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Abstract Miners' safety awareness is crucial to mine safety production. Insufficient safety awareness among miners 
can easily lead to safety accidents. This study applies the DEMATEL-ISM model to explore the relationships among 
the multi-dimensional influencing factors of miners' safety awareness. First, a causal matrix and network relationship 
influence diagram for each dimension and indicator are constructed to identify 12 multi-dimensional influencing 
factors of miners' safety awareness and determine the key influencing factors. Second, based on a one-dimensional 
convolutional neural network, the SE-ResNetV2 model with a channel attention mechanism was constructed to 
achieve adaptive assessment of miners' safety vigilance. The DEMATEL-ISM model clearly reveals the hierarchical 
relationships among the factors influencing miners' safety vigilance, while the SE-ResNetV2 model reduces 
prediction errors to a certain extent. The relative prediction error of the model when inputting multi-dimensional data 
features is only 9.5%. This study provides new theoretical and technical pathways for ensuring safety in mine 
operations and has significant practical application value. 
 
Index Terms DEMATEL-ISM model, SE-ResNetV2 model, channel attention factors influencing miner safety 
vigilance 

I. Introduction 
Coal accounts for a significant proportion of China's primary energy production and consumption structure, so it is 
essential to ensure the sustained, stable, and healthy development of the coal industry [1]. In recent years, China 
has experienced frequent coal mining accidents resulting in numerous fatalities. Although the government and coal 
mining companies have implemented a series of measures to prevent and control accidents in recent years, there 
remains a significant gap compared to developed countries [2], [3]. Humans are the central actors in coal mining 
operations, and unsafe human behavior and unsafe conditions of equipment are the primary causes of coal mine 
accidents, with human factors accounting for a high proportion [4]-[6]. Researching the influence of human factors 
on unsafe behavior from the perspective of human characteristics can play a positive role in preventing and reducing 
coal mine accidents [7], [8]. 

Alertness refers to the level of sustained attention or vigilance during task execution. Short-term fatigue and 
drowsiness are equivalent to alertness [9]. In coal mine accidents, unsafe behaviors and operational errors caused 
by reduced alertness levels—such as inattention and inappropriate reactions—among coal miners have led to 
numerous preventable accidents [10]-[12]. A higher alertness level can maintain miners' ability to anticipate dangers, 
enhance their safe and efficient operational capabilities, reduce accidents caused by human factors, and lower the 
incidence of coal mine safety accidents [13]-[15]. Therefore, the level of alertness among coal miners during 
operations is closely related to workplace safety. Employees with higher alertness levels are suitable for positions 
requiring prolonged concentration and prone to unsafe behaviors [16], [17]. 

Due to the poor working environment in construction mines, with high temperatures and humidity, and the 
generation of large amounts of coal dust and noise during operations, these factors severely impair human comfort 
and exacerbate physical exhaustion among miners [18]-[20]. These adverse environmental factors reduce miners' 
ability to concentrate and maintain alertness, making them highly susceptible to accidents caused by human factors 
and leading to coal mine production safety accidents [21], [22]. Therefore, studying the impact of employee 
alertness on unsafe behaviors and its relationship with physiological factors can help implement measures to assist 
employees in adjusting their state, enhancing alertness, and reducing the occurrence of unsafe behaviors, thereby 
contributing to the reduction of coal mine accidents [23]-[26]. 
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Traditional scales and statistical analysis play a crucial role in assessing human alertness. Mahajan, K., et al. 
proposed using in-vehicle voice assistants to counteract the disengagement and fatigue effects caused by vehicle 
automation, and combined the Karolinska Sleepiness Scale to measure drivers' alertness, thereby evaluating the 
effectiveness of in-vehicle voice assistants [27]. Ferguson, B. A., et al. developed a 2-minute cognitive assessment 
tool and applied it to pre- and post-shift alertness assessments of emergency department residents, positively 
impacting shift scheduling and task allocation in the emergency department while identifying potential reductions in 
patient care errors due to physician fatigue [28]. Bihari, S., et al. used a scale data analysis method to examine 
fatigue, sleepiness, and behavioral alertness among intensive care unit (ICU) physicians, providing effective 
reference for ICU shift scheduling systems [29]. 

Domestic and international scholars have focused their research on alertness primarily on brainwave signals. 
Jiang, M., et al. developed an electroencephalogram (EEG) assessment tool to monitor changes in the cerebral 
cortex, combined with a machine learning framework to analyze drivers' alertness states under olfactory stimulation, 
and found that applying olfactory stimulation may be a potential strategy to regulate drivers' alertness [30]. Su, A. 
T., et al. used EEG testing methods to measure differences in brain rhythm spectral power before and after overnight 
shifts among doctors, while also combining the Chalder Fatigue Scale to survey information such as doctors' sleep 
duration. The proposed EEG screening and scale analysis tool can effectively detect mental fatigue among doctors 
[31]. Xavier, G et al. recorded EEG data from doctors before and after shifts, with differences in power in various 
brain regions serving as a quantitative measure of fatigue and alertness [32]. Di Flumeri, G et al. developed an 
alertness and attention controller for air traffic controllers using EEG and eye-tracking (ET) technology, which can 
automatically process and assess personnel alertness levels on duty [33]. 

