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Abstract Human action recognition technology plays a crucial role in the field of computer vision, where it is 
constantly advancing and being widely adopted. Among the various techniques, graph neural networks are 
currently the mainstream method for processing unstructured skeleton sequences. However, research on action 
recognition based on skeleton data still faces several key challenges. This paper establishes a graph convolutional 
neural network (GCN) model based on the theoretical framework of GCN and key pose estimation/reduction for 
human skeletons. It extracts features from human skeleton data and introduces a 3D concept, approaching the 
task from both temporal and spatial dimensions to perform action recognition on the extracted features. The model 
was tested on the NTU-RGBD dataset under the CS and CV standards. The recognition accuracy rates of the GCN 
and 3D-GCN models under the CS standard were 75.853% and 78.251%, respectively. Under the CV standard, 
the recognition accuracy rates were 82.294% and 86.381%, respectively. The 3D-GCN model proposed in this 
paper achieved a higher recognition accuracy rate. The 3D-GCN model achieved an accuracy rate of 91.941% for 
recognizing four actions: falling, running, kicking, and squatting, demonstrating good performance in human action 
recognition. 
 
Index Terms Graph Convolutional Neural Network, Human Skeleton Key Poses, 3D-GCN Model, Human Action 
Recognition 

I. Introduction 
Human motion recognition is one of the key research directions in the field of computer vision. Computers extract 
features from video or image data to analyze human behavioral patterns. The development of this technology 
holds significant implications for education, medical rehabilitation, accident prevention, and other fields [1]-[3]. 
Among these, human pose recognition and estimation involve designing network models to process input images 
and extract key points representing human poses within the images. It can be observed that pose recognition and 
estimation constitute a regression task [4]. Action recognition involves designing corresponding networks based on 
human posture to extract skeletal semantic features and determine the corresponding action categories, which is a 
classification task [5]. Human action recognition is a multidisciplinary field, with the research focus on accurately 
extracting human action features from continuous image or video sequences and converting them into quantifiable 
labels [6]. Traditional action recognition methods often rely on manually designed feature extractors, such as 
optical flow methods and scale-invariant feature transform (SIFT), which have certain limitations when processing 
complex scenes [7], [8]. The main issue is that the modeling of human bodies is still largely based on image-like 
approaches, resulting in high computational overhead and performance bottlenecks. Designing a method that can 
automatically learn the intrinsic representation of data has become a key focus of current research. 

Current human action recognition algorithms struggle to achieve efficient and accurate recognition results in 
complex scenes, so human action recognition still holds significant research and commercial value. However, with 
the rapid development of intelligent technologies, new opportunities have emerged for complex scene recognition 
[9]-[11]. With the increasing availability of skeleton data, the role of skeleton-based motion recognition has become 
increasingly prominent. It can utilize skeleton data rather than video data, thereby significantly improving 
recognition speed with lower data sizes [12]-[14]. Additionally, skeleton pose data avoids interference from 
environmental noise or background in raw image data, which helps models effectively improve recognition 
accuracy [15], [16]. 

In recent years, researchers have creatively proposed novel deep learning methods, achieving a significant leap 
in model performance [17]. With the rapid development of deep learning technology, graph neural networks, as a 
powerful node representation learning method, have demonstrated significant advantages in various fields [18]. In 
the complex and challenging task of human action recognition, graph neural networks have also demonstrated 
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great potential. Graph neural networks effectively process unstructured data by mapping nodes in a graph to a 
high-dimensional space and utilizing graph convolution operations to capture interactions between nodes [19], [20]. 
In human action recognition, GNNs can naturally represent human actions as nodes in a graph, with the execution 
order and key points of the action serving as edge weights. They can learn the interrelationships between different 
body parts and the overall flow of the action, thereby achieving high-precision recognition of human actions [21], 
[22]. 

Early human action recognition methods primarily relied on traditional computer vision techniques and pattern 
recognition methods, requiring manual extraction of behavioral features that represent changes in human 
movement, such as silhouette outlines, motion trajectories, and spatiotemporal points of interest, followed by the 
selection of appropriate classification algorithms for recognition [23]-[25]. Early human motion recognition methods 
lacked flexibility and accuracy in complex scenes, and manual feature extraction was often designed for specific 
scenes and task requirements, resulting in certain subjectivity and limitations [26]. In recent years, the emergence 
of deep learning technology has provided powerful tools and methods for human motion recognition. Compared to 
traditional methods, deep learning-based methods can automatically learn higher-level features and more 
accurately recognize various human motions. 

Reference [27] constructed a two-layer temporal convolutional neural network with three-dimensional 
convolutional layers and convolutional long short-term memory layers, using spatio-temporal features and activity 
locations as analysis parameters for human activity recognition, improving recognition accuracy while maintaining 
non-invasiveness. Reference [28] integrated radar data with a stacked recurrent neural network incorporating long 
short-term memory units, proposing a human motion recognition technique capable of classifying six different types 
of human motions. Literature [29] compared the accuracy of various techniques in human sign language 
recognition based on deep sensor data, with the DeepConv LSTM model showing the best performance, followed 
by convolutional neural networks. Embedding convolutional layers into deep learning models may yield better 
recognition results. Literature [30] integrates decision trees, linear regression methods, noise removal mechanisms, 
and recurrent neural network models to design a human action recognition method based on WiFi channel state 
information, which demonstrates better recognition performance compared to basic methods. Literature [31] 
designs an end-to-end dual-stream attention recurrent neural network, focusing on the effective features of the 
initial input graph and the deep feature output graph, and combines deep feature-related layers to optimize network 
parameters, achieving better human action recognition performance. Literature [32] utilizes attention 
mechanism-embedded capsules and gated recurrent units to construct a spatio-temporal multi-feature extraction 
framework, combined with a threshold-based aggressive activity detection method, to extract human action 
features in prison settings for human action recognition. Literature [33] employs deep reinforcement learning for 
multi-feature fusion in multi-feature scenarios, combined with an attention model, to form a multi-feature fusion 
human behavior recognition algorithm, achieving a 98% accuracy rate. 

