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Abstract A stock price index is an indicator reflecting the overall trend of the stock market, calculated through 
weighted averaging based on a selected sample of stocks. For investors, observing the fluctuations in stock price 
indices can help assess market sentiment and risk, predict future market trends, and formulate more informed 
investment strategies. This study introduces the particle swarm optimization (PSO) algorithm to optimize random 
forests, constructing a PSO-RF prediction model. Simulation experiments indicate that when the number of particles 
reaches 32, the model's evaluation metrics achieve optimal performance. When applying the PSO-RF algorithm to 
the selection of decision trees in ensemble forests, the quality of sub-forests of different sizes was evaluated using 
different diversity (or similarity) metrics. The PSO-RF algorithm achieved optimization effects for the random forest 
algorithm across all selected sub-forest sizes. Data from the CSI 500 Index from 2023 to 2027 was selected as the 
sample set. After validation and analysis in different experiments, the optimized random forest model demonstrated 
high prediction accuracy, strong stability, and good predictive performance on the CSI 500 Index across different 
time periods. 
 
Index Terms Random Forest, Particle Swarm Optimization, Stock Index Prediction 

I. Introduction 
In modern society, the economy is at the center of life, and for the economy, finance is its lifeblood[1]. Since China's 
reform and opening-up, government agencies and enterprises have gradually introduced various types of securities 
products such as stocks and bonds, which has driven China to develop and improve a systematic securities trading 
platform[2]-[4]. Among these, the stock price index is an indicator reflecting the overall trend of the stock market, 
calculated through weighted averaging based on selected stock samples[5]. For investors, observing fluctuations 
in stock price indices can help assess market sentiment and risk, predict future market trends, and formulate more 
informed investment strategies [6]-[8]. Additionally, stock price indices serve as important reference tools for 
financial institutions and government departments in regulating and formulating policies, thereby maintaining market 
stability and healthy development [9]-[11]. Stock market volatility is influenced by various complex factors, including 
investor sentiment, major public events, policy changes, and international economic trends [12], [13]. This results 
in stock price index fluctuations being more complex than those of individual stocks, exhibiting characteristics such 
as high noise, non-stationarity, and non-linearity [14], [15]. Therefore, to enhance the accuracy and stability of 
investor decision-making, it is necessary to use relevant quantitative research methods to establish mathematical 
models based on historical data to predict future trends [16]. 

For nonlinear, non-stationary, and rapidly updating financial market data, machine learning algorithms can quickly 
uncover more potential information in the market compared to traditional statistical analysis methods. For support 
vector regression models, literature [17] introduces a feature-weighted support vector machine theory for data 
classification, which calculates weights for different features and combines them with the K-nearest neighbor 
algorithm to construct a feature-weighted prediction model, thereby enabling accurate predictions of stock market 
indices. Literature [18] combines an investor sentiment analysis model with machine learning methods based on 
support vector machines. The sentiment indicators constructed can accurately reflect investors' psychological 
expectations in the stock market, providing reliable support for stock price predictions. Literature [19] utilizes web 
search technology to optimize the machine learning training dataset based on support vector regression and applies 
the fine-tuned model to stock prediction using time series data. This approach clearly reflects the parameter 
performance and associated risks of stock market fluctuations over time, thereby enhancing the accuracy of stock 
index predictions. 

For long short-term memory networks, Literature [20] deploys long short-term memory (LSTM) networks in 
financial markets to perform time series predictions for stock indices, finding that compared to memory-less 
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classification methods, LSTM networks demonstrate higher prediction accuracy and lower exposure to risk sources. 
Literature [21] proposes a stock market prediction model that integrates LSTM networks and genetic algorithms, 
and predicts stock price indices based on the temporal characteristics of existing financial data, demonstrating high 
accuracy. Literature [22] indicates that the unique storage unit structure of LSTM can effectively avoid long-term 
dependency issues. Therefore, by combining the attention mechanism, a stock price prediction model based on 
financial time series data is established to provide investors with accurate stock recommendation guidance. 

For extreme gradient boosting models, Reference [23] designed a stock market prediction model based on the 
extreme gradient boosting (XGBoost) algorithm, which improves the model's predictive effectiveness for stock price 
volatility trends by reformulating the prediction problem as a classification problem. Literature [24] constructs an 
interpretable XGBoost binary classification prediction model based on the sentiment characteristics of institutional, 
individual, and foreign investors, treating sentiment as an important factor in index trend prediction, thereby 
providing investors with valuable references. Literature [25] establishes a multi-factor stock selection model based 
on the XGBoost algorithm, identifying and analyzing the feature space of multi-indicator classifiers to obtain accurate 
predictions in complex nonlinear stock markets. 