Additionally, certain physiological signals can also serve as indicators of personnel alertness. Riani, K., et al. 
constructed a machine learning framework using multimodal driving session data, extracting multimodal features 
from session data to detect driver alertness, while also exploring differences between alertness and drowsiness 
[34]. Kumar, S., et al. proposed a driver alertness detection method based on physiological, environmental, and 
vehicle parameter indicators, whose excellent detection performance has made significant contributions to reducing 
traffic accident frequencies [35]. Li, Z., et al. investigated the application of biological signals in alertness prediction, 
proposing a benchmark testing framework for alertness prediction and feature analysis based on eye tracking, 
whose analysis results hold important reference value for traffic controllers' task execution [36]. Li, F. conducted a 
non-invasive analysis of traffic controllers' gaze patterns in both spatial and temporal contexts, thereby establishing 
an objective alertness assessment model that can effectively help traffic controllers avoid alertness reduction 
caused by fatigue [37]. Kouba, P., et al. believe that voice analysis can also accurately identify the fatigue state of 
on-duty personnel. Therefore, they proposed an alertness monitoring model based on hierarchical voice analysis 
(LVA) recognition technology, which can not only detect fatigue states from voice parameters but also monitor 
changes in personnel stress levels [38]. However, most of the above literature focuses on the alertness of drivers, 
doctors, and controllers during work, with few studies on the alertness of frontline coal workers. By analyzing the 
factors influencing miners' safety alertness and establishing a corresponding evaluation indicator system, it will be 
beneficial to enhance miners' judgment and response capabilities in complex work environments. 

To improve the safety level of mining operations and reduce the risk of accidents in mines, this paper adopts a 
multi-dimensional approach, considering factors such as safety knowledge and skills, safety awareness, and safety 
behavior psychology. The DEMATEL-ISM model is used to construct a causal matrix and directed graph. Based on 
this, the SE-ResNetV2 model is integrated to construct an adaptive assessment model for miners' safety vigilance. 
This model utilizes a one-dimensional convolutional neural network to perform sliding window operations in a single 
direction, employing a more lightweight convolutional kernel size to extract a richer set of safety vigilance feature 
information. Experiments were designed to explore miner behavioral characteristics and alertness levels in complex 
construction and mining environments, as well as to validate the performance of the alertness prediction model, 
thereby verifying the effectiveness of the work presented in this paper. 

II. Analysis of multi-dimensional factors affecting miners' safety awareness 
II. A. DEMATEL-ISM Model 
II. A. 1) Theoretical steps for DEMATEL-ISM model calculation 
Step 1: Establish the initial direct influence matrix A . Calculate the arithmetic mean of the scores to obtain the 
initial direct influence matrix [ ]ij n nA a   for each dimension and indicator. The three influence levels “0”, “1”, “2”, 

“3”, and “4” represent the following: Factor 
ia  has no influence on 

ja , Factor 
ia  has a weak influence on 

ja , 

Factor 
ia  has a moderate influence on 

ja  has a moderate influence, factor 
ia  has a strong influence on 

ja , 

and factor 
ia  has a very strong influence on 

ja . 
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Step 2: Establish a standardized direct impact matrix. To ensure the convergence of subsequent calculations, the 
initial direct impact matrix must be calculated using the following formula. The direct impact matrix can be normalized 
to obtain the following standardized direct impact matrix. 

 D s A   (2) 
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Step 3: Establish a comprehensive impact matrix. This step aims to further analyze the indirect impact 
relationships between various dimensions and indicators, which can be calculated using the following formula. 
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Step 4: Draw a network relationship influence diagram for each dimension and indicator, and calculate the 
corresponding centrality and influence. The specific formulas for centrality and influence are as follows. Sum the 
formulas in each row and column of the comprehensive influence matrix and represent them with matrices r  and 
c , respectively: 
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ir   represents the sum of the i  th row in the comprehensive influence matrix, i.e., the influence degree; 
jc  

represents the sum of the j th column, i.e., the degree of influence. In the network relationship influence diagram, 

i jX r c   serves as the x-axis, with its value indicating the degree of centrality; while 
i jY r c   serves as the y-

axis, with its value indicating the degree of causality. If the value is positive, the indicator belongs to the cause group; 
otherwise, it belongs to the effect group. 

ISM Steps: The Interpretive Structural Modeling (ISM) method [39] was developed as a method for analyzing 
issues related to complex socio-economic systems. Its characteristic is to decompose complex systems into several 
subsystems (or elements), utilize matrix calculation methods and the assistance of electronic computers, and 
ultimately construct a multi-level hierarchical structural model of the system. This model can transform vague ideas 
and perspectives into intuitive models with well-defined structural relationships. 

This paper employs the ISM to establish the hierarchical relationships among the multidimensional influencing 
factors of miners' safety vigilance, thereby explaining the formation process of psychological crises. Based on the 
fundamental principles of the explanatory structural model, the matrix calculations of the explanatory structural 
model are employed to derive the explanatory structural model of the multidimensional influencing factors of miners' 
safety vigilance, providing a factual basis for the structural framework of influencing factors in intervention models. 
The schematic diagram of the explanatory structural model of the multidimensional influencing factors of miners' 
safety vigilance in the complex environment of construction mines is illustrated in Figure 1. 
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Figure 1: Interpretation structure model 

Analyze the binary relationships among the constituent elements within the system by modeling the 
multidimensional influence factors affecting miner safety as a grid of n  influence factors. The system is denoted 
as S , where 

1 2{ , , , }nS S S S   and ( , )i jS S  represents the ordered pair of elements 
iS  and 

jS . All elements in 

the system S  must be binary relationships. 