Reference [34] focuses on multiple gait patterns of exoskeletons, employing a distance-oriented feature 
selection method to extract optimal features from multi-modal information of lower limb movements. It introduces a 
multi-layer backpropagation neural network to construct a linear mapping model between feature quantities and 
motion states, achieving an accuracy of 92.7%–97.4%. Literature [35] applied a spatial transformation framework 
and temporal convolutional networks to develop a skeleton gait recognition model, enhancing its robustness and 
accuracy, with an accuracy rate of 90%. Literature [36] used data captured by depth sensors and daily human 
skeleton activity data as input, integrating image processing and deep learning to develop an intelligent human 
motion recognition system that is not affected by environmental or domain constraints. Reference [37] proposed a 
convolutional recurrent neural network and long short-term memory network as the generator and discriminator for 
a generative adversarial network, where the generator is responsible for reconstructing occluded skeletal parts, 
and the discriminator evaluates the reconstructed parts, thereby improving the recognition performance of human 
skeletal joints under occlusion conditions. Reference [38] applies an end-to-end fast graph neural network to 
human action recognition, achieving nearly 100% recognition accuracy due to its efficient extraction of 
single-sample information and the form of an undirected graph structure. 

This paper introduces a typical graph convolutional network based on spatial domain, GraphSage, and conducts 
research on graph convolutional neural networks based on this model. Two approaches similar to Martinez's fully 
connected model and fully convolutional model are proposed to regress the Euclidean distance matrix, establishing 
a human skeleton joint pose estimation regression model. The established model is used to extract human 
skeleton data features, and the skeleton data is stacked frame by frame to ensure that the resulting skeleton 
spatiotemporal map contains both temporal and spatial information. A 3DCNN action recognition framework is 
constructed, and the model's training and learning strategy is adjusted using the SGDR gradient descent method. 
Two datasets, NTU-RGB+D and Kinetics, are constructed to validate the action recognition performance of the two 
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datasets. Through ablation experiments, the recognition performance of the three information streams used in this 
paper is evaluated. 

II. Related technical theories of graph neural networks and action recognition 
II. A. Graph Neural Networks 
II. A. 1) Graph Convolutional Networks 
Neural networks have achieved tremendous success over the past decade or so, but early neural networks could 
only be applied to conventional Euclidean data. However, a portion of real-world data is based on non-Euclidean 
data structures. Common examples of Euclidean data include images and audio. One characteristic of Euclidean 
data is its regular arrangement. For images, they are composed of a series of pixels, and the arrangement of pixels 
follows a fixed pattern. Except for pixels at the image edges, each pixel has eight adjacent nodes. Therefore, for 
example, convolution operations can use a globally shared fixed-size convolution kernel to extract features from 
images. However, for non-Euclidean data, the number of adjacent nodes for different nodes may vary, so it is not 
possible to use a globally shared convolution kernel to extract features. Figure 1 compares the neighboring nodes 
of Euclidean and non-Euclidean data. For example, a social network forms a graph model, where social 
participants are the nodes in the graph, and the edges of the graph represent the social relationships between 
people. Analyzing the social network graph can enable user profiling. To effectively analyze and process graph 
data, graph neural networks have emerged. Models that apply deep learning methods to graph data are 
collectively referred to as graph neural networks. Graph neural networks include graph convolutional networks, 
graph generative networks, etc. [39]. This section only introduces the graph convolutional networks relevant to this 
paper. 

 

Figure 1: Comparison of neighbor nodes with Euclidean data and non-Euclidean data 

Spatial-based graph convolutional networks define graph convolution operations based on spatial relationships. 
An image can be viewed as a special type of non-Euclidean graph, where each pixel represents a node in the 
graph. As shown in Figure 1, each pixel is directly connected to eight adjacent pixels, and the order of these eight 
pixels is fixed. Traditional convolution uses a fixed-size convolution kernel to perform a weighted average on all 
values within the convolution kernel's range. Due to the ordered nature of neighboring pixels, the convolution 
kernel shares its learned weights as it slides across the image. Analogous to traditional convolution, graph 
convolution theoretically also uses the convolution kernel to fuse the values of the central node and its neighboring 
nodes to update the central node's feature values. The difference lies in the fact that the number of neighboring 
nodes for different central nodes in a graph is not fixed. In summary, to eliminate the impact of the varying number 
of neighboring nodes and ensure weight sharing, GraphSage is a typical graph convolutional network based on 
spatial domain. 

