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Abstract Within the theoretical framework of 3D point cloud data, this paper proposes the use of laser radar sensors 
to collect 3D point cloud data of cable size features. Due to the presence of redundant interference data in the data, 
an adaptive filtering algorithm is used to preprocess the data. To better extract cable dimension features, a cable 
dimension feature extraction model based on the ADGCNN network is designed. Through feature enhancement 
and fusion, a deep learning training model for cable dimension features is established. To address the issue of 
suboptimal model training performance, the Adadelta optimization algorithm is applied to optimize the model, and 
its optimization effects are verified and analyzed. The accuracy rate before model optimization was 0.894. After 
applying the Adadelta optimization algorithm, the model's accuracy rate improved to 0.975, confirming the 
effectiveness of the Adadelta optimization algorithm in model optimization. 
 
Index Terms adaptive filtering algorithm, ADGCNN network, Adadelta optimization algorithm, cable dimension 
features, 3D point cloud data 

I. Introduction 
As urbanization accelerates, the importance of urban power systems has become increasingly evident. With the 
growth in electricity demand, the safe, stable, and reliable operation of power systems has become particularly 
critical [1]. However, the construction process of cable laying and the quality management of cable accessories 
installation involve practical challenges and complex issues, such as unstable installation quality due to manual 
installation, narrow environments, and insufficient lighting, all of which increase the difficulty of quality control [2]-
[5]. Therefore, researching how to improve the installation quality of cable accessories, reduce fault frequencies, 
minimize power outages, and enhance engineering construction quality and management standards has become 
an urgent issue to address during cable laying processes [6], [7]. 

In recent years, the rapid development of precise measurement and analysis technologies such as 3D laser 
scanning, point cloud processing, and 3D modeling has provided new avenues for addressing these challenges [8], 
[9]. For example, 3D laser scanning technology can accurately and quickly measure the dimensions and positions 
of cables and cable accessories. Point cloud processing technology processes scan data to obtain the shapes and 
installation conditions of cables and cable accessories. 3D modeling technology uses scan data to create models, 
visually demonstrating the installation status of cables [10]-[13]. The application of these technologies can enhance 
the quality management efficiency of cable installations, reduce the operational risks of power systems, and drive 
technological innovation and upgrading in the power industry [14], [15]. 

Among these, a point cloud is a dispersed set of points that must undergo a series of processing steps to obtain 
the cable point cloud information required in this paper [16]. A 3D point cloud is a digital representation form 
composed of various information such as spatial coordinates and color textures [17]. Therefore, during calculations 
related to cable information, point cloud data can accurately reflect geometric parameters and other information 
about the cable, playing a crucial role. Literature [18] utilizes point clouds for three-dimensional structural 
visualization analysis of overhead communication cables between utility poles, combining machine learning 
methods to improve cable modeling accuracy, thereby assisting in the automation of infrastructure monitoring tasks. 
Literature [19] indicates that manually grinding cable joints results in surface shrinkage, uneven grinding, and 
irregular shapes. Therefore, a method for measuring the outer diameter parameters of cable joints based on three-
dimensional point cloud processing is proposed, which not only accurately measures the outer diameter parameters 
but also preserves the original characteristics of the cable. Literature [20] designed a point cloud-based automated 
surveying method for power line corridors. By extracting cross-sections of the original point cloud in the newly 
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constructed reference system, it enables automatic detection of power cables and surrounding obstacles, providing 
crucial support for automated power management. Literature [21] addresses the welding process of cable multi-
tube crossing structures in a common duct configuration, proposing a robot trajectory optimization model that 
combines weld seam 3D point cloud data with the NSGA-II optimization method. This model can accurately fit the 
cable model to achieve high-quality and efficient welding processes. Literature [22] introduces a cable joint point 
cloud remapping and image segmentation fusion method for cable joint defect measurement. By remapping 
preprocessed point cloud data onto a saliency image for explicit defect detection, it achieves good defect monitoring 
results. Reference [23] investigates a measurement method for stress cones in high-voltage cable joints based on 
3D point clouds. By constructing a feature curve model that fits the radius of the circle to reflect the structural 
characteristics of the cable joint, and calculating the intersection points with the fitted straight line, the method 
enables automatic measurement of the cable joint point cloud. Although most studies have recognized that 
automated technologies such as machine learning can achieve high quality and efficiency when processing point 
cloud data, the data extraction and training methods are not yet fully developed and have room for further 
optimization. 