As a highly flexible ensemble algorithm that has emerged in recent years, the random forest algorithm has 
advantages such as being less prone to overfitting, strong noise resistance, no need for feature selection, the ability 
to balance errors and handle high-dimensional data, no need for data standardization, and fast training speed. 
Applying it to stock index prediction can provide a more precise price prediction foundation for quantitative timing 
strategy development compared to the aforementioned models. 

This paper employs the particle swarm optimization algorithm to optimize the random forest, establishing a 
random forest prediction model based on the particle swarm optimization algorithm. The number of particles is 
determined through simulation experiments. Subsequently, the quality of sub-forests of different scales selected by 
the PSO-RF algorithm and their prediction results are evaluated. Data from the CSI 500 Index from 2021 to 2027 
was selected as experimental data. Technical indicators were determined, and ADF and DW tests were used to 
examine their stationarity. Series that failed the stationarity test were subjected to differencing. Finally, the model 
was compared with numerous other prediction models, and its performance was analyzed from multiple 
perspectives. 

II. Random forest algorithm optimized based on swarm intelligence 
II. A. Random Forest Algorithm Principle 
II. A. 1) Decision Tree 
A decision tree is the most basic single classifier model and serves as the fundamental learning unit in a random 
forest. A decision tree is a multi-way tree composed of root nodes, intermediate nodes, and leaf nodes, with each 
node corresponding to an attribute of the target being studied. The training process involves progressively 
decomposing all samples from the root node to the leaf nodes. As each sample passes through an intermediate 
node, it essentially undergoes attribute classification, which is a unique process. Starting from the root node and 
passing through intermediate nodes, a sample can only land on a single leaf node, and the number of attributes is 
reduced by one. Ultimately, when all samples in an intermediate node belong to the same class, the node no longer 
performs further classification and automatically becomes a leaf node. By converting the path between the root 
node and leaf nodes in a decision tree into logical judgment rules, a judgment system composed of various judgment 
logics can be constructed, thereby achieving the functionality of classifying or predicting data samples. 

 
II. A. 2) Bagging Algorithm 
The Bagging (Bootstrap Aggregating) algorithm was proposed by Breiman. Its core principle involves using the 
Bootstrap sampling method to perform random sampling with replacement on the dataset. Each sample drawn 
yields a training dataset, and this process is repeated to generate multiple distinct training datasets. Each sample 
is assigned to a weak classifier for training, and the classification results are then aggregated. If the prediction is 
based on a classification algorithm, the weak classifier will select the classification with the most votes as the final 
classification [26]; if the prediction is based on a regression algorithm, the weak classifiers will calculate the 
arithmetic mean of their results to obtain the final model output. 

 
II. A. 3) Random Feature Space Algorithm 
In the process of constructing a random forest, there is another core algorithm proposed by Ho, known as the 
random feature space algorithm, also commonly referred to as the random subspace algorithm. Its most distinctive 
feature is the ability to randomly select feature subsets, thereby training multiple independent weak classifiers. 
During testing, the final classification or prediction result for the test sample is determined using a voting or arithmetic 
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average method. This ensemble learning strategy can improve the model's accuracy and generalization ability, 
reduce the risk of overfitting, and is applicable to a variety of classification and regression problems.   

Similar to the Bagging algorithm, the Random Feature Space algorithm also uses bootstrap sampling to construct 
different weak classifiers. However, the former involves sampling training samples with replacement from the 
sample space, while the latter involves sampling training samples without replacement from the feature space. This 
is the key difference between the two. 

 
II. A. 4) Random Forest Algorithm 
The random forest algorithm [27] is improved on the basis of the Bagging algorithm, which combines the extraction 
of the training samples with return in the Bagging algorithm and the non-return extraction of attributes in the random 
feature space algorithm, absorbs the advantages of these two algorithms, and can search more comprehensively. 
This ensures that the training features in each decision tree are diverse, and can also accommodate various types 
and sizes of samples, and the random forest algorithm has better performance than the single Bagging algorithm 
and the random feature space algorithm. 

(1) Random forest model 
Assume that a random forest is composed of multiple decision trees { ( , ), 1,2,3, , }th x t T    , where X  is the 

sample, 
t   is the random variable, and T   is the number of decision trees in the random forest. Then, the 

prediction result output by the random forest model is: 

 
1

1
( ) { ( , )}

t

RF t
i

Y x h x
T




   (1) 

Among these, ( )RFY x  represents the prediction result of the random forest algorithm for the test sample x , and 
( , )th x   represents the output based on x  and  . 
The random forest model has strong generalization and robustness, can handle high-dimensional data and a 

large number of features, and can still provide accurate prediction results for outliers in the data. It can also capture 
nonlinear relationships between input and output variables and provide information on the importance of each 
feature in the prediction model. For the nonlinear and abrupt characteristics of highway travel time, the random 
forest model has good applicability and stability. 