For a general graph, we can use  ,G V E  to represent it. Here, V  denotes the set of all nodes in the graph, 

 1 2, , , NV v v v   where N  is the number of nodes in the graph, and E  denotes the set of all edges in the graph. 

For a graph G , there are an adjacency matrix A , a degree matrix D , and an eigenmatrix X . 
The adjacency matrix A  represents the connection relationships between the nodes in the graph, N NA R  : 
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0
i j
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 (1) 

The degree matrix D  is a diagonal matrix, N ND R  , and the diagonal elements are the degrees of each node, 
representing the number of edges connected to that node: 

 ii ij
j

D A  (2) 
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The feature matrix X  represents the feature information of all nodes in the graph, N FX R  , where F  is the 
feature dimension. Figure 2 shows traditional convolution and graph convolution. 

Traditional 
convolution

Graph 
convolution

 

Figure 2: Traditional convolution and graph convolution 

For convolution operations on Euclidean data, the essence is to perform a weighted sum of all node features 
within the neighborhood of each node to obtain the feature values of the next layer nodes. Analogously, for 
non-Euclidean data, when the convolution kernel is set to 1 for the neighborhood, its state update function is: 

      0.5 0.51 ,k k k kH f H A D AD H W
     (3) 

Among them, kH  is the feature of the k th layer, kW  is the weight learned by the k th layer, and     is the 

activation function. 
NA A I  , u yj

j

D A , and 
NI  is the N th identity matrix. 

Since using the adjacency matrix directly would cause nodes to lose their original node data, self-connections 
need to be added to each node, and the adjacency matrix is directly added to the identity matrix. Additionally, to 
avoid large feature values due to a single node having a large degree, normalization is performed using the degree 
matrix with added self-connections. 

 
II. A. 2) Image Feature Extraction Network 
Early convolutional neural networks often improved their learning capabilities by increasing the depth of the 
network. However, increasing the number of layers in the network leads to an increase in the number of 
parameters, reducing computational efficiency; simultaneously, the increase in parameters also makes the model 
prone to overfitting. For image classification tasks, the size of the main subject in an image, which significantly 
influences classification, can vary greatly, and the position of the main subject within the image is not fixed. Using 
convolutional kernels of different sizes can also yield different results in image recognition. Some researchers 
proposed the Inception module in GoogLeNet, which introduces convolutional kernels of different sizes in parallel 
within the same layer to obtain receptive fields of different scales without increasing the network depth. The outputs 
from each branch are then concatenated into a feature map with more channels [40]. 
 
II. B. Regression algorithm for estimating human skeletal joint posture 
Since the academic community has already developed mature research on 2D pose estimation algorithms, many 
3D pose estimation algorithms use 2D poses to regressively estimate 3D poses. Algorithms based on this 
approach outperform those that directly estimate 3D poses [41]. This section will introduce 3D pose estimation 
algorithms that adopt the 2D regression approach. 

In 2017, some scholars proposed the nearest neighbor matching method for 3D pose estimation. The method 
matches the closest pose in a pre-constructed 3D pose library. By calculating the error between the projection in 
the 3D pose library and the 2D pose, the probability ( | )P X x  that the projection belongs to the 3D pose is 
estimated: 

   22

1
( )

|
iM x x

iP X X x e 
 

   (4) 

Among them, { | 1, 2, , }iX i n   is a 3D pose library, x  is a 2D pose, and 
iM  is the projection transformation 

matrix of this 3D pose. The advantage of this method is that it can perform 3D pose regression even if there are a 
few undetected 2D keypoints. However, it relies on a large amount of 3D prior pose information, and it is difficult to 
construct a complete 3D pose library. 

The regression problem is abstracted as finding the optimal mapping function from 2D pose to 3D pose: 

  *
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   (5) 
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A simple and effective fully connected residual regression module was proposed for 3D pose estimation. At the 
time, its prediction performance surpassed most end-to-end 3D pose estimation algorithms, also demonstrating the 
reliability of 2D pose regression for 3D pose estimation. The entire algorithm model achieves 3D pose prediction 
using only linear layers, batch normalization layers, activation function layers, and Dropout layers, thereby 
reducing the complexity of 3D pose prediction. 

Some scholars have also proposed the idea of Euclidean distance matrix regression rather than directly using 
pose for regression [42]. By constructing a Euclidean distance matrix between 2D pose and 3D pose: 

 
, 2

( )m n m nedm y p p   (6) 

Among them, edm  is the Euclidean distance matrix, y  is the 3D pose, 3 Ny R  , ( ) N Nedm y R  , N  is the 

number of key points, and 
mp  is the spatial coordinates of the m th point. Similarly, construct the 2D pose 

Euclidean distance matrix ( )edm x , where 2 Nx R  . This transforms the original regression problem from 
2 3N NR R   to N N N NR R  . The representation of the Euclidean distance matrix is invariant under rotation, 

translation, and reflection, and the Euclidean distance matrix is a symmetric matrix, allowing the parameters of half 
the matrix to be estimated using a fully connected network. This paper proposes two approaches for estimating the 
Euclidean distance matrix: a fully connected model similar to Martinez's and a fully convolutional model, both of 
which achieve good estimation performance. 

