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Abstract Slope stability analysis has always been a core issue in the field of geotechnical engineering. However, 
the distribution of soil layers in slopes exhibits natural spatial variability due to factors such as sedimentation, making 
it impossible to accurately characterize their true distribution using limited borehole data alone, thereby hindering 
precise evaluation of their stability. A model was constructed using the strength reduction method combined with 
numerical simulation, employing the Ball-Wall method for modeling, to analyze the critical soil layer thickness for 
the stability of terraced slopes. Six factors—bulk density, cohesion, internal friction angle, slope angle, slope height, 
and pore water pressure ratio—were selected as model inputs. A slope stability prediction model based on the 
improved Northern Eagle Algorithm-optimized Random Forest (INGO RF) was proposed, and the optimized 
machine learning model was compared and analyzed with other models. The results indicate that the thicker the 
fully weathered soil layer, the lower the slope stability coefficient. After 5 days of rainfall, the stability coefficients 
under different soil layer conditions are not significantly different. However, in the absence of rainfall, slopes with 
thinner fully weathered soil layers are significantly more stable. The optimal INGO RF model achieved an accuracy 
rate greater than 0.9 on both the training and testing datasets. After comparing the predictive performance of various 
models, it was found that the INGO RF model outperforms other models, with bulk density being the most sensitive 
factor influencing slope stability. 
 
Index Terms strength reduction method, slope stability, soil layer thickness, random forest, improved Northern 
Goshawk optimization algorithm 

I. Introduction 
With the development of society, an increasing number of large-scale engineering projects have emerged worldwide, 
giving rise to various types of slopes. These primarily include rock slopes formed by the weathering of rock masses, 
soil particle slopes created by the accumulation of soil from mining activities, and mixed rock-soil slopes, among 
others [1]-[3]. Rock slopes are composed of structural planes and structural bodies. Structural planes divide rock 
masses into irregularly shaped and variably sized rock blocks, thereby forming structural bodies [4]. Structural 
planes are geological interfaces formed within rock masses under tectonic stress, exhibiting directionality, high 
extensibility, and low thickness as two-dimensional surfaces. Due to their complex structure and significant role in 
engineering, the stability of such slopes is primarily influenced by joint distribution characteristics, water seepage 
forces, and external loads such as earthquakes, making them a research hotspot in the field of civil engineering in 
recent years [5]-[7]. Soil particle accumulation slope soils are relatively loose and fragmented, formed by the 
stacking and bonding of soil particles. Under the combined effects of long-term rainfall and self-weight, they possess 
a certain strength, with porosity smaller than that of sandy soils. Such slopes have poor stability, primarily influenced 
by water seepage forces, their own porosity, upper pressure loads, and external loads such as earthquakes and 
explosions [8]-[11]. 

Slope instability issues are widely present in fields such as geotechnical engineering, environmental science, and 
transportation. Slopes may become unstable due to factors such as geological structural damage, rainfall erosion, 
earthquakes, and impact forces, leading to landslides that cause significant economic losses to society and pose a 
serious threat to human life. This highlights the importance of slope structural stability for engineering structural 
safety [12]-[15]. Therefore, studying slope instability issues holds significant theoretical and scientific significance. 
As a core indicator for evaluating slope stability, the critical soil layer thickness is closely related to the severity of 
disasters caused by slope instability [16]. Discussing the principles and critical values of instability without 
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considering the actual thickness of the critical soil layer is unreasonable. Analyzing the critical soil layer thickness 
and predicting stability during slope instability is of great importance. 