This paper first uses a lidar sensor to collect 3D point cloud data of cable dimensional features. During the 
collection process, noise inevitably affects the data, resulting in interference information in the 3D point cloud data. 
Therefore, an adaptive filtering algorithm is used to filter, denoise, and register the data. After completing the data 
preprocessing, the ADGCNN network is employed to extract cable size features from the 3D point cloud data. The 
extracted features are then enhanced and fused to establish a deep learning training model for cable size features. 
Finally, to address the issue of suboptimal model performance, the Adadelta optimization algorithm is applied to 
optimize the model, and the effectiveness of the Adadelta optimization algorithm in model optimization is explored 
through loss values and accuracy rates. 

II. Three-dimensional point cloud data technology 
II. A. Theoretical Framework of 3D Point Cloud Data 
Three-dimensional point cloud data, which consists of a large set of three-dimensional coordinate points, can 
accurately and realistically reflect the three-dimensional shape and surface details of an object, providing robust 
data support for practical applications across various fields [24]. Its objective is to reconstruct the geometric surface 
model of an object using a discrete set of three-dimensional points. It has found widespread application in fields 
such as medical image analysis, autonomous vehicle environmental perception, industrial inspection, and cultural 
heritage digitization. 

Three-dimensional point cloud data, as an important data type in modern engineering, refers to a collection of 
points obtained through three-dimensional scanning equipment, which contain their coordinate information in three-
dimensional space. These data points are typically distributed in a disordered manner in three-dimensional space, 
forming a cloud-like structure, hence the name “point cloud.” Mathematically, 3D point cloud data can be represented 
as a set of points P , where each point 

ip  has three-dimensional coordinates ( , , )i i ix y z  as shown in Equation 

(1): 

 { ( , , ) | 1,2, , }i i i iP p x y z i N     (1) 

In this context, N  represents the total number of points. The acquisition of 3D point cloud data is a critical step 
in fields such as 3D reconstruction, machine vision, and remote sensing monitoring. In the early days, contact-
based measurement methods were widely used, but with technological advancements, non-contact methods such 
as structured light scanning and laser scanning have gradually become the mainstream. Structured light scanning 
is fast and highly accurate, making it suitable for medium-sized objects, but it is sensitive to environmental conditions; 
laser scanning, on the other hand, measures three-dimensional coordinates by calculating the time of flight or phase 
difference of laser beams. Although it is more expensive, it offers greater adaptability. 

 
II. B. Generation and Preprocessing of Point Cloud Data 
II. B. 1) Generation of point cloud data 
LiDAR is a sensor that measures distance by emitting laser pulses and measuring the time it takes for the reflected 
pulses to return. A LiDAR system typically consists of a laser transmitter, receiver, and processing unit, enabling the 
efficient generation of high-precision 3D point cloud data. During data collection, point cloud data inevitably 
becomes affected by noise, resulting in errors and outliers in the data. Noise sources include sensor errors, 
environmental interference, and data processing errors. Noise impacts the quality of point cloud data and requires 
filtering and denoising through preprocessing techniques. 
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II. B. 2) Point cloud data preprocessing 
(1) Local noise level estimation 

In 3D point cloud data, noise typically manifests as random point shifts. To accurately estimate the noise level in 
a local region before filtering, the local variance of the point cloud data is used to characterize the noise magnitude. 
Let the local region of the point cloud data be 

iP , which contains 
iN  points ( , , )i i i iP x y z  . The local noise level 

i  can be estimated using equation (2). That is: 

 2 2

1

1
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i j i
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Among them, 
i  is the centroid of the local region, which is defined as shown in Equation (3). It is: 
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By calculating the noise level 
i  of each local region, we can provide a basis for subsequent filter parameter 

adjustment. 
(2) Adaptive adjustment of filtering parameters 
The core of adaptive filtering lies in dynamically adjusting the size and weight distribution of the filter kernel based 

on the local noise level. Let the standard deviation of the filter kernel be 
r , and its adaptive adjustment is shown 

in Equation (4). That is: 

 ( )f if   (4) 

Among them, ( )if   is a monotonically increasing function used to adjust the size of the filter kernel according 

to the local noise level 
i . Therefore, by using a linear function or exponential function, it can be expressed as 

shown in Equation (5). That is: 

 
j i       (5) 

In this case,   and   are adjustment coefficients determined based on the specific application scenario. 