Step 1: Construct the adjacency matrix. The adjacency matrix A  is a square matrix that represents the binary 
relationships or direct connections between the elements of the system. If ( )ij n nA a  , then it is defined as: 
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Step 2: Establish an reachability matrix. Use Boolean algebra operations and matrix multiplication to obtain the 
reachability matrix R . 
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Step 3: Establish a process network hierarchy diagram. Based on the reachability matrix R, divide the system 
elements associated with the elements ( 1, 2, , )iS i n    into types and identify the elements with obvious 
characteristics in the entire system. The definition of the element set is as follows: 
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If there are elements in S  that satisfy ( ) ( )i iR S C S  for all 
iS S , then they are the highest elements. Remove 

them and find the remaining highest elements. Repeat this process until the lowest level element set is determined, 
completing the hierarchical structure diagram of the process network. 
 
II. A. 2) DEMATEL and ISM Integration Model Structure 
By introducing the intercept    into the DEMATEL normalized influence matrix, statistical calculations are 
performed on the normalized influence matrix to obtain the results, where x   . The specific values should 
also be appropriately adjusted based on the hierarchical structure diagram. Values that are too large will result in 
too many levels, while values that are too small will result in only one level, thereby losing the significance of the 
study. Calculate the adjacency matrix A  based on the normalized influence matrix: 
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where x  is the average value of the T  matrix, and   is the population standard deviation. 
By integrating the DEMATEL and ISM models, the direct relationships between system elements are calculated 

into an adjacency matrix through the introduction of the intercept via the direct relationship influence matrix. 
Subsequently, the system explanatory structure model is obtained through matrix calculation and hierarchical 
reduction, thereby explaining and describing the key elements of the system. The structural analysis steps of the 
DEMATEL-ISM model [40] integration are shown in Figure 2. 
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Figure 2: Integration structure diagram of the DEMATEL-ISM model 

II. B. DEMATEL-ISM Model Construction and Analysis 
II. B. 1) Construction of the DEMATEL-ISM Model 
Identifying the multi-dimensional factors influencing safety awareness in complex construction mine environments, 
through interviews with miners in different positions, we have preliminarily identified the multi-dimensional factors 
influencing safety awareness in complex construction mine environments. Secondly, using the Delphi method, we 
invited eight experts in miner behavioral safety management (three professors, two associate professors, and three 
senior coal mine managers) to discuss the accuracy and independence of the factor descriptions. Based on 
simplified indicators and with the aim of ensuring that the meanings of the indicators do not overlap, 12 
multidimensional factors influencing miners' safety vigilance were ultimately identified. The multidimensional factors 
influencing miners' safety vigilance in complex construction mine environments are shown in Table 1. 

Table 1: Miners are safe and alert 

Number Formation factor Number Formation factor 

A1 Safety knowledge skills A7 Equipment and protection facilities 

A2 Safety awareness A8 Social exchange relations 

A3 Psychology of safe behavior A9 Working pressure 

A4 Safe execution ability A10 Safety supervision 

A5 Safe mood A11 Safety management 

A6 Operating environment A12 Safety education training 

 
Based on the multi-dimensional influencing factors of miner safety awareness constructed according to Table 1, 

10 experts in the field of miner behavior and psychological safety (5 from universities and 5 from coal mine enterprise 
management) were invited to evaluate the strength of interaction between the forming factors. The interaction 
strength was assigned values according to five levels: no influence (0 points), minor influence (1 point), moderate 
impact (2 points), significant impact (3 points), and very significant impact (4 points). This represents the degree of 
influence between each pair of formative factors, resulting in 10 initial direct influence matrices. To eliminate 
individual differences in expert scoring, the average of the 10 initial direct influence matrices was taken (rounded to 
the nearest integer), and a direct influence matrix for the multidimensional factors influencing miner safety vigilance 
was constructed. 

The direct influence matrix is normalized using the row and maximum value method, yielding the standardized 
influence matrix. Calculating the standardized influence matrix yields the comprehensive influence matrix, as shown 
in Table 2. The largest value is 0.333 for A8-A12. 
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Table 2: Comprehensive influence matrix 

F A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 0.045 0.008 0.067 0.046 0.057 0.105 0.139 0.182 0.036 0.027 0.078 0.086 

A2 0.081 0.016 0.038 0.054 0.070 0.194 0.189 0.144 0.083 0.144 0.184 0.058 

A3 0.042 0.014 0.031 0.073 0.141 0.082 0.150 0.211 0.118 0.053 0.212 0.059 

A4 0.033 0.009 0.025 0.044 0.123 0.047 0.024 0.197 0.075 0.186 0.203 0.059 

A5 0.070 0.025 0.089 0.213 0.099 0.110 0.112 0.291 0.112 0.183 0.305 0.150 

A6 0.111 0.012 0.034 0.056 0.127 0.042 0.139 0.199 0.040 0.050 0.153 0.056 

A7 0.129 0.064 0.094 0.194 0.231 0.147 0.079 0.279 0.148 0.094 0.272 0.149 

A8 0.146 0.048 0.071 0.084 0.091 0.058 0.051 0.111 0.051 0.046 0.183 0.144 

A9 0.039 0.020 0.062 0.170 0.166 0.057 0.072 0.217 0.048 0.143 0.224 0.066 

A10 0.040 0.021 0.040 0.050 0.049 0.150 0.037 0.122 0.042 0.034 0.219 0.139 

A11 0.043 0.019 0.068 0.087 0.086 0.110 0.037 0.205 0.140 0.121 0.110 0.091 

A12 0.181 0.092 0.168 0.204 0.218 0.161 0.132 0.333 0.195 0.143 0.290 0.090 

 
The influence degree, affected degree, centrality, and causality of each forming factor were calculated. The 

DEMATEL calculation results are shown in Table 3. Among them, A8 has the highest centrality and A3 has the 
lowest centrality, with values of 3.575 and 1.603, respectively. 