Currently, research on the critical soil layer thickness for slope instability is still in its early stages. Literature [17] 
proposed a theoretical model supported by a stress characteristic method and pseudo-static method to analyze the 
critical stability of pure clay slopes under seismic conditions. The critical slip surface in this environment resembles 
that under natural conditions but is steeper and lower compared to traditional linear slopes. Reference [18] monitors 
critical displacements of slopes, integrates slope mechanics, physical information, and deformation behavior to 
analyze slope failure mechanisms, and develops a dynamic risk prediction method for slopes that have not reached 
critical values. Machine learning algorithms have made significant contributions to slope stability prediction. 
Literature [19] combines machine learning algorithms with Winsorization for slope stability prediction. Winsorization 
enhances prediction performance, with the Random Forest + Winsorization combination yielding the best prediction 
performance, while Support Vector Machine + Winsorization improves prediction accuracy by nearly 20%. Literature 
[20] compared the predictive performance of the Gravity Search Algorithm, Random Forest, Support Vector Machine, 
and Naive Bayes for slope stability. The first two algorithms performed better, with the Gravity Search Algorithm 
yielding the optimal predictive results. Literature [21] combined an improved Pelican Optimization Algorithm with 
the Random Forest Algorithm to design a slope stability prediction indicator system, construct a slope stability 
prediction model, and achieve an accuracy rate of 90.4%. Literature [22] designed a neural network architecture 
guided by dimensionless indicator groups, combined relative curvature radius and numerical calculations to analyze 
slope stability, and trained artificial neural networks to achieve three-dimensional slope stability prediction. Literature 
[23] used digital twin technology and convolutional neural networks to construct a database of slopes with weak 
layers and predict the stability of slopes with weak layers, achieving a prediction accuracy of up to 95.4%. 

This paper will conduct stability simulation calculations for clay slopes using the strength reduction method, 
combined with the numerical simulation software PFC to establish a computational model. The Ball-Wall method 
will be employed for modeling to analyze the impact of critical soil layer thickness on the stability of terraced slopes. 
The following parameters are selected as the primary indicators influencing slope instability: soil density, cohesion, 
internal friction angle, slope angle, slope height, and pore pressure ratio. A slope stability prediction model based 
on the Improved Northern Eagle Algorithm-optimized Random Forest (INGO RF) is proposed. The classification 
performance of INGO RF was evaluated using confusion matrix metrics, characteristic curves, and area under the 
curve, and the optimized INGO RF model was compared with other models. 

II. Analysis of critical soil layer thickness for slope instability 
II. A. Strength reduction method approach and model construction 
II. A. 1) Strength reduction method 
The shear strength reduction method [24] uses the reduction coefficient 

rF  to reduce the shear strength indicators 
of the soil, namely cohesion c  and internal friction angle  , according to Equations (1) and (2). The reduced 
shear strength parameters are substituted for the original shear strength parameters to obtain the new shear 
strength of the soil 

fF , as shown in Equation (3): 
 /F rc c F  (1) 

 arctan((tan ) / )F rF   (2) 
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In the equation: 
Fc  is the cohesion of the soil after strength reduction, 

F  is the internal friction angle of the 
soil after strength reduction, and 

fF  is the shear strength of the soil after strength reduction. 
In the limit equilibrium method, the stability safety factor K  of a slope is defined as the ratio of the shear strength 

within the slope to the shear stress generated within the soil, as shown in Equation (4): 
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Dividing both sides of equation (4) by K  yields: 
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By comparing Equations (3) and (5), it can be seen that the shear strength reduction factor is equivalent to the 
slope stability safety factor in the limit equilibrium method. 
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To ensure that the problem is initially close to elastic, the value of the reduction factor 
rF  should be sufficiently 

small at this stage. Subsequently, the reduction factor 
rF  is gradually increased, causing the shear strength index 

of the slope to decrease progressively until it reaches a certain value that triggers the instability of the entire soil 
mass. The shear strength coefficient 

rF  immediately preceding the onset of overall instability is the stability safety 

factor of the slope. 
At present, there are mainly the following methods to judge whether the soil slope has reached the critical failure: 

(1) numerical calculation of convergence or not is used as the evaluation criterion, (2) the displacement inflection 
point of the characteristic part is used as the evaluation criterion, and (3) whether the continuous zone is developed 
in the soil as the evaluation criterion. In the Abaqus environment, the parameters of the material can be changed 
with temperature or field variables to achieve this strength reduction process. 