(3) Edge detection and retention 
Edge points in a 3D point cloud typically manifest as points with relatively large local gradients. To retain edge 

details during the filtering process, a gradient-based edge detection method is employed. Let the local gradient of 
point 

iP  be 
iP , whose calculation is shown in Equation (6). It is: 
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Among them, 
iN  represents the neighborhood point set of point 

iP . When || ||iP  exceeds a certain threshold 

 , the point is judged to be an edge point, and a higher weight 
i  is assigned to it during the filtering process, as 

shown in Equation (7). That is: 

 1 max(0,|| || )i iP    ▽  (7) 

where   is the adjustment coefficient. 
(4) Filtering process 
The final filtering operation is achieved through weighted averaging. Given the filtering result P  of point 

iP , the 

calculation is shown in Equation (8). It is: 
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Among them, 
i  is the weight of the k th point, and 

i  is the standard deviation of the adaptive adjusted filter 

kernel. 
 

II. C. Three-dimensional point cloud data filtering 
Point cloud filtering is a preprocessing technique for point cloud data that improves data quality by removing noise, 
smoothing data, and retaining important features. As shown below: 

(1) Neighborhood search. Find the set of points within the neighborhood of each point. 
(2) Calculate the mean and standard deviation. Calculate the mean and standard deviation of the distances 

between each point and its neighboring points. 
(3) Set the threshold. Set the distance threshold based on the mean and standard deviation. 
(4) Remove outliers. Remove points whose distances exceed the threshold. 
 

II. D. Point Cloud Registration 
Point cloud registration is the process of aligning multiple point cloud data sets collected from different perspectives 
or at different times into the same coordinate system. The goal of point cloud registration is to find a rigid body 
transformation (including rotation and translation) such that one point cloud (source point cloud) is aligned as closely 
as possible with another point cloud (target point cloud) after the transformation. The rigid body transformation 
model is shown in Equation (9). It is: 

  |T R t  (9) 

In this context, R  is the rotation matrix, and t  is the translation vector. The registration process determines the 
optimal rigid transformation by optimizing a distance metric (such as Euclidean distance). 

III. Deep Learning Model Training, Construction, and Optimization 
III. A. Building Deep Learning Training Models 
III. A. 1) Extraction of cable size features from point cloud data 
Three-dimensional point cloud data containing cable size features exhibit sparsity and irregularity. Existing methods 
for extracting cable size features do not account for the varying importance of different feature channels. To address 
this, we propose an ADGCNN network combined with an attention mechanism, introducing a channel attention 
module into the EdgeConv structure to assign different weights based on the importance of feature channels, 
thereby enhancing the network's expressive capability. Additionally, we employ a method combining max pooling 
and average pooling to address the disordered nature of point clouds, preventing information loss that would occur 
if only max pooling were used. 

(1) Network Learning Process 
The ADGCNN network structure is shown in Figure 1. The three-dimensional point cloud data containing cable 

dimensions is sequentially input into 32-dimensional, 32-dimensional, 64-dimensional, and 128-dimensional 
EdgeConv modules, respectively, to obtain 32-dimensional, 32-dimensional, 64-dimensional, and 128-dimensional 
cable dimension features. These hierarchical cable dimension features are concatenated into a 256-dimensional 
vector and fed into a multi-layer perceptron for training, resulting in a 512-dimensional vector. Subsequently, max 
pooling and average pooling operations are performed, and the concatenated result yields a 1×1024-dimensional 
global feature. Finally, three fully connected layers with 256, 128, and C units are used as classifiers, where C 
represents the number of categories in the dataset. Batch normalization and Leaky ReLU activation functions are 
applied in all fully connected layers. 
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Figure 1: ADGCNN network structure 
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(2) AEdgeConv Module 
Existing methods for processing point cloud data often ignore differences in channel importance when extracting 

cable size features. To address this issue, the AEdgeConv module was designed based on the EdgeConv structure 
in DGCNN network 3, as shown in Figure 2. This module uses a channel attention mechanism, as shown in Figure 
3, to calculate the weighted vector of feature channels, enhance feature vectors, increase the weight of useful 
information, and thereby improve the network's learning of useful information. 
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Figure 2: AEdgeConv structure diagram 
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Figure 3: Channel attention mechanism structure 