For 3D pose estimation tasks, the commonly used evaluation metric is the mean perpendicular joint position 

error (MPJPE), which calculates the Euclidean distance between the predicted 3D coordinates and the true 3D 

coordinates for each joint. A smaller MPJPE value indicates better model performance: 

 *

2
1

1 N

i i
i

MPJPE J J
N 

   (7) 

where N  is the total number of joints, 
iJ  and *

iJ  are the true 3D coordinates and predicted 3D coordinates of 
the i th joint, respectively. 

III. Human skeleton posture and motion recognition based on graph convolutional 
neural networks  

III. A. Feature extraction of human skeleton data based on graph convolutional neural networks 
III. A. 1) Feature extraction from human skeleton models 
The key to human motion recognition algorithms is feature extraction from skeletal data (information aggregation 
between joints). This data is then fed into a pooling layer and classifier for motion recognition classification [43]. 
Since skeletal data is graph-type data, using a graph convolutional neural network for feature extraction is the 
optimal solution. The principle of feature extraction from skeletal data is as follows: 

The principle of feature extraction is as follows: the main joints of the human body are identified. Let the input 
human skeleton data be 

inf ; based on structural relationships, the adjacency matrix 
jA  can be calculated. 

The adjacency matrix is normalized. According to graph convolution theory, the traditional graph convolution 
kernel A  is obtained: 

Let the features after graph convolution be 
outf , and the simplified graph convolution formula for the human 

skeleton model is obtained: 
 

out inf Af W  (8) 

Among them, matrix A  is the convolution kernel of graph convolution and is the core of the entire graph 
convolution network. W  is the learnable weight parameter matrix. 

 
III. A. 2) Skeletal pose action recognition based on graph convolutions 
In the process of action recognition, the majority of the original input data consists of video streams. Therefore, 
when using graph convolutional neural networks, it is necessary to preprocess the input data. The input data type 
is converted into a skeleton spatiotemporal map. The construction of the spatiotemporal map involves estimating 
the pose of each frame in the video to extract skeleton data, followed by stacking the skeleton data for each frame. 
The resulting skeleton spatiotemporal map has two dimensions: spatial and temporal. 

Figure 3 shows the overall process structure of the STGCN spatio-temporal graph convolution module, with the 
main inputs being spatio-temporal graph data and a convolution kernel matrix A  constructed based on the 
human skeleton. First, the spatio-temporal map is convolved with a graph convolutional kernel covered by a mask. 
Then, the result is added to the convolutional output via ordinary convolution and a BN layer using residual 
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connections to enhance stability. Finally, the output is fed into a TCN for temporal convolution, completing a full 
spatio-temporal feature extraction. 

GCN

Conv2d 
BN2d

TCN

A A

Learnable 
edge weights

Element-wise 
multiply

Element-
wise Add

STGCN

 

Figure 3: The internal process of the spatio-temporal graph convolution module 

The process of extracting features from the internal spatial GCN of the action recognition algorithm based on 
skeletal data (taking STGCN as an example) is assumed to input a spatiotemporal graph data X . X  is a 
four-dimensional tensor, including batchsize set to N , feature dimension C , number of time frames T , and 
number of joint points V . Assuming that the number of channels in the next layer of the current network model is 
64, the convolution operation will increase the feature dimension of the data to 64 times, and then use the 
dimension transformation operation to split the bone data to expand an additional dimension K , and the number 
of channels of the split dimension K  will be the same as the convolution kernel * *C V V  (STGCN The 
convolution kernel is a matrix of 3*25*25 , where 25V   is the number of joint points, 3C   is the number of 
channels in the feature dimension C  of the three subgraphs divided by the partition strategy, and C  also 
represents the number of convolution kernels. In the STGCN algorithm, due to the partitioning strategy, 3C  , the 
new five-dimensional tensor and the convolution kernel perform matrix multiplication operation, so that a graph 
convolution is completed, and the 64C   after the graph convolution is completed, which is conducive to the 
network to capture spatial action information. 

 
III. B. Image Convolution Module Data Processing 
Let any graph convolution operation be treated as a nonlinear function: 

  1 ,l lH F H A   (9) 

Among them, 0H X  is the first layer input, N DX R  , N  is the number of points in the graph, D  
represents the feature dimension, and A  is the adjacency matrix, which contains information about each node 
and its neighboring nodes, i.e., the direction of the feature extraction channel. The difference between different 
graph convolutions lies in the implementation of method F . A classic graph convolution method involves 
averaging and weighting neighbor information, followed by information aggregation. 

For the specific implementation of graph convolution, let lW  be the weight parameter matrix of the l th layer, 
and   be a nonlinear activation function, such as ReLU. The implementation approach is very straightforward. 
The features of a node are influenced by the features of all its neighbors. The adjacency matrix A  is multiplied by 
the features H , combined with the weight parameters and activation function. The resulting node features are the 
aggregated information features of the neighboring nodes. Multiple convolutions can obtain higher-order features 
of neighboring nodes. The implementation method is as follows: 

  1l l lH AH W   (10) 

However, the above methods have two problems: 
(1) They do not take into account the influence of the node's own characteristics. 
(2) Neighboring nodes are not normalized, which may lead to the structure of the graph itself having a greater 

influence than the node characteristics when extracting graph data features. For example, nodes with many 
neighboring nodes have more influential characteristics. 