The specific steps are as follows: 
(1) Define the field variable (strength reduction coefficient 

rF ). 

(2) Define the simulation parameters of the material as a function of the field variable. 
(3) In the initial stage, first determine the magnitude of the field variables, apply the physical load to the model, 

and set the equilibrium stress state. The initial stage is naturally to avoid model failure, so the reduction coefficient 

rF  needs to be set to a relatively small value. If 1rF  , the shear strength of the slope will be amplified. 

(4) In subsequent analyses, the field variable values gradually increase linearly. When the calculation is paused 
(due to numerical divergence), the results are processed. 

 
II. A. 2) Model Construction 
The model in this paper uses a homogeneous soil slope with a height of 12m  and a slope angle of 45 . The density 

of the soil is 320kN m , the cohesion c  is 12.38kPa , and the internal friction angle   is 20 . Here, the elastic 

modulus is assumed to be 100MPa  and the Poisson's ratio is 0.35. The model is shown in Figure 1. 

12
m

10m

15
m

45°

25m
(a) Theoretical model (b) Numerical model  

Figure 1: Model drawing 

II. B. Establishment of a numerical model for landslides 
There are typically two methods for establishing PFC landslide models. One method uses wall elements to simulate 
the slip surface, while the slip body is filled with particle elements. This modeling method is referred to as the Ball-
Wall method. The other method is the ball-ball method, where particle elements are used to fill both the slip body 
and the slip surface. Based on field investigations and relevant data, the potential sliding surface of the Zhulin Gou 
landslide has been identified. Additionally, since the Ball-Wall method requires fewer particles, computational 
efficiency is significantly improved. Therefore, the Ball-Wall method will be adopted for modeling. The modeling 
process is as follows: 

(1) First, using the geological cross-section diagram of the slope, create a slope geometric model of the same 
dimensions using AutoCAD. 

(2) In PFC, use commands such as geometry import and wall import to import the previously generated geometric 
model into PFC and generate the corresponding wall boundaries. 

(3) Use the expansion method to generate particles with the corresponding porosity within the walls, and perform 
multiple trial calculations to achieve equilibrium under gravitational force. The initial landslide model is shown in 
Figure 2. 

(4) Assign relevant parameters to the generated soil particles, and finally delete the corresponding boundary walls 
of the landslide body. Since the stress between particles after wall deletion will cause particles to separate 
extensively, an additional iteration equilibrium must be performed to ensure that the maximum unbalanced contact 
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force of particles approaches 0, indicating that the entire model system has reached a balanced state, as shown in 
Figure 3. 

(5) Reset the velocity and displacement of the landslide model. Apply gravity to the model using the set gravity 
command to cause the model to slide under gravitational force. The slope contour line serves only as a reference 
for slope sliding. 

The established numerical calculation model is shown in Figure 4, with a length of 530 m, a height of 210 m, a 
slope of approximately 20°, a minimum particle radius of 0.08 m, and a maximum particle radius of 0.11 m. 

 

Figure 2: Landslide initial model 

 

Figure 3: Unbalanced force diagram 

 

