 
routing protocol algorithms (<3.0 ms). When the drone's movement speed is 30 m/s, the difference in average jitter 
performance between the (M3) routing protocol algorithm and the traditional routing protocol algorithms is the 
largest, reaching 1.428 ms. 

 

Figure 10: Average jitter of each algorithm in the random motion scenario of the drone 

IV. B. 2) Energy balance capability 
To analyze and compare the energy balancing capabilities of the routing algorithm designed in this paper (S1) and 
the traditional routing algorithm (S2) in dynamic scenarios, the node speed was set to 15 m/s. Figure 11 shows the 
changes in the number of node deaths for both algorithms over a simulation time of 300 s. 

 

Figure 11: Change of node death number with time 
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The number of node deaths for both algorithms continues to increase as the simulation progresses, with the rate 
of increase accelerating. This is because the energy consumption of nodes gradually increases over time, leading 
to a continuous decrease in the overall remaining energy of the network nodes. Additionally, the increased 
overhead associated with route rediscovery caused by node deaths further accelerates the rate of node deaths. 
However, the first node death time in the routing algorithm designed in this paper (S1) is later (138 seconds) and 
the total number of deaths is lower (0.87). In contrast, the curve is flatter, and the rate of increase in the total 
number of deaths is slower. This validates the superior performance of the routing algorithm designed in this paper 
in terms of energy balancing compared to traditional algorithms. 

V. Conclusion 
Based on a mathematical model for unmanned aerial vehicle (UAV) communication scenarios in emergency 
housing support, this paper designs a DDPG deep reinforcement learning method for dynamic adjustment of 
wireless link routing costs. This dynamic routing strategy effectively balances network load, not only enhancing the 
adaptability of UAV ad hoc network communication routing protocols in rapidly changing network environments but 
also ensuring communication service quality and energy balance, thereby guaranteeing the rapid transmission of 
communication data within UAV ad hoc networks. 

Under different node numbers, the routing protocol equipped with the dynamic routing strategy proposed in this 
paper reduces the average end-to-end delay by 16-21 ms and increases throughput by up to 15.23% compared to 
traditional routing protocols. Under different node movement speed conditions, the routing protocol equipped with 
the dynamic routing strategy described in this paper reduces average end-to-end latency by up to 39.86%, reduces 
packet loss rate by up to 27.13%, and increases throughput by up to 23.95% compared to traditional routing 
protocols. Additionally, thanks to the support of the dynamic routing strategy described in this paper, the average 
jitter performance of the routing protocol remains below that of traditional routing protocol algorithms (<3.0 m/s), 
with later node death times (138 s) and fewer total deaths (0.87). 
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