To address these two issues, a new graph convolution implementation method is proposed: 
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  1l l lH LH W   (11) 

In equation (11), the Laplacian matrix is defined as L D A  , where D  is the degree matrix of the graph. By 
the self-definition of the degree matrix, it is known that D  contains information about the nodes themselves. 
Introducing the degree matrix solves the problem that graph convolution does not include information about the 
nodes themselves. Further optimization of L  yields the current mainstream graph convolution method: 

 
1 1

1 2 2l l lH D AD H W
   

  
 

 (12) 

The Laplacian matrix 1 1

2 2L D AD
 


 in Equation (12) is essentially an improvement on the above two methods. 

First, add the self-degree matrix to ensure that the node's own information is not lost. Then, normalize the 
self-adjacency matrix (multiply both sides of the adjacency matrix by the inverse square root of the degree matrix) 
to obtain it. 

Specifically, each node in matrix L  for ,i j  can be obtained by the following equation: 

 
,

1   deg( ) 0

1
      

deg( )deg( )

0

i

sym
i j i j

i j

i j and v

L i j and v is adjacent to v
v v

otherwise

  
  




 (13) 

In the formula, deg( )iv  and deg( )jv  are the degrees of nodes ,i j  respectively, which are the values of the 
degree matrix at the nodes. 

 
III. C. Action recognition based on 3D convolutional networks 
III. C. 1) 3D Convolutional Networks 
In 2DCNN, the convolution operation of the convolution layer generally consists of three parts. First, feature 
extraction is performed, then the extracted features are added to the bias, and finally they are passed into the 
activation function. Generally, the value of the j th feature map of the i th layer at position ( , )x y  is denoted as 

( , )j
ic x y , and the convolution formula is shown in Equation (14): 

 
1 11

1
0 0 0

( , ) ( , ) ( , )
i iP QM

j j j m
i i im i

m p q

c x y b w p q c x p y q
 


  

 
    

 
  (14) 

In the equation,   denotes the activation function, j
ib  denotes the bias of this layer, m  denotes the index of 

the feature map set of the ( 1)i  th layer connected to the current feature map, ( , )j
imw p q  denotes the value of the 

kernel connected to the m th feature map at position ( , )p q , 
iP  and 

iQ  are the height and width of the 
convolution kernel, respectively. 

In 2DCNN, features are calculated solely from the spatial dimension. When dealing with time-series problems, 
such as human motion capture, 2D convolution cannot capture motion information in the temporal dimension. 
Therefore, 3D convolution was developed to calculate features simultaneously from both the temporal and spatial 
dimensions. 3D convolution is achieved by performing convolution operations on a cube composed of multiple 
consecutive video frames using a 3D convolution kernel. Through this construction, the feature maps in the 
convolution layer are connected to multiple consecutive frames in the previous layer, thereby capturing motion 
information. Generally, the value of the j th feature map in the i th layer at position ( , , )x y z  is denoted as 

( , , )j
ic x y z , and the 3D convolution is shown in Formula (15): 

    
1 1 11

1
0 0 0 0

( , , ) , , , ,
i i iP Q RM

j j j m
i i im i

m p q r

c x y z b w p q r c x p y q z r
  


   

 
     

 
  (15) 

In the equation, 
iR  is the size of the 3D kernel in the time dimension, ( , , )j

imw p q r  is the ( , , )p q r th value of the 
kernel connected to the m th feature map in the previous layer, and   represents the activation function. 

 
III. C. 2) Action recognition framework based on 3D CNN 
Based on the above 3D convolution description, a 3DCNN framework for human action recognition is generated. 
Here, seven consecutive frames centered on the current frame, each with a size of 60 40 , are used as input to 
the 3DCNN model. Then, a set of hard-wired kernels is used to generate multi-channel information from the input 
frames. The 33 feature maps in the second layer contain five distinct channels: gray , gradient x , gradient y , 

optflow x , and optflow y . The gray  channel contains the grayscale pixel values of the seven input frames, 
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while the gradient x  and gradient y  feature maps are obtained by calculating the horizontal and vertical 

gradients, respectively, while optflow x  and optflow y  channels represent the optical flow fields in the 

horizontal and vertical directions for each of the 7 input frames, respectively. 
 
III. D. Construction of a 3D graph convolution action recognition model 
After gaining a detailed understanding of the structure and construction methods of 3D convolutional networks, the 
next step is to apply the construction methods of 3D convolutional networks to 3D graph convolutional networks. 
By constructing 3D graph convolutional operators, an action recognition model is built. This model is then used to 
extract features from human skeleton sequences and classify them, thereby achieving action recognition. When 
constructing the action recognition model, this section employs dilated convolution to expand the receptive field 
during feature extraction and uses the SGDR gradient descent method to train the model, enabling it to escape 
local optima during training and maximize the likelihood of finding the global optimum. 
 
III. D. 1) 3D Spatio-Temporal Convolution Module 
The spatio-temporal graph convolution action recognition model introduced in Section 3.1.2 is composed of a 
series of spatio-temporal graph convolution blocks, each of which consists of a spatial convolution and a temporal 
convolution. These blocks alternately extract spatial and temporal features from the human skeleton sequence. To 
enable the extraction of temporal features in the spatio-temporal graph convolution, this section designs a 3D 
spatio-temporal graph convolution network. During the spatial graph convolution process, the coordinates of the 
next frame's 3D or 2D joint nodes are included. That is, the spatial graph convolution in this section performs graph 
convolution (3D-GCN) on the skeleton graphs of two consecutive frames, followed by convolution in the 
spatio-temporal dimension. The spatial graph convolution operation is a crucial component of 3D-GCN, essentially 
performing a weighted average of each joint's neighboring features and its own features from the next frame. 