Table 3: Calculation results of DEMATEL 

Factor Influence degree Influence degree Center degree Reason 

A1 0.876 0.960 1.836 -0.084 

A2 1.255 0.348 1.603 0.907 

A3 1.186 0.787 1.973 0.399 

A4 1.025 1.275 2.300 -0.250 

A5 1.759 1.458 3.217 0.301 

A6 1.019 1.263 2.282 -0.244 

A7 1.880 1.161 3.041 0.719 

A8 1.084 2.491 3.575 -1.407 

A9 1.284 1.088 2.372 0.196 

A10 0.943 1.224 2.167 -0.281 

A11 1.117 2.433 3.550 -1.316 

A12 2.207 1.147 3.354 1.060 

 
Based on the centrality and causality values of each formative factor calculated in Table 3, Matlab software was 

used to plot a cause-and-effect diagram of the multidimensional influencing factors of miner safety awareness. The 
cause-and-effect diagram of the multidimensional influencing factors of miner safety awareness is shown in Figure 
3. 

 

Figure 3: The reason for the safety of miners' safety vigilance: the result 

By adding the identity matrix I to the comprehensive influence matrix in Table 3, we obtain the overall influence 
matrix. To derive the reachability matrix, a threshold λ is introduced to eliminate relationships with smaller influence. 
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Based on the cause-effect diagram and expert opinions, the paper sets λ to 0.14, 0.17, 0.20, and 0.23 to obtain 
node degree decay diagrams of the multidimensional influence factors affecting miners' safety awareness under 
different thresholds. The node degree decay diagram of the multidimensional influence factors of miner safety 
vigilance is shown in Figure 4. When λ is set to 0.20, the node degree is relatively moderate. Therefore, the threshold 
of 0.20 is selected in this paper. Based on the results of the overall influence matrix, the reachability matrix of the 
multidimensional influence factors of miner safety vigilance can be obtained. The reachability matrix of the 
multidimensional influence factors of miner safety vigilance is shown in Table 4. 

Based on Table 4, the reachable set and leading set of the multi-dimensional influencing factors of miner safety 
vigilance can be calculated. After verification, when i = 1, 4, 6, 8, and 9, R(Ai) ∩ A(Ai) = R(Ai), and A1, A4, A6, A8, 
and A9 are the first-layer forming factors; By removing the rows and columns corresponding to these factors from 
the matrix and repeating the above steps, the second-level form factors A2 and A11 can be obtained. Similarly, the 
third-level form factors A3, A6, and A10; and the fourth-level form factors A7 and A12 can be obtained. Therefore, 
the multidimensional influencing factors of miner safety awareness can be divided into four levels, as shown in 
Figure 5. 

 

Figure 4: Scatter plot of node degree attenuation under different thresholds 

Table 4: Calculation results of DEMATEL 

F A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 1 0 0 0 0 0 0 0 0 0 0 0 

A2 0 1 0 0 0 0 0 0 0 0 0 0 

A3 0 0 1 0 0 0 0 1 0 0 1 0 

A4 0 0 0 1 0 0 0 0 0 0 1 0 

A5 0 0 0 1 1 0 0 1 0 0 1 0 

A6 0 0 0 0 0 1 0 0 0 0 0 0 

A7 0 0 0 0 1 0 1 1 0 0 1 0 

A8 0 0 0 0 0 0 0 1 0 0 0 0 

A9 0 0 0 0 0 0 0 1 1 0 1 0 

A10 0 0 0 0 0 0 0 0 0 1 1 0 

A11 0 0 0 0 0 0 0 1 0 0 1 0 

A12 0 0 0 1 1 0 0 1 0 0 1 1 
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Figure 5: The formation factor of miners' unsafe sentiment ISM 

II. B. 2) Analysis of Multidimensional Factors Affecting Miners' Safety Awareness 
The causal relationships among the multidimensional influencing factors of miners' safety vigilance, as calculated 
by DEMATEL, reveal the following: The multidimensional influencing factors of miners' safety vigilance can be 
grouped into four categories. The first category is the strong causal factor set (Zone I), which has a very significant 
influence on the formation of miners' unsafe emotions and also exerts a considerable influence on other outcome-
type factors; The second category is the weak causal factor set (Zone II), which also plays an important role in the 
formation of miners' safety vigilance awareness and has a certain influence on other outcome-type factors; The 
third category is the weak outcome factor set (Zone III), which is the result of the combined effects of other causal 
factors and has a certain influence on the formation of miners' safety vigilance awareness; The fourth category is 
the strong outcome factor set (Zone IV). These factors are also the result of the combined effects of other causal 
factors, but they have a very important influence on the formation of miners' safety awareness. The larger the factor 
centrality obtained through DEMATEL calculations, the greater the influence. Therefore, it is essential to focus on 
the strong causal factor set in Zone I and the strong result factor set in Zone IV. Based on centrality, the factors are 
ranked from highest to lowest influence as follows: social exchange relationships, safety management, safety 
education and training, safety emotions, and the condition of machinery, equipment, and protective facilities. 

According to the ISM analysis results, the multidimensional influencing factors of miners' safety awareness exhibit 
complex relationships such as peer-level or cross-level connections. In this model, the multidimensional influencing 
factors of miners' safety awareness are divided into three major factor sets: direct factors (first level); intermediate 
factors (second and third levels); and deep-level factors (fourth level). 

The condition of machinery, equipment, and protective facilities (A7) and safety education and training (A12) are 
deeper-level factors influencing the formation of miners' safety vigilance awareness. 