Figure 4: Numerical slope model 
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II. C. Critical soil layer thickness analysis 
Monitoring points were selected at the crest and toe of each terrace to analyze changes in pore water pressure, 
with the results shown in Figure 5. (a) and (b) represent the slope crest and slope toe, respectively. As shown in the 
figure: the amplitude of pore water pressure changes at the slope crest decreases with increasing thickness of the 
fully weathered soil layer, but the rate of decrease gradually slows down. At the slope toe, under conditions where 
the thickness of the fully weathered soil layer is 1 m and 2 m, the time to reach zero pore pressure is 4 days, 4.7 
days at 3 m, and 5 days at both 4 m and 5 m. This indicates that as the influence of rainfall seepage increases, a 
thinner fully weathered soil layer means the soil is more easily converted from an unsaturated state to a saturated 
state, allowing the wetting front to reach the slope toe more quickly. As shown in Figure 5, the magnitude of the 
increase in pore water pressure over time at the slope crest and toe is negatively correlated with soil layer thickness. 
Under identical conditions, a thicker fully weathered soil layer results in greater rainfall infiltration depth and a longer 
time required for the wetting front to reach the slope toe. Therefore, in the scenario with a fully weathered soil layer 
thickness of 5m, the magnitude of pore water pressure changes at the slope crest is smaller than in other scenarios. 

  

(a) Sloping top (b) Slope 

Figure 5: The variation curve of pore pressure force in different soil thickness terraced land 

The relationship curves showing how the slope stability coefficient of terraced fields varies over time under 
different soil layer thickness conditions, as calculated using the unsaturated limit equilibrium method, are shown in 
Figure 6. As can be seen from the figure: Under no rainfall conditions, the stability coefficient of terraced slopes with 
the same terrace width and terrace height decreases as the thickness of the fully weathered soil layer increases. 
During rainfall, the stability coefficients under all conditions first remain unchanged and then decrease as the 
duration of rainfall increases. Among these, the stability coefficients of terraced slopes with thinner fully weathered 
soil layers (1–3 m) begin to decrease earlier than those of slopes with thicker layers (4–5 m). 

 

Figure 6: The slope stability coefficient of the slope of the slope of different layers of soil 
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The changes in the stability of terraced slopes with varying soil layer thicknesses after 5 days of rainfall are shown 
in Table 1. As shown in Figures 5 and 6: the stability coefficient of the terraced fields decreases with the increase 
in the thickness of the fully weathered soil layer. Under various conditions, the stability coefficients of the terraced 
field slopes after 5 days range from 1.286 to 1.256, all exceeding 1.150, with minimal differences and a nearly linear 
decrease, indicating that they are all in a basically stable state. The possible reason is that as the thickness of the 
fully weathered soil layer increases, the infiltration depth of rainfall increases. However, the permeability coefficient 
of the internal soil is relatively small, so after a period of rainfall, the infiltration depth of the soil does not vary 
significantly. Therefore, the stability coefficients under various conditions are roughly similar after 5 days of rainfall 
and tend to stabilize. Based on this, it can be inferred that under no rainfall conditions, for terraced slopes, areas 
with thinner fully weathered soil layers exhibit greater slope stability. During prolonged rainfall, the stability of 
terraced slopes with varying soil layer thicknesses tends to converge. 

Table 1: The slope stability coefficient curve of the slope of the terrace 

Soil thickness Stability factor 

1m 1.286 

2m 1.273 

3m 1.267 

4m 1.262 

5m 1.256 

 
The overall slope of terraced fields during rainfall has a significant impact on their stability. After 5 days of rainfall, 

the slope stability coefficients of terraced fields with different slopes vary greatly within the range of 0.985 to 1.629, 
while those with different soil layer thicknesses vary only slightly within the range of 1.258 to 1.283. Therefore, it 
can be concluded that under the same rainfall intensity, the overall slope of the terraced fields has a greater impact 
on stability than the thickness of the soil layers. 

III. Slope stability prediction 
III. A. Dataset 
III. A. 1) Database Establishment 
Research indicates that the primary factors influencing slope safety factor include severity  , cohesion c, internal 
friction angle φ, slope angle α, slope height H, and pore pressure ratio 

ur . Therefore, a sample database was 

established using six factors from 200 slope cases, with some sample data shown in Table 2. 