PointNet only considers the global features of point cloud data, as shown in Equation (10). For: 

 ( , ) ( )i j ih X X h X   (10) 

ADGCNN is similar to DGCNN in that it uses graph neural networks to extract local features from point clouds. 
V  represents the edge features of vertex 

iX , as shown in Equation (11). It is defined as: 

 ( , ) ( , )i j i j iV h X X h X X X     (11) 

The vector V  is input into the channel attention mechanism to emphasize the importance differences of feature 
channels. Here, 

1 2,   represent 1×1 convolution operations, and   represents the Sigmoid function, which is 
used to obtain weight parameters   between 0 and 1 to differentiate the importance of feature channels. The 
process is shown in Equation (12) as follows: 

 
1 2 1 2( ( ( ( ))) ( ( ( ))))MAX V MEAN V        (12) 

Multiply the weight   by the marginal feature information V  to obtain the feature-enhanced vector V  , where 
( )A   is the attention map, i.e., the weight   multiplied by the feature vector V . This process is shown in Equation 

(13). It is: 

 ( )V A V   (13) 

Finally, the complete edge features of 
iX   undergo a pooling operation. The AEdgeConv module uses max 

pooling to aggregate the edge features, which is represented by Equation (14). 

 
:( , )max ( )i j i j EX V   (14) 

(3) Symmetric functions 
Symmetric functions are commonly used to address the issue of point cloud disorder. Most models use max 

pooling to summarize point cloud feature information, but using max pooling alone can lead to feature loss to a 
certain extent. Average pooling can reduce estimation errors caused by differences in neighborhood size, so 
different pooling methods can obtain features from different perspectives. 

 
III. A. 2) Feature Enhancement 
To extract rich and effective cable size features from 3D point cloud data, a feature enhancement module was 
designed, incorporating depth-separable convolutions, skip connections, and pixel addition operations. The feature 
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enhancement, as shown in Figure 4, includes five 3×3 depth-separable convolutions, three skip connections, and 
pixel addition operations. Each depth-separable convolution in the feature enhancement module includes a BN 
normalization operation and a Gelu activation function. After passing through the feature enhancement module, 
both shallow and deep feature maps obtain more rich cable dimension features. Depthwise separable convolutions 
effectively reduce the number of parameters in convolution operations while maintaining performance comparable 
to conventional convolutions. The skip-connection operation uses the output of one layer in the feature 
enhancement module as the input for the next layer, effectively addressing the issue of degradation, facilitating 
gradient propagation, and accelerating the training process of the cable dimension feature deep learning model, 
thereby enabling the model to capture more detailed information about cable dimensions. The BN normalization 
operation has the advantages of avoiding gradient vanishing and gradient explosion, accelerating model 
convergence, and improving generalization. The Gelu activation function has a smooth and continuous derivative, 
making it easier to propagate gradients during the training of the slender defect segmentation network. The output 
values of the Gelu activation function have a large range, which helps accelerate the convergence speed of the 
model. 
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Figure 4: Feature enhancement 

III. A. 3) Feature Fusion 
Three-dimensional point cloud data of cable size features have high resolution and contain more positional 
information, but less semantic information. Deep features have richer semantic information but poorer perception 
of cable size feature details. The size of the receptive field affects the accuracy of training deep models for cable 
size features. The larger the receptive field of a deep learning model, the more cable size features it typically obtains. 
Dilated convolutions can effectively increase the receptive field. To improve the accuracy of training deep models 
for cable dimension features, a feature fusion method was designed to increase the receptive field while enhancing 
the features of elongated defect edges. First, the input 3D point cloud data is subjected to a Concatenate operation, 
which fuses information by overlaying feature channels. Then, three parallel branches are used to enhance the 
fused features and expand the receptive field. Each parallel branch consists of two 3×3 depth-separable 
convolutions and one dilated convolution with skip connections and pixel-wise addition operations. The dilation rates 
of the dilated convolutions in the three parallel branches are 2, 3, and 4, respectively. Each convolution operation 
in the parallel branches includes a Batch Normalization (BN) standardization operation and a Gelu activation 
function. Finally, the features from the three parallel branches are further fused using pixelwise addition and 1×1 
convolution operations. The pixelwise addition operation adds features with the same number of channels, 
increasing the information per pixel to complete feature fusion. 