Safety awareness (A2), safety management (A11), safety behavioral psychology (A3), safety emotions (A5), and 
safety supervision (A10) belong to the second and third levels of the ISM model and are intermediate factors 
influencing the formation of miners' safety vigilance awareness. 

Safety knowledge and skills (A1), safety execution ability (A4), work environment (A6), social exchange 
relationships (A8), and work pressure (A9) are direct factors in the formation of miners' safety awareness. 

In the ISM model, factors with higher node degrees include Machine Equipment and Protective Facilities 
Condition (A7), Safety Education and Training (A12), Safety Emotions (A5), Safety Management (A11), Social 
Exchange Relationships (A8), and Safety Execution Capability (A4). These factors are largely consistent with those 
identified through DEMATEL analysis as having higher centrality values and require particular attention. 
 
II. C. Study on Miner Behavior Characteristics and Alertness Levels 
II. C. 1) Experimental Design 
Design an experiment to characterize miner behavior, complete subjective questionnaires, record behavioral data, 
analyze changes in miner work behavior characteristics, evaluate miner alertness levels, identify trends in alertness 
level changes, develop scientifically sound work schedules and rest systems, provide appropriate stimuli to enhance 
alertness levels, improve miner work reliability, and ensure the safe and normal operation of the cage. A combination 
of objective and subjective methods was used to design and evaluate an alertness experiment for miners in the 
auxiliary shaft. 
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The total sample size of mine workers in the auxiliary shaft is relatively small, typically fewer than 20 individuals. 
Considering the experimental objectives, participants with over five years of work experience and and those with 
proficient operational skills as the research subjects. Since the EEG electrodes must be in close contact with the 
subject's scalp to ensure signal quality, subjects with shorter hair and no history of neurological disorders were 
selected. Ultimately, 10 miners were chosen as research subjects, which to some extent meets the basic 
requirements for statistical analysis. 
 
II. C. 2) Subjective Scale Analysis 
The entire formal experimental process consisted of nine experiments, with a 20-minute interval between each 
experiment. Experiment 1 was the initial state, i.e., the alertness test before the task. During each experiment, the 
miners filled out the Karolinska Subjective Questionnaire, and the final results were the scores of nine experiments 
conducted on 10 miners within 180 minutes, as shown in Table 5. 

Table 5: score table of subjective evaluation 

Trial number Experimental stage 

1 2 3 4 5 6 7 8 9 

1 4 4 3 3 5 6 7 7 8 

2 4 4 3 3 5 5 7 8 8 

3 4 3 3 3 5 5 7 8 8 

4 4 4 3 4 4 6 7 7 9 

5 5 4 2 3 5 6 7 8 8 

6 5 4 3 4 5 6 7 8 9 

7 4 5 3 3 5 6 6 8 7 

8 4 4 3 4 4 6 7 8 9 

9 4 4 2 3 5 6 6 8 8 

10 4 4 3 3 5 6 7 7 8 

Mean 4.2 4.0 2.8 3.3 4.8 5.8 6.8 7.7 8.2 

 
Based on the average KSS scores of the miners, a trend chart of subjective score changes was plotted. The trend 

chart of subjective score changes is shown in Figure 6. Among them, Experiment 1 was the control experiment, i.e., 
the results obtained when the miners were well-prepared for work. Experiments 2 to 9 were conducted once every 
20 minutes of work. 

As the miners worked and the experiments progressed, the average KSS subjective scores first decreased and 
then increased, reflecting that the miners' alertness levels first increased and then decreased. The highest rate of 
change occurred between Experiment 4 and Experiment 5, indicating that during this phase, the miners' alertness 
levels decreased most rapidly. At the beginning of the experiment, i.e., Experiment 1, most miners scored 4 points 
on the KSS scale, indicating that they were at a general alertness level. In Experiment 3, most miners scored 3 
points, indicating they were in an alert state, with the highest alertness levels at this point. After 180 minutes of work, 
i.e., Experiment 9, miners achieved the highest KSS scores, mostly 8 points, indicating they were in a fatigued state, 
requiring effort to maintain alertness. There were significant differences between Experiment 1, Experiment 3, and 
Experiment 9, with KSS subjective scores of 4.2, 2.8, and 8.2, respectively. To determine whether the score 
differences between Experiment 1 and Experiment 3, and between Experiment 3 and Experiment 9, were significant, 
a paired samples t-test was used to analyze the differences between the experimental results, as the data came 
from the same group of miners. The prerequisite for a paired t-test is that the samples follow a normal distribution. 
In SPSS, we tested whether the differences in mean scores between Experiment 3 and Experiment 1 (d1, 
Experiment 3 - Experiment 1) and between Experiment 9 and Experiment 3 (d2, Experiment 9 - Experiment 3) 
followed a normal distribution. The test results are shown in Table 6. 
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Figure 6: Variation trend of subjective mean score 

Table 6: Normality test 

 Kormogov smealov (V)a Shapiro wilk 

Statistics Freedom Significance Statistics Freedom Significance 

d1 0.332 10 0.002 0.652 10 0.000 

d2 0.484 10 0.000 0.480 10 0.000 

 
Due to the small sample size, the Shapiro-Wilk test was selected. The results showed that the significance level 

P-values were all less than 0.05, indicating that the sample differences did not follow a normal distribution. Therefore, 
the paired samples t-test could not be performed, and the nonparametric rank sum test was selected instead. The 
test results are shown in Table 7. 