Table 2: original sample database 

Density / (kM.m-3) 
Cohesion 

(MPa) 

Internal friction angle 

/(°) 

Slope Angle 

(°) 

Slope height 

/m 

Pore water pressure 

ratio 

safety 

factor 

20.1 27 0 31 9 0.17 1.11 

27 48 37 48 446 0.27 1.32 

27 58 39 46.4 297 0.27 1.55 

29 41 37 48.4 289 0.27 1.14 

29 36 37 43 357 0.27 1.29 

12 40.13 22.45 0.95 31.3 0.72 1.04 

53 47 22 0 38 0.72 0.81 

22 0 39 47 52 0.27 0.81 

20 32 37 37 13 0.27 2.04 

20.54 12.84 22 24 14.09 0.23 1.37 

… … … … … … … 

27 48 37 49 447 0.27 1.30 

 
III. A. 2) Feature correlation analysis 
First, a feature correlation analysis is performed on the selected sample database. If there is correlation between 
features, dimension reduction is required during prediction to prevent the correlation between features from affecting 
the prediction results. MATLAB software is used to plot a Pearson correlation heatmap between features, as shown 
in Figure 7. There is a certain degree of correlation between pairs of features. The correlation coefficient between 
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the internal friction angle and the slope angle is the highest, at 0.49, while the correlation coefficients between the 
remaining pairs of features are all less than 0.5. Therefore, all feature correlation coefficients are less than 0.5, 
indicating that the correlation between features is non-strong, with a noticeable nonlinear relationship. Consequently, 
no dimensionality reduction is required for the data. 

 

Figure 7: Pearson's correlation heatmap 

III. B. Construction of the INGO RF hybrid prediction model 
III. B. 1) Random Forest Model 
The RF model [25] is an ensemble algorithm that achieves optimal classification through voting by multiple decision 
trees. First, the Bootstrap method is used to randomly sample 80% of the data from the slope sample set to construct 
m training sets. Then, k features are randomly selected from each training set to construct n decision trees. Finally, 
the n decision trees are tested using the training set to obtain n classification results, and slope stability predictions 
are made based on the voting principle. 
 
III. B. 2) Improving the Northern Goshawk Algorithm Design 
(1) Strategy improvement in the prey identification stage 

The classic NGO algorithm randomly selects prey to guide population updates in the prey identification stage, 
which may lead to blindness and local optima. Therefore, this paper makes the following improvements to the 
algorithm for this stage. 

Let 
iF  and 

iP
F  be the fitness of the i th northern goshawk and its prey, respectively. (1) When 

ii PF F , the 

northern goshawk has a lower fitness. In this case, the best value  of the current individual in each generation is 
used to guide position updates, which helps accelerate convergence and improve optimization accuracy. (2) When 

ii PF F , the northern goshawk has a better fitness. At this point, a subtraction optimizer is introduced to adjust the 

position of the current northern goshawk based on the position difference of all northern goshawks, thereby avoiding 
the original goshawk getting stuck in a local optimum and balancing global and local information to enhance the 
algorithm's exploration capability. The improved expression for this stage is: 
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In the equation, X  is the northern goshawk population matrix, 
iX  is the position of the i th northern goshawk, 

N   is the population size of northern goshawks, n   is the dimension of the problem variables, 
iP   is the prey 

position of the i th northern goshawk, 
,i jx  is the position of the i th goshawk in the j th dimension, , 1new P

iX  is the 

new position of the i th northern goshawk, , 1
,
new P
i jx  is the new position of the i th northern goshawk in the j th 

dimension after the first stage update, 
bestx  is the best position of each generation of northern goshawks, r  is a 

random factor, [0,1]r , b  is the position gain, taken as 1 or 2, v  is the weight factor, [1,3]v , and , 1new P
iF  is 

the fitness of the i th northern eagle after the first stage update. 
(2) Strategy improvement in the pursuit and escape stages 
The classic NGO algorithm tends to search for better solutions near the current solution during the pursuit and 