The spatial method is used to divide the neighborhood into three parts: the root node itself, the centripetal nodes, 
and the centrifugal nodes. To avoid conflicts with symbols used in previous sections, new symbols are redefined in 
this section. Based on the spatial division of the neighborhood, the adjacency matrix A  can be successively 
divided into rootA , cprlA , and ctfgA . Let  , ,G root ctpl ctfg  denotes the set of neighborhood types resulting from 

the partition, then ( )g

g G
A A


 . Additionally, this section defines v c TR    to represent the coordinates of all 

3D or 2D skeleton nodes in T  video frames, where v  denotes the number of human joint nodes in a frame, and 

c  denotes the number of features per joint node. For example, in the NTU-RGB-D dataset, a frame contains 

25v   joint nodes, and each joint node has 3c   features, namely the x, y, and z coordinates. 2v c
inf R    

represents the coordinates of all 3D or 2D joint nodes in consecutive 2 frames, and i c
tx R  represents the 

coordinate vector of the i th joint node in the t th frame. 2outd
outf R   represents the features obtained after 3D 

spatial graph convolution, where 
outd  is the dimension of the output features. The 3D spatial graph convolution is 

shown in formula (16): 

 
( ) ( ) ( )g g g

out in
g G

f M L f W


   (16) 

In the equation, 1 1
( ) ( )( ) ( )2 2
g gg g n nL D A D R
     is the symmetric normalized adjacency matrix of each partition,   

denotes the Hadamard product. ( )g n nM R   is the trainable matrix used to capture edge weights for each partition 

of the partitioning, and 2( ) outdgW R   is the trainable feature weight matrix. 

 
III. D. 2) 3D Convolutional Action Recognition Model 
This model consists of 9 3D spatio-temporal convolutional unit layers, each containing 1 3DGCN module and 1 
TCN module. The number of output channels for layers 0 to 2 is 64, for layers 3 to 5 is 128, and for layers 6 to 8 is 
256. The TCN in layers 3 and 6 has a stride of 2, functioning as a pooling layer. The number of output channels is 
adjusted using a 1×1 convolution kernel. Each layer of the 3D spatio-temporal graph convolutional network applies 
a residual mechanism. To prevent overfitting, the Dropout parameter for each layer is set to 0.5. The final output 
feature map is then subjected to global pooling, and the result is input into a SoftMax classifier to output the action 
category. 
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III. D. 3) SGDR Gradient Descent Method and Model Training 
The SGDR learning rate adjustment strategy can be roughly divided into three steps: (1) First, determine the upper 
and lower bounds of the learning rate and the cycle period step size. (2) According to the following formula (17), 
reduce the learning rate to the minimum value at the end of each training step using the maximum learning rate 
and the set cycle period step size, and then restore the learning rate to the maximum value. (3) Repeat step 2 until 
training is complete. 

 max min
min 1 cos

2

i i
i cur

t
i

T

T

 
  

  
       

 (17) 

Among these, 
max
i  and 

min
i  represent the range of the learning rate, and 

curT  denotes the number of training 

cycles since the last restart. 
curT  is updated after each batch of training is completed. When 0t   and 0curT  , 

we have 
max
i

t  . When 
cur iT T , the output of the cosine function is -1, and we have 

min
i

t  . The parameters 

for the SGDR method used in this paper are set as follows: 
0 10T  , 1multT  , the initial learning rate 

max i  is 0.1, 

and the minimum learning rate 
min i  is 610 . 

IV. Analysis of human skeletal joint posture estimation and motion recognition results 
IV. A. Analysis of simulation results 
IV. A. 1) Introduction to the dataset 
NTU-RGB+D is currently one of the largest and most widely used datasets in human action recognition research. 
The dataset includes 50 action categories with a total of 55,000 video action samples, all of which are composed of 
3D joint coordinate sequences. All video samples were recorded by 50 volunteers, with each action captured by 
four cameras positioned at the same height but at different horizontal angles (-45°, 0°, and 45°). The volunteers' 
ages ranged from 10 to 35 years old. Human behavior action samples were collected using a Kinect depth camera. 
The action samples consist of continuous skeleton sequences, each containing 25 joint coordinate data points for 
each object, with no more than two test subjects in each video. The dataset can be divided into two benchmarks 
based on different detection objects and different perspectives: 

(1) Cross-Subject: Under this standard, the training set contains 40,548 video samples and the test set contains 
16,780 video samples, with the training set and test set recorded by different test subjects. 

(2) Cross-View: In this benchmark, the training set contains 37,980 video samples, and the test set contains 
18,930 video samples. The training set was captured by cameras 2 and 3, while the test set was captured by 
camera 1. Following this convention, report the recognition rates for the two benchmarks under the Top-1 and 
Top-5 metrics. 