During the period from Experiment 1 to Experiment 3, i.e., from 0 to 60 minutes, the miners' subjective alertness 
levels continued to increase. At this stage, the nonparametric test yielded a significance level P = 0.003 < 0.05, 
indicating a significant difference between the two groups of samples; From Experiment 3 to Experiment 9, i.e., 
between 40 and 180 minutes, the miners' subjective alertness levels decreased. At this point, the nonparametric 
test significance level P = 0.002 < 0.05, indicating a significant difference. Therefore, the alertness levels of the 
miners in Experiment 1 and Experiment 3, as well as Experiment 3 and Experiment 9, were in different states. 

Table 7: KSS score non-parametric test 

 Experiment 3- experiment 1 Experiment 9-experiment 3 

Z -3.144b -3.272c 

Asymptotically significant (double tail) 0.003 0.002 

 
II. C. 3) Reaction capability test 
Using a reaction time test program, the reaction time of miners to target signals was recorded. Due to the low 
difficulty of the experimental design, the correct response rate of the test miners remained above 98%. The mean 
reaction time of the miners was selected as the task performance metric to assess changes in alertness as working 
hours increased. The reaction times of the miners during the experiment are shown in Table 8. 

Table 8: Reaction time(ms) 

Trial number Experimental stage 

1 2 3 4 5 6 7 8 9 

1 1134.0 999.6 918.3 965.6 1087.9 1248.3 1330.3 1364.1 1496.8 

2 1068.6 1034.2 915.3 966.5 1126.4 1267.7 1361.5 1359.0 1429.1 

3 1081.1 1090.4 940.9 958.6 1154.8 1242.6 1286.5 1278.2 1485.5 

4 1075.4 1006.7 958.9 925.8 1085.6 1317.2 1370.7 1303.9 1476.5 

5 1088.9 1054.9 922.5 951.6 1059.0 1191.1 1315.3 1352.1 1349.8 

6 1043.7 1068.4 924.1 999.1 1168.9 1173.9 1310.6 1405.5 1514.4 

7 1008.3 1044.0 902.7 944.7 1185.0 1192.6 1346.9 1320.7 1517.2 

8 1095.7 1090.1 892.4 918.3 1084.1 1177.3 1361.3 1437.1 1451.3 
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9 1147.0 1033.0 939.0 956.7 1159.0 1284.6 1290.0 1350.8 1405.2 

10 1105.0 981.2 873.1 907.9 1134.3 1244.5 1292.6 1490.4 1460.5 

Mean 1084.77 1040.25 918.72 949.48 1124.50 1233.98 1326.57 1366.18 1458.63 

 
Based on the average reaction time data in Table 8, a graph showing the changes in the average reaction time 

of miners across different experimental stages was plotted. The changes in the average reaction time of miners are 
shown in Figure 7. From Experiment 1 to Experiment 3, the average reaction time of miners continued to decrease. 
From Experiment 3 to Experiment 9, the average reaction time increased continuously. Regarding the subjective 
division and flash fusion frequency, a normality test was first conducted on the reaction time differences. The results 
of the normality test are shown in Table 9. For d3, p = 0.346 > 0.05, indicating normality, and for d4, p = 0.758 > 
0.05, also indicating normality. Therefore, a paired t-test was selected. The results of the paired t-test for reaction 
time are shown in Table 10. 

As task duration increases, the trend in miners' reaction times is first to decrease and then increase, indicating 
that miners' ability to respond to signals first improves and then deteriorates, i.e., miners' alertness first increases 
and then decreases. Additionally, the differences in reaction times between experiments are significant, indicating 
that changes in miners' alertness are pronounced. 

 

Figure 7: Reaction time diagram 

Table 9: Reaction time normality test 

 Kormogov smealov (V)a Shapiro wilk 

Statistics Freedom Significance Statistics Freedom Significance 

d3 0.125 10 0.2 0.925 10 0.346 

d4 0.133 10 0.2 0.955 10 0.758 

 

Table 10: Reaction time paired T-test 

 Mean 

value 

Standard 

deviation 

Standard 

error mean 

The difference is 

95% of the 

confidence 

interval 

The difference 

is 95% true 

interval limit 

t Freedom Sig.2 

Experiment 3- 

experiment 1 

187.12 65.13 18.82 146.18 227.75 9.92 9 0.000 

Experiment 9- 

experiment 3 

-538.26 54.24 15.64 -572.81 -503.11 -34.26 9 0.000 
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III. Adaptive assessment model for miner safety awareness based on deep learning 
III. A. Convolutional Neural Networks 
III. A. 1) Overview of Convolutional Neural Networks 
The classic convolutional model LeNet-5 [41], based on the gradient backpropagation algorithm, marked the 
beginning of the rapid development of convolutional neural networks (CNNs). The classic LeNet-5 model structure 
successfully achieved accurate recognition of handwritten digits. Convolutional neural networks are end-to-end 
networks that allow weights to be shared across different positions. Compared to traditional feedforward neural 
networks of similar network scale, convolutional neural networks have fewer connections and parameters, making 
model training easier. A typical CNN primarily consists of one or more convolutional layers, pooling layers, fully 
connected layers, and a final output layer. 
 
III. A. 2) Activation function 
The activation function of a neural network can increase the nonlinear expression capability of input data and 
enhance the network's learning of complex features in the data. It is the core of a neuron and even the entire neural 
network. Common activation functions include the sigmoid function, the tanh function, and the ReLU function. 

(1) The mathematical expression of the sigmoid function is: 

 1
( )

1 x
sigmoid x

e



 (10) 

According to the mathematical expression, the output range of the sigmoid function is between 0 and 1, which is 
suitable for use as the output of a binary classification model for predicting probabilities. 