 
III. B. Optimization of Deep Learning Training Models 
III. B. 1) Overview of the Optimizer 
In deep learning model training, the first step is to clearly define the problem we aim to solve and the appropriate 
model to use. Next, we organize the training data and test data, then select a training framework such as TensorFlow 
or Caffe. Through specific rules, the model extracts features from the training data, gradually updating and adjusting 
the values of variables in each layer, ultimately producing a trained model. This model captures the features of the 
training data, serving as a good representation or mapping of the entire dataset. In machine learning and deep 
learning, optimization algorithms include common methods like gradient descent (SGD) and MBGD, as well as 
alternative optimizers such as Adadelta, Adagrad, and RMSProp. For optimization algorithms, the optimization 
target is the parameter values   in the model, and the optimization objective function is the loss function. The 
independent variable of the loss function L is  , where the parameters of L are the entire training set. In other 
words, the objective function is determined by the entire training set. If the training set differs, the loss function will 
also differ. 
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III. B. 2) Adadelta Optimizer 
Common optimization algorithms for deep learning training models include gradient descent (SGD), MBGD, 
Adadelta, Adagrad, RMSProp, and other optimizers. Given that the research content of this paper is the cable size 
features in three-dimensional point cloud data, the Adadelta optimizer is used to optimize the deep learning training 
model for cable size features mentioned above. The Adadelta algorithm is an improvement over Adagrad. Compared 
to Adagrad, Adadelta replaces the G in the denominator with the decayed average of the gradient squared, as 
shown in the following formula (15): 

 
2

.
[ ]

t t

t

g
E g

  
 ò

 (15) 

The new form of the denominator is equivalent to the root mean square of the gradient. In mathematical statistical 
analysis, the sum of the squares of all values is calculated, then the mean is calculated, and then the square root 
is taken to obtain the root mean square, which is generally abbreviated as RMS, as shown in formula (16): 

 .
[ ]t t

t

g
RMS g

    (16) 

The formula for calculating E is as follows. The value at time t  depends on the average of the previous moment 
and the current gradient, as shown in formula (17) below: 

 2 2 2
1[ ] [ ] (1 )t t tE g E g g     (17) 

In addition, the learning rate   is replaced by [ ]RMS   using this adaptive method, so that we do not even 

need to set the learning rate in advance, as shown in formula (18) below: 

 1[ ]
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[ ]
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t t
t

RMS
g

RMS g


 

    (18) 

 
1t t t       (19) 

IV. Point cloud data preprocessing and model verification analysis 
IV. A. Point cloud data preprocessing analysis 
IV. A. 1) Acquiring Point Cloud Data 
Using a lidar sensor, three-dimensional point cloud data of cable size characteristics was obtained, with a total of 
53,135 points collected. Due to limitations in the scanning accuracy of the equipment, operator inexperience, 
complex environmental conditions, and surface characteristics of the objects, the collected point cloud data contains 
noise points and outliers, as well as issues such as data unevenness. Repeated scanning of local features also 
results in large data volumes and data redundancy. These shortcomings can interfere with subsequent research 
work, affecting cable dimension feature extraction, deep learning model training, and model optimization. Therefore, 
this paper employs an improved adaptive filtering algorithm to preprocess the acquired point cloud data. The 
performance of the improved adaptive filtering algorithm will be validated and analyzed in the following sections. 