escape phase, but premature development can easily lead to local optima, especially in complex slope datasets. 
As the number of algorithm iterations increases, the algorithm eventually converges near the solution. At this point, 
to improve the quality of the solution, a more detailed search should be conducted within a smaller range. Therefore, 
for this phase, the following improvements were made to the algorithm: (1) Introduce random perturbations via 
Cauchy mutation to cause individuals to jump away from local optima, thereby increasing the likelihood of exploring 
global optima: (2) Design a dynamic update strategy for search upper and lower bounds, dynamically adjusting the 
search range of individuals through algorithm iterations. In the later stages of the algorithm, as the number of 
iterations increases, the region around the solution can be explored more thoroughly, thereby improving solution 
quality. The specific improved expression is: 
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where , 2new P
iX  is the new position of the first i  northern goshawk, , 2

,
new P
i jx  is the new position of the j  dimension 

of the first i   northern goshawk after the second stage update, , 2new P
iF   is the fitness of the first i   northern 

goshawk after the second stage update,  0,1cauchy  is the probability factor in the Cauchy distribution, t  is the 

current number of iterations, T  is the maximum number of iterations, R  is the scaling factor, its value decreases 

with the increase of the number of iterations, 
ar  is the random number of the  0,1  interval,   is the probability 

parameter, take 0.2, 
bu  and 

bl  The difference between the upper and lower bounds of the variables in the search 

space decreases with the increase of the number of iterations, forcing the search of the solution to be near the 
current optimal solution, which can effectively improve the convergence speed and quality of the algorithm. 

 
III. B. 3) INGO RF prediction model establishment process 
Since the number of decision trees 

estimatorsn  and the maximum number of separating features 
max_ featuresN  directly 

affect the classification performance and stability of the RF model, the INGO algorithm is used to tune the 
hyperparameters of the RF model to improve the prediction accuracy of the model. The block diagram of the 
prediction model proposed in this paper is shown in Figure 8. 
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Y

Train random forest model
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Obtain northern goshawk location 
parameters corresponding to 

optimal fitness values

N

Determine population size

Initial hyperparameters 
Obtain initial fitness values

Randomly select prey and 
update northern goshawk 

location

Update northern goshawk 
location in the second 

stage

Optimal random forest 
model

Performance evaluation

 

Figure 8: Flowchart of INGO RF slope prediction model 

(1) Analyze and normalize the slope dataset, and randomly divide it into a training set and a test set in an 8:2 
ratio. 

(2) Initialize the parameters of the RF algorithm and determine the search range for the hyperparameters to be 
tuned. 

(3) Initialize the parameters of the INGO algorithm and set the population size. 
(4) Perform position iteration updates according to steps (1) to (7). 
(5) Use the training set for five-fold cross-validation as the fitness function to verify the fitness of each generation 

of individuals. 
(6) After reaching the maximum number of iterations, output the optimal hyperparameters to construct the optimal 

INGO RF slope prediction model, and test it using the test set data. The optimal hyperparameter settings for the RF 
model are shown in Table 3. 

(7) Evaluate the performance of the optimal INGO RF prediction model. 

Table 3: Optimal hyperparameter settings for the RF model 

Hyperparameter 
estimatorsn  max_ featuresN  

Optimization range [1,530] [1,8] 

Optimal value 152 5 
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III. C. Results and Discussion 
III. C. 1) Model Classification Performance Metrics 
This study selected five metrics to evaluate the classification performance of the model, namely accuracy (

ccA ), 

precision (
reP ), recall (

eR ), the weighted average of precision and recall (
1-scoreF ), and the area under the receiver 

operating characteristic curve (ROC) (AUC). The expressions for the first four are as follows: 
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Accuracy is one of the most basic performance metrics for classification models, representing the proportion of 
correct predictions made by the model. Precision is the proportion of true positives among the model's positive 
predictions, while recall is the proportion of correct positive predictions made by the model. The 

1-scoreF   is a 

comprehensive metric for evaluating the classification performance of a model. 
The expressions for the false positive rate (

prF ) and true positive rate (
prT ) are: 

 p
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p n
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The ROC curve is a curve with the false positive rate as the x-axis and the true positive rate as the y-axis. Based 
on the predicted probability and actual label, 

prF   and 
prT   at different thresholds are plotted in the coordinate 

system, and the points are connected to form the ROC curve. The closer the ROC curve is to the upper left corner, 
the better the model performance. The AUC value is a comprehensive metric for evaluating the classification 
performance of a model, with a range from 0 to 1. The closer the AUC value is to 1, the better the model performance. 