(2) The mathematical expression of the tanh function is: 
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The output range of the tanh function is between -1 and 1. The tanh function is similar to the sigmoid function but 
solves the problem of the sigmoid function not having a zero mean output. When features differ significantly, using 
the tanh activation function can continuously amplify the feature effect, and it is often used as the activation function 
for the hidden layer of neural networks. However, it also suffers from the problem of gradient vanishing. 

(3) The mathematical expression of the ReLU function is 
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The ReLU function is one of the most commonly used activation functions in deep learning. The ReLU function 
has a reciprocal value of 1 in the positive interval and does not saturate, which can accelerate the convergence 
speed of gradient descent and effectively alleviate the problems of gradient disappearance and gradient explosion. 
 
III. A. 3) Loss Function 
The choice of loss function has a significant impact on the final performance of the model and should be selected 
appropriately based on the model type. 

(1) Regression problems 
The mean squared error (MSE) loss function, also known as the L2 loss function, represents the average of the 

squared differences between the predicted values and the actual values. It is a commonly used loss function in 
regression problems. The mathematical expression is shown below:   

 2

1

1
ˆ2 ( )

N

i i
i

MSE L y y
N 

    (13) 

In the equation, N represents the number of samples, 
iy   represents the true value of the sample, and ˆ iy  

represents the predicted value of the model. 
The mean absolute error (MAE) is also known as the L1 loss function and can similarly be used as the loss 

function for a regression model. The mathematical expression represents the sum of the absolute differences 
between the predicted values and the actual values. It has a stable gradient for any input value and does not cause 
gradient explosion issues. 
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In the equation, N represents the number of samples, 
iy   represents the true value of the sample, and ˆ iy  

represents the predicted value of the model. 
(2) Classification problems 
The cross-entropy loss function is used to evaluate the difference between the probability distribution of the actual 

output and the true probability distribution, and is commonly used in classification problems. The mathematical 
expression for the cross-entropy loss function based on a binary classification problem is: 
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In the formula, N denotes the number of samples, 
i  denotes the sample label, with positive class being 1 and 

negative class being 0, and 
ip  denotes the probability of the model predicting a positive class. The cross-entropy 

function is used as the loss function for the miner alertness classification model in this paper. 
 
III. A. 4) Optimization Methods 
The loss function defines the degree of difference between the predicted value of the current network output and 
the target value. To ensure the accuracy of the model's predictions, optimization algorithms are used to iteratively 
find the minimum value of the loss function and its corresponding parameters. 

(1) Gradient descent method 
The gradient descent method involves continuously calculating the gradient value during the iteration process 

and calculating the forward step length according to the learning rate  . The weight value W  is continuously 
adjusted in the opposite direction of the gradient of the given point so that the value of the loss function becomes 
smaller and smaller, eventually reaching the lowest point of the loss function. The mathematical description is as 
follows: 

 L
W W

W
 
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 (16) 

In the formula,   represents the learning rate, i.e., the step size of each gradient descent. 
(2) Momentum algorithm 
Momentum is an optimization of the gradient descent method. It uses the concept of “momentum” to describe 

changes in movement trends. When parameters are updated, the current update speed is accelerated by 
accumulating the momentum from previous updates, which allows the network to converge more optimally and 
stably and reduces oscillations. Its mathematical description is as follows: 
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In the equation,   represents the momentum parameter, and   represents the accumulated momentum sum. 
(3) Adam algorithm 
The Adam algorithm uses first-order and second-order moment estimates to determine the model gradient update 

direction and learning rate update adjustment, respectively, and accelerates convergence speed through 
momentum and adaptive learning rates. 
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In the equation,   represents the momentum parameter,   represents the accumulated momentum sum, h  
represents the accumulated squared gradient, and   represents the gradient accumulation exponent. 
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The Adam algorithm is suitable for solving optimization problems involving large-scale data and parameters, as 
well as problems with high noise or sparse gradients. Additionally, the Adam algorithm is insensitive to the learning 
rate and performs exceptionally well in current practical parameter tuning, making it widely used in the field of deep 
learning. 
 
III. B. Model construction based on one-dimensional convolutional neural networks 
(1) ResNet Model 

Depending on the complexity of the extracted features, the ResNet model [42] can flexibly set different numbers 
of network layers to concatenate residual modules, thereby improving the efficiency of deep networks. Compared 
to the VGG network, the ResNet uses fewer data parameters and trains faster. Since physiological signal features 
are relatively fewer than those in the image domain, this paper improves and constructs a miner alertness detection 
model based on the ResNet-18 network block. 

(2) SENet model 
Since the collected EEG, ECG, and EMG signals are human bioelectric signals containing a wealth of information 

about human physiological functions, it is essential to focus on extracting and training features related to fatigue 
states during alertness detection. This paper enhances the detection performance of the model by adding an SE 
module with channel attention mechanisms to the ResNet network. 

The SE module is embedded into the ResNet model, and feature re-calibration is performed on the residual blocks 
of the branches before the Addition operation. The improved SE-ResNetV2 model is used, and one-dimensional 
convolution is employed for computation due to the special nature of physiological signals. 
 