The Kinetics human action dataset includes 320,000 action videos from various complex scenarios such as daily 
life, sports, and entertainment, with over 500 distinct action types. To standardize the action samples, each action 
clip lasts approximately 15 seconds. The data in this dataset is not raw RGB video data but rather processed 
skeleton joint coordinate sequences. Unlike the NTU-RGBD dataset, the skeleton joint data in the Kinetics dataset 
is 2D, whereas it is 3D in NTU-RGBD. This paper uses the previously released Kinetics dataset to evaluate the 
proposed model. The dataset is divided into a training set (250,000 clips) and a test set (180,000 clips). The model 
is trained on the training set and evaluated on the test set using Top-1 and Top-5 accuracy metrics. 

 
IV. A. 2) Experiments and Analysis on the NTU-RGBD Dataset 
This paper proposes a 3D-GCN (3D Graph Convolutional Network) based on 3D space and tests it under the CS 
and CV standards of the NTU-RGBD dataset. Action features are extracted using the 3D-GCN, and the captured 
action features are finally classified through a convolutional function. Figure 4 shows the comparison of recognition 
rates between the GCN and the proposed 3D-GCN model. Figure (a) shows the recognition rate comparison of the 
models under the CS standard, and Figure (b) shows the recognition rate comparison under the CV standard. The 
recognition accuracy rates of the GCN and 3D-GCN models under the CS standard are 75.853% and 78.251%, 
respectively. Under the CV standard, the recognition accuracy rates are 82.294% and 86.381%, respectively. 
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(a) Comparison of recognition rates of the model under 
CS 

(b) The comparison of the model in CV 

Figure 4: GCN compares the identification rate of the 3D-GCN model proposed 

As shown by the comparison of recognition rates above, the model proposed in this paper, 3D-GCN, achieves 
better recognition performance than GCN under both CS and CV standards after incorporating 3D technology. This 
preliminarily demonstrates that the 3D graph convolutional network proposed in this paper is effective. To further 
validate that the incorporation of 3D technology can improve the model's fixed physical structure and thereby 
enhance recognition of certain specific action categories, this paper selected five relatively similar action 
categories from the NTU-RGBD dataset for experimentation. These categories are “drinking water,” “eating food,” 
“brushing teeth,” “washing hair,” and “wearing glasses.” 

Figure 5 shows the confusion matrices for the model's recognition of similar actions. Among them, (a) and (c) are 
the confusion matrices for the GCN model without 3D in the CS and CV evaluation metrics for similar action 
recognition. (b) and (d) are the confusion matrices obtained by the 3D-GCN model after incorporating 3D data. As 
shown in the figure, for the same action category, the recognition performance of (b) and (d) is significantly better 
than that of (a) and (c). Taking the action “drinking water” as an example, among the 280 test samples under the 
CS standard, the original GCN model correctly identified 220 action samples, resulting in an action recognition rate 
of only 78.571%. Similarly, for the action “drinking water,” among the 320 test samples under the CV standard, the 
original GCN model achieved an action recognition rate of 87.188%. However, for the same action, the 3D-GCN 
model with 3D technology achieved recognition rates of 84.286% and 90.313% under the two standards, 
respectively, which are 5.715% and 3.125% higher than the GCN model. This is because the addition of 3D creates 
a new connection between two physically unconnected nodes, giving the model greater flexibility to recognize 
certain similar actions. 

  

(a)The prediction results of GCN on CS (b)The prediction results of 3D-GCN on CS 
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(c)The prediction results of GCN on CV (d)The prediction results of 3D-GCN on CV 

Figure 5: The model identifies the confusion matrix of similar actions 

IV. A. 3) Experiments and Analysis on the Kinetics Dataset 
To further validate the action recognition performance and generalization ability of the 3D graph convolutional 
network (3D-GCN) model, this chapter adds the Kinetics dataset for comparative experiments. This dataset 
contains as many as 500 action categories and has extremely rich application scenarios, effectively verifying the 
model's recognition performance in different scenarios and among different populations. During the experiments, 
the model was first trained using 250,000 samples from the training set to obtain the corresponding model. Then, 
the model was tested on 180,000 samples from the test set to obtain the final recognition performance. Figure 6 
shows the model performance comparison, with Figure (a) showing the recognition accuracy comparison, Figure 
(b) shows the comparison of the loss function. The Top-5 final recognition rate of the 3D-GCN model is 44.425%, 
which is higher than the 42.067% of the GCN model, resulting in an overall improvement of approximately 2.4% in 
recognition accuracy. Additionally, during each epoch of training, the 3D-GCN model consistently achieved higher 
recognition rates than the GCN model. In the loss curve comparison in Figure (b), it is evident that the loss function 
values of the 3D-GCN model decrease more rapidly and to a greater extent after incorporating 3D features. At the 
20th epoch, the 3D-GCN model's recognition rate and loss function value experienced significant fluctuations. This 
was due to a change in the learning rate at this point, which allowed the model to obtain a set of optimal weight 
parameters locally, thereby significantly improving model performance. As training progressed, the recognition rate 
and loss function curve gradually stabilized around the 45th epoch, with a loss value of 3.077. Through model 
comparison experiments on the Kinetics dataset, it is demonstrated that the introduction of 3D technology plays a 
significant role in improving the physical structure of the model and enhancing action recognition performance. 