 
III. C. 2) INGO-RF model prediction results 
The training set and test set were input into the optimal WOA-RF model, and the confusion matrices and 
classification performance metrics for the training and testing results are shown in Figure 9, while the ROC curves 
are shown in Figure 10. From the confusion matrix, it can be seen that in the training set and test set, there are 1 
and 3 stable samples, respectively, that were incorrectly predicted as unstable, but all unstable samples were 
correctly predicted. Therefore, the established hybrid model has good performance in identifying slope instability 
and meets engineering requirements. Calculating the classification performance metrics yields the following results: 
on the training set, the model's 

ccA  is 0.98, 
reP  is 1.00, 

eR  is 0.97, and the AUC value is 0.98, indicating that the 
model's training performance is good. On the test set, the model's 

ccA  is 0.95, 
reP  is 1.00, 

eR  is 0.86, and the 
AUC value is 0.97, indicating that the model's generalization performance is good. 

        

(a) Training set,
ccA =0.98,

reP =1,
eR =0.97,

1 scoreF 
=0.98 (b) Test set,

ccA =0.95,
reP =1,

eR =0.86,
1 scoreF 

=0.93 

Figure 9: Confusion matrix and classification performance of model for training and test sets 
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(a) Training set (b) Test set 

Figure 10: ROC curves of model for training and test sets 

III. C. 3) Comparative analysis of different classification models 
To further explore the feasibility of INGO optimization hyperparameters and the predictive performance of the INGO 
RF model, the INGO optimization algorithm was used to optimize four widely used machine learning models (k-
nearest neighbors algorithm (KNN), SVM, ANN, and DT). The optimized models will be compared and analyzed 
with the INGO RF model. All these models will be trained using the training set and evaluated using the test set. 
The training and test sets for these models will be consistent with those of the INGO RF model to ensure the 
reliability of the results. 

Table 4 shows the 
ccA  and 

1 scoreF 
 values for each model before and after optimization on the test set. It can be 

seen that after INGO optimization, the 
ccA   and 

1 scoreF 
  of all models have been improved to varying degrees, 

indicating that INGO can achieve hyperparameter optimization and performance improvement for the four machine 
learning models. Among them, the ANN model shows the highest improvement, with both 

ccA   and 
1 scoreF 

 

increasing by 0.27. The INGO RF model's 
ccA  and 

1 scoreF 
 are both 0.95, representing a 12.4% improvement in 

both metrics compared to the RF model. The performance of the RF model before and after optimization is superior 
to that of the other four models before and after optimization. 

Table 4: 
ccA  and 

1 scoreF 
 before and after optimization 

Model ccA  1 scoreF   Model ccA  1 scoreF   

KNN 0.77 0.77 INGO- KNN 0.85 0.85 

SVM 0.82 0.82 INGO-SVM 0.87 0.86 

ANN 0.54 0.53 INGO-ANN 0.81 0.80 

DT 0.73 0.73 INGO-DT 0.77 0.77 

RF 0.86 0.86 INGO-RF 0.95 0.95 

 
Table 5 presents the classification performance metrics of each optimized model on the test set. Models are 

ranked based on their performance across each metric, with higher performance corresponding to a larger rank 
value. The rank values for the four metrics are summed to obtain the total score. As shown in Table 4, the total 
scores of the five optimized models, from highest to lowest, are INGO-RF (24), INGO-SVM (20), INGO-KNN (15), 
INGO-ANN (9), and INGO-DT (4). Since INGO-RF and INGO-SVM have relatively high total scores, they can 
effectively predict slope stability. Additionally, INGO-RF's total score is significantly higher than INGO-DT's, 
indicating that integrating RF with DT can significantly enhance the model's predictive performance. 
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Table 5: Classification performance and ranking of models after optimization 