III. C. Alertness Adaptive Assessment Model Prediction Results 
To investigate the impact of the temporal characteristics of miners' alertness features on model prediction 
performance, when constructing the SE-ResNetV2 model based on the channel attention mechanism, sequence 
features with temporal lengths ranging from 1 to 10 were input. The model performance when inputting different 
temporal sequence lengths is shown in Table 11. When the temporal sequence length of the alertness features was 
5, the model achieved the best prediction performance. During the experiment, the reaction time of miners to signal 
stimuli ranged from 730 to 1350 ms, with an average reaction time of 966.12 ms. The mean nMAE and nRMSE 
values for the model's prediction of driver reaction time were 92.84 and 102.36 ms, respectively, with a relative 
prediction error of 9.7%. When the input features were single-point samples, the mean nMAE and nRMSE of the 
model were 110.45 and 136.52 ms, respectively. As the length of the input time series increased, the prediction 
performance of the model improved significantly, reaching the best prediction effect when the sequence length was 
5. The results indicate that utilizing driver alertness features at the temporal level can effectively improve the SE-
ResNetV2 model's prediction accuracy for miner reaction times. However, as the time series length continues to 
increase, the model's performance shows a slight decline, possibly due to the inclusion of redundant information in 
overly long time series features, which affects the accuracy of the miner alertness prediction model. 

Table 11: Model performance of the length k in different time series 

k nMAE/ms nRMSE/ms nMRE/% 

1 110.45(±18.11) 136.52(±24.33) 11.5 

2 106.75(±22.64) 131.22(±25.12) 11.2 

3 101.92(±18.29) 124.41(±17.44) 10.8 

4 96.04(±16.64) 113.64(±14.16) 10.0 

5 92.84(±13.44) 102.36(±12.12) 9.7 

6 95.42(±12.84) 108.61(±14.05) 9.9 

7 98.11(±14.47) 111.85(±15.03) 10.2 

8 97.62(±15.55) 109.72(±13.62) 10.2 

9 98.93(±13.31) 110.06(±14.58) 10.3 

10 100.02(±15.74) 114.26(±16.51) 10.5 

 
To further analyze the performance of the model and the impact of the attention mechanism on the model's 

predictive ability, miner alertness features with a time series length of 5 were input into the LSTM, SVR, LSSVM, 
and SE-ResNetV2 models for comparison. The model prediction performance comparison is shown in Table 12. 
The prediction accuracy of LSTM is significantly higher than that of SVR and LSSVM, indicating that LSTM has 
stronger adaptability when processing miner alertness time series features. On the other hand, the introduction of 
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the attention mechanism reduced the nMAE of the SE-ResNetV2 model by approximately 6% and the nRMSE by 
approximately 8%. This indicates that the attention mechanism helps extract the temporal characteristics of the 
association between miners' modal features and alertness, further improving the model's predictive accuracy for 
miners' reaction times. 

Table 12: Model predictability can be compared 

Model nMAE/ms nRMSE/ms nMRE/% 

LSTM 98.67(±17.28) 110.86(±15.63) 10.3 

SVR 105.25(±18.71) 114.52(±16.15) 10.8 

LSSVM 102.05(±17.75) 115.48(±16.24) 10.5 

SE-ResNetV2 92.84(±13.48) 102.32(±12.12) 9.5 

 
Eye movement features, electrocardiogram (ECG) features, and line parameters were sequentially input into the 

SE-ResNetV2 model to investigate the impact of different modal features on model performance. The effects of 
input modalities on model performance are summarized in Table 13. When considering single physiological features, 
using eye movement features to predict miners' reaction times yielded better results than using ECG features. 
Compared to using only eye movement features as input, the addition of ECG features reduced the model's nMAE 
from 98.98 ms to 93.28 ms and the nRMSE from 123.49 ms to 104.64 ms. The results indicate that integrating 
physiological features from both modalities can describe miners' alertness levels from different perspectives, 
thereby improving the model's prediction accuracy for reaction times. Additionally, the line environment is one of the 
factors considered in this paper that influences changes in miners' alertness levels. When line features and miners' 
physiological features are input into the model together, the model's predictive capability further improves, with the 
model's average nMAE and nRMSE for predicting miners' reaction times being 92.86 and 102.31 ms, respectively, 
and the model's relative error being 9.5%. 

Table 13: The effect of model input modal model performance 

Input signal nMAE/ms nRMSE/ms nMRE/% 

Eye movement 98.95(±15.74) 123.49(±19.01) 10.3 

Cardiac power 108.92(±14.32) 133.93(±17.43) 11.2 

Heart power + eye movement 93.27(±11.05) 104.64(±14.27) 9.8 

Heart power + eye movement + line environment 92.85(±13.44) 102.31(±12.12) 9.5 

 

IV. Conclusion 
This paper employs the DEMATEL-ISM model to conduct an in-depth exploration of the multi-dimensional 
influencing factors of miners' safety vigilance in the complex environment of construction mining sites. Additionally, 
it constructs an adaptive vigilance assessment model based on SE-ResNetV2. 

Through the application of the DEMATEL-ISM model, numerous factors are reasonably categorized into 
hierarchical levels based on their importance and degree of interaction. The study finds that the condition of 
machinery and protective facilities (A7), safety education and training (A12), safety emotions (A5), safety 
management (A11), social exchange relationships (A8), and safety execution capabilities (A4) have a significant 
impact on the formation of miners' safety vigilance awareness in complex construction mining environments. This 
helps enterprises formulate more effective safety training and management strategies to reduce the probability of 
mine safety accidents. 

In terms of miner vigilance adaptive assessment, the introduction of the attention mechanism in this model 
reduces the nMAE and nRMSE of miner vigilance adaptive prediction by more than 5%. The input of line features 
and miners' physiological features further enhances the model's alertness prediction capability, with a relative 
prediction error of only 9.5%, indicating that the model can efficiently process miners' physiological signal data, 
improving prediction accuracy and stability, and providing reliable technical support for mine safety management. 
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