  

(a)Comparison of spoon recognition accuracy (b)Loss function comparison 

Figure 6: Performance comparison of spoon models 
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IV. A. 4) Ablation experiment 
Table 1 presents the ablation experiment results. In the table, MS-DGCN-J denotes inputting only joint information, 
MS-DGCN-B denotes inputting only skeletal information, MS-DGCN-M denotes inputting only motion information, 
MS-DGCN-J+B denotes inputting both joint and skeletal information, and MS-DGCN-J+M denotes inputting both 
joint and motion information. MS-DGCN-B+M denotes input of skeletal information and motion information. The 
method proposed in this paper uses input of joint information, skeletal information, and motion information. The 
recognition rates of the proposed method on the Top-1 and Top-5 metrics are 91.248% and 97.187%, respectively, 
both ranking first among all methods. Experiments show that using two input information streams yields better 
recognition performance than using one stream, and using three streams yields better performance than using two. 

Table 1: Ablation experiment results 

Method Top-1 Top-5 

ST-GCN 81.485 88.348 

2s-AGCN 88.548 95.164 

DGNN 89.948 96.139 

MS-DCN-J 90.854 96.748 

MS-DCN-B 88.945 95.135 

MS-DCN-M 91.048 96.948 

MS-DCN-J+B 90.785 96.748 

MS-DCN-J+M 91.168 97.048 

MS-DCN-B+M 89.596 96.485 

This method 91.248 97.187 

 
IV. B. Motion Recognition Analysis 
IV. B. 1) Action Recognition Classification 
The action types in the dataset are further categorized into three classes: 40 daily activity actions, 9 health-related 
actions, and 11 multi-person interaction actions. Additionally, to evaluate the performance of the 3D-GCN network 
architecture in recognizing different types of actions, experiments were conducted to measure recognition 
accuracy across the 60 action categories in the X-Sub dataset. The experimental results are shown in Figure 7, 
where the horizontal axis represents the ID numbers of the 60 action categories in the NTU RGB+D 60 dataset, 
and the vertical axis represents the accuracy rates for each action category. As shown in the table, while the 
3D-GCN network can accurately identify most action categories in the NTU RGB+D 60 dataset, However, for 
certain specific action categories, such as 10 (clapping), 11 (reading), 12 (writing), 26 (hopping on one foot), and 42 
(staggering), the recognition accuracy rates are 74.604%, 49.548%, 37.868%, 64.876%, and 70.079%, 
respectively, which are significantly lower than those of other action categories. 

 

Figure 7: 3D-GCN network is accurate in 60 actions on the x-sub data set 

IV. B. 2) Evaluation Index Results for Different Actions 
This paper optimizes the model through training, obtains the optimal model, and then tests it on the test set. The 
experimental results are shown in Table 2. The algorithm achieves an accuracy rate of 91.941% for recognizing 
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four types of movements (falling, running, kicking, and squatting) and an F1 score of 89.348%, thereby improving 
the original algorithm's performance in recognizing human movements to a certain extent. 

Table 2: The evaluation index results of different actions 

/ P(%) R(%) F1(%) A(%) 

Fall down 86.758 84.378 85.548 89.948 

Run 93.248 90.648 91.948 93.818 

Kick the leg 90.248 88.596 89.348 92.048 

Squatting down 91.598 89.536 90.548 91.948 

Average value 90.463 88.2895 89.348 91.9405 

 
IV. B. 3) Evaluation metric results for different algorithms 
The same data was used for training the AlphaPose+LSTM and AlphaPose+ST-GCN algorithms. During LSTM 
training, the epoch was set to 200, the batch size to 35, the number of steps to 480, and the learning rate to 0.002. 
The parameters for the original GCN training were set identically. The training results were compared with those of 
this paper (3D-GCN), as shown in Table 3. As can be seen, the accuracy, recall rate F1, and precision of the 
algorithm in this paper are 90.496%, 88.248%, 89.348%, and 92.089%, respectively, performing exceptionally well 
among the three algorithms and demonstrating excellent performance in human action recognition. 

Table 3: The evaluation index results of different algorithms 

/ P(%) R(%) F1(%) A(%) 

AlphaPose+LSTM 84.098 81.435 82.631 88.198 

AlphaPose+ST-GCN 88.869 85.593 87.196 89.245 

This method 90.496 88.248 89.348 92.089 

 

V. Conclusion 
This paper explores graph neural networks and human skeleton joint pose estimation algorithms, utilizing graph 
convolutional neural networks to estimate human skeleton poses and recognize actions. Pose features are 
calculated from both temporal and spatial dimensions, and a motion recognition model based on 3D graph 
convolutions is constructed, with SGDR gradient descent used for model training. 

Simulation experiments were conducted on the NTU-RGBD and Kinetics datasets to test the model's practicality. 
Taking the action of “drinking water” as an example, the original GCN model achieved recognition rates of 78.571% 
and 87.188% for this action in test samples under the CS and CV standards, respectively. The recognition rates of 
3D-GCN under the two standards were 84.286% and 90.313%, respectively, which were 5.715% and 3.125% 
higher than those of the GCN model in terms of recognition rate. 

To test the 3D-GCN network structure for different types of action recognition, experiments were conducted on 
the recognition accuracy of 60 action categories in the X-Sub dataset, and the recognition rates of most actions 
were above 80%. The precision, recall, F1 score, and accuracy of the proposed algorithm are 90.496%, 88.248%, 
89.348%, and 92.089%, respectively, demonstrating outstanding algorithm performance and effective human 
action recognition. 
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