 
IV. A. 2) Experimental Results 
To validate the effectiveness of the noise reduction performance of the algorithm proposed in this paper, we first 
compared its noise reduction performance with that of existing algorithms for different noise types, including 
Gaussian noise, random noise, and composite noise (a combination of Gaussian and random noise). The 
experimental results of the preprocessing of 3D point cloud data are shown in Table 1. The radius filtering algorithm 
consumes excessive time for noise reduction, with an average runtime of 2.111 seconds, resulting in low efficiency; 
The median denoising algorithm achieves denoising performance comparable to that of the radius filtering algorithm. 
It uses the optimal number of neighboring points from statistical filtering as the input parameter for radius filtering, 
thereby reducing the number of experiments required to find the optimal parameters for radius filtering during the 
experimental process, which improves efficiency to some extent. However, the single-run execution time of the 
algorithm is longer than that of the radius filtering algorithm, reaching 2.901 seconds. After processing the noise 
model using the denoising algorithm proposed in this paper, there are no residual noise points in the subjective 
visual effect, regardless of whether it is a Gaussian noise model, random noise model, or composite noise model. 
The algorithm demonstrates strong robustness across different noise types. After noise reduction processing by the 
algorithm proposed in this paper, the average number of remaining points in the point cloud model is 30,454, with 
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a corresponding algorithm runtime of 0.308 seconds, comparable to the 0.295-second runtime of the statistical 
filtering algorithm. When comprehensively comparing noise reduction effectiveness and efficiency, the algorithm 
proposed in this paper outperforms the other three algorithms. 

Table 1: Experimental results of 3D point cloud data preprocessing 

Algorithm type 
Gaussian noise Random noise Compound noise Means 

Remaining point Time /s Remaining point Time /s Remaining point Time /s Remaining point Time /s 

Statistical filtering 33442 0.118 35928 0.662 34022 0.105 34464 0.295  

Radius filtering 31273 0.753 34871 2.834 33511 2.745 33218 2.111  

Median filtering 31233 2.854 34201 2.943 32468 2.905 32634 2.901  

The algorithm of this article 30683 0.136 30389 0.715 30291 0.074 30454 0.308  

 
To further validate the stability of the algorithm proposed in this paper, we will compare its denoising performance 

on point cloud models under different noise intensities. Gaussian noise with signal-to-noise ratios (SNR) of 60 dB, 
80 dB, 100 dB, and 120 dB was added to the 3D point cloud data. The deviation analysis data before denoising for 
the algorithm under different noise intensities is shown in Table 2, and the deviation analysis data after denoising is 
shown in Table 3. The data shows that after denoising by the algorithm under different noise intensities, the average 
deviation is 0.0008 mm, with an absolute value far below the pre-denoising value of 0.2959 mm. The average 
standard deviation is 0.2228 mm, a 42.14% reduction compared to the pre-denoising value of 0.3851 mm. 
Additionally, the average percentage of point cloud data within tolerance increased from 16.78% before denoising 
to 29.45%, representing a 75.51% improvement. This significantly enhances the accuracy of the point cloud data, 
ensuring the validity of subsequent research results. 

Table 2: Deviation analysis data before denoising 

Noise intensity(dB) Average deviation(mm) Standard deviation(mm) Proportion within the tolerance 

60 -0.3342 0.4011 17.24% 

80 -0.2746 0.4006 16.32% 

100 -0.3126 0.3741 17.11% 

120 -0.2621 0.3646 16.44% 

Mean -0.2959 0.3851 16.78% 

Table 3: Deviation analysis data after denoising 

Noise intensity(dB) Average deviation(mm) Standard deviation(mm) Proportion within the tolerance 

60 0.0021 0.2229 29.49% 

80 0.0004 0.2231 29.42% 

100 0.0004 0.2226 29.44% 

120 0.0004 0.2226 29.44% 

Mean 0.0008 0.2228 29.45% 

 
IV. B. Model validation analysis 
IV. B. 1) Cable size feature extraction analysis 
(1) Evaluation indicators 

For the analysis of cable size features in 3D point cloud data, this section will use extraction accuracy and average 
extraction accuracy as the evaluation indicators for this study. The specific formulas are shown below: 

 100%overall

M
A

N
   (20) 

 
1 2

1 2 100%

n

n
avg

MM M

N N N
A

n

 
   

  
  (21) 

In the equation,  1 2, , , nM M M  is the category data for each cable size feature,  1 2, , , nN N N  is the 3D point 

cloud data for each cable size feature, and n  is the number of categories in the sample. 
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(2) Experimental Environment 
The hardware environment configuration includes an Intel® Core™ i7@2.4GHz CPU, 64.0 GB of memory, an 

NVIDIA GeForce GTX 4080 Ti GPU, Ubuntu 16.08 operating system, TensorFlow 1.16.0 deep learning framework, 
OpenGL version 4.8, and Python 3.6.4 programming language. 