Model ccA  ccA rank reP  reP  rank eR  eR rank 1 scoreF   1 scoreF  rank Total score 

INGO- KNN 0.84 4 0.84 3 0.84 4 0.84 4 15 

INGO-SVM 0.86 5 0.87 5 0.86 5 0.86 5 20 

INGO-ANN 0.82 2 0.85 3 0.78 2 0.81 2 9 

INGO-DT 0.77 1 0.77 1 0.74 1 0.75 1 4 

INGO-RF 0.96 6 1.00 6 0.89 6 0.95 6 24 

 
Figure 11 shows the ROC curves and AUC values of each model on the test set. It can be observed that no single 

model's ROC curve completely encompasses those of the other models. The ROC curves of the INGO-RF, INGO-
KNN, and INGO-SVM models are closer to the top-left corner, with AUC values of 0.954, 0.867, and 0.849, 
respectively. The INGO-RF model has the highest AUC value, exceeding 0.9. Therefore, the INGO-RF model 
demonstrates the best predictive performance. 

 

Figure 11: ROC curves of different models for the test set 

In addition, to comprehensively evaluate the classification performance of each model, a radar chart was drawn 
based on the above five indicators, as shown in Figure 12. The results show that the constructed INGO-RF model 
outperforms other models in all indicators, demonstrating excellent performance. Therefore, the INGO-RF model is 
selected as the best model for predicting slope stability. 

 

Figure 12: Radar chart of performance indicators for different models 

III. C. 4) Feature Importance Analysis 
Exploring feature importance and determining its impact on slope stability is crucial, as the analysis results can 
provide a basis for slope prevention and control. The PFI algorithm is used to assess feature importance by 
randomly shuffling the feature value sequence and calculating the degree of model performance degradation. 
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Multiple feature importance analyses are performed on the trained INGO-RF model to obtain the mean and standard 
deviation of the feature weight coefficients, as shown in Figure 13. 

In the figure, the main predictive feature indicators are the cohesion  , cohesion coefficient c, internal friction 
angle φ, slope angle α, slope height H, and pore pressure ratio 

ur . Clearly,   (with an average weight coefficient 
of 0.165) is the most sensitive factor affecting slope stability. The average weight coefficients of H, Φ, 

ur  and ϕ 
have similar mean weight coefficients of 0.105, 0.094, 0.085, 0.079, and 0.067, respectively. Therefore, the 
importance of the features, from highest to lowest, is:  , H, Φ, 

ur  and ϕ. These features all play an important role 
in slope stability and are reasonable inputs for the model. 

 

Figure 13: Feature importance score (iteration: 100) 

IV. Conclusion 
A computational model was established using numerical simulation based on the strength reduction method, with 
the Ball-Wall method selected for modeling. The concept of contact adhesion was incorporated into the model to 
analyze the impact of different soil layer thicknesses on the stability of terraced slopes. The results showed that 
thinner soil layers lead to better slope stability, and as the rainfall infiltration process continues, the influence of soil 
layer thickness on slope stability gradually decreases. Subsequently, a prediction model based on the INGO 
algorithm for optimizing RF hyperparameters was proposed. Among the five hybrid ensemble models constructed—
INGO-KNN, INGO-SVM, INGO-ANN, INGO-DT, and INGO-RF—the INGO-RF model exhibited the best 
classification performance metrics and overall performance. The feature weight coefficient of   was the largest, 
indicating its greatest influence on slope stability. 
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