(3) Result Analysis 
Under the influence of evaluation metrics, the cable size feature extraction performance of the ADGCNN network 

was validated and analyzed, with comparison methods including AlexNet, VGGNet-16, and ResNet50. The feature 
extraction accuracy results are shown in Figures 5–8, where (a) and (b) represent extraction accuracy and average 
extraction accuracy, respectively. The results show that the ADGCNN network outperforms AlexNet, VGGNet-16, 
and ResNet50, indicating that the ADGCNN network can effectively extract cable dimension features from 3D point 
cloud data, thereby validating the effectiveness of the ADGCNN network for cable dimension feature extraction. 

  

(a)Extraction accuracy (b)Average extraction accuracy 

Figure 5: Feature extraction accuracy rate(AlexNet) 

  

(a)Extraction accuracy (b)Average extraction accuracy 

Figure 6: Feature extraction accuracy rate(VGGNet-16) 

  

(a)Extraction accuracy (b)Average extraction accuracy 

Figure 7: Feature extraction accuracy rate(ResNet50) 
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(a)Extraction accuracy (b)Average extraction accuracy 

Figure 8: Feature extraction accuracy rate(ADGCNN) 

To further validate the cable size feature extraction of the ADGCNN network, the loss curves for cable size feature 
extraction across different networks are compared below, as shown in Figures 9–12. When compared with AlexNet, 
VGGNet-16, and ResNet50, the ADGCNN network exhibits smaller fluctuations in loss values during the cable 
dimension feature extraction process, indicating that the ADGCNN network performs more stably in this task. 

 

Figure 9: The loss curve of feature extraction(AlexNet) 

 

Figure 10: The loss curve of feature extraction(VGGNet-16) 

 

Figure 11: The loss curve of feature extraction(ResNet50) 
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Figure 12: The loss curve of feature extraction(ADGCNN) 

IV. B. 2) Analysis of Model Optimization Effects 
As analyzed above, the ADGCNN network can effectively extract cable size features from 3D point cloud data, and 
then through feature enhancement and fusion, ultimately complete the construction of a deep learning training 
model. To improve the performance of the model training process, this paper uses the Adadelta optimization 
algorithm to optimize the model and conducts an in-depth analysis of its optimization effects, primarily considering 
loss values and accuracy rates. During training, the loss value gradually approaches 0 as the number of iterations 
increases, thereby reflecting the network's performance. Accuracy is measured by evaluating the output results of 
the trained network using a separate test set. A network model was constructed using transfer learning methods 
and trained. When the Adadelta optimization algorithm was selected, the training accuracy and loss accuracy are 
shown in Figure 13, where (a) and (b) represent the loss value and accuracy, respectively. Based on the loss value 
and accuracy data in the figure, it can be seen that under the Adadelta optimization algorithm, the model accuracy 
improved from 0.894 to 0.975, and the model training loss value was also optimized, demonstrating the optimization 
effect of the Adadelta optimization algorithm on the model in this paper. 

  

(a)Accuracy (b)Loss 

Figure 13: Training accuracy and loss accuracy 

V. Conclusion 
This paper utilizes three-dimensional point cloud data technology to obtain three-dimensional point cloud data of 
cable size features using a lidar sensor. To avoid the influence of interference information on the research results, 
an adaptive filtering algorithm is employed for data preprocessing. Based on this, the ADGCNN network is used to 
extract cable size features from the three-dimensional point cloud data. Through feature enhancement and fusion, 
a deep learning training model for cable size features is constructed. To address the issue of suboptimal model 
training performance, the Adadelta optimization algorithm is applied to optimize the model. The effectiveness of the 
algorithm in optimizing the deep learning training model for cable dimension features is validated from two aspects: 
loss value and accuracy rate. After validation analysis, it was found that under the Adadelta optimization algorithm, 
the accuracy of the model increased from the initial 0.894 to 0.975, and the corresponding loss value was also 
optimized. Based on the research results, the effectiveness of the research scheme was fully validated. 
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