(2) Random Forest Model Parameters 
During the construction of the Random Forest model, the individual learners are not mutually dependent, and the 

number of parameters that need to be adjusted in the model is relatively fewer compared to other models, thereby 
accelerating the model training process. The main parameters involved include: the number of decision trees, the 
depth of the trees (also known as the number of layers), and the number of randomly sampled feature values. 

(3) Random Forest Algorithm Process 
The Random Forest algorithm process is as follows: 
Step 1: Set the random forest parameters: pre-trained sample set X , number of decision trees T , number of 

feature attributes in the random feature space m , and pruning threshold  . 
Step 2: Sample the samples with replacement, randomly generate T  training sets, and select X  test samples 

from each training set. 
Step 3: Select attributes for the node by randomly sampling m  attributes from all attribute values in the sample 

set as the attribute values for the node, then select the optimal attribute for splitting based on the CART algorithm's 
evaluation criteria.   

Step 4: Train a decision tree using the training samples generated in Steps 2 and 3. 
Step 5: Prune using the pruning threshold. If the number of samples in a node is less than the pruning threshold 

 , treat that node as a leaf node. 
Step 6: If the number of decision trees obtained is less than T  , return to Step 2 to continue sampling and 

extraction. Otherwise, form a random forest using all T  decision trees and use the model to calculate the prediction 
results or final category. 

 
II. B. Random Forest Algorithm Based on Particle Swarm Optimization 
II. B. 1) Particle Swarm Optimization Algorithm 
The particle swarm algorithm simulates the foraging behavior of species in nature. This algorithm finds the global 
optimal solution to a problem through collaboration within the group. The algorithm is based on the social sharing 
of information, and its two core elements are the speed and position of the particles. Speed represents the direction 
and distance of the particle's next move, while position represents a solution to the problem being sought by the 
algorithm [28]. The algorithm's important parameters are as follows: 
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Assuming an M -dimensional search space, N  particles represent different solutions. Then:   
(1) The current position of each particle i  is represented as (2).   

 
1 2( , , , )im i i iMX x x x   (2) 

(2) The velocity of the particle determines its exploration direction and stride length; expressed as (3) 

 
1 2( , , , )im i i iMV v v v   (3) 

(3) The individual optimal solution found by the particle; expressed as (4). 

 
, 1 2( , , , )im pbest i i iMP p p p   (4) 

(4) The optimal solution discovered jointly by all particles in the group; expressed as (5). 

 
, 1, 2, ,( , , , )m gbest gbset gbest M gbestP p p p   (5) 

(5) The fitness value corresponding to the optimal solution associated with each particle i , i.e., the individual's 
historical optimal fitness value 

pf —individual historical optimal fitness value. 
(6) The fitness value of the population's optimal solution, referred to as the population's historical optimal fitness 

value. 
gf —population historical optimal fitness value. 

The steps of the particle swarm optimization algorithm are as follows:   
Step 1: Initialization. First, determine the population size and maximum number of iterations. Next, initialize the 

position and velocity of all particles, and set the maximum and minimum values for these parameters. 
Step 2: Calculate the initial fitness. Assign an initial fitness value to each particle as its optimal solution, and 

calculate the fitness function values for all particles. 
Step 3: Dynamic update. Adjust the inertia weight of the particles and dynamically update their velocities and 

positions based on this weight. 
Step 4: Fitness evaluation and update. Recalculate the fitness function values for each particle and update the 

individual's historical optimal position and the global optimal position of the entire population based on these values. 
Step 5: Check termination conditions. Determine whether the algorithm meets the termination conditions (e.g., 

reaching the maximum number of iterations or the fitness function value stabilizing within a specified range). If not 
met, return to Step 3; otherwise, proceed to the final step. 

Step 6: Output optimal parameters. When the algorithm meets the termination conditions, output the optimal 
solution, i.e., the optimal parameter combination for the random forest model. 

 
II. B. 2) PSO-RF prediction model construction 
Based on the above content, the construction process of the particle swarm optimization random forest model (PSO-
RF) is as follows: 

Step 1: Input the original data, preprocess the data, and divide the dataset into training and test sets. 
Step 2: Select the input feature values for the random forest model. 
Step 3: Set the initial velocity and coordinates of the particles, use the particle swarm algorithm to iteratively 

optimize the process, and adjust the movement velocity and position of each particle in the particle swarm based 
on this. 

Step 4: Set the initial parameters of the random forest, construct decision trees based on these parameters, and 
generate the random forest. Evaluate the model performance using the test data and calculate its error rate. 

Step 5: If the model's error rate does not meet the conditions, return to Step 3 and continue optimizing the random 
forest model parameters using the PSO algorithm. Once satisfactory model parameters are found or other 
termination conditions are met, the optimization process ends, and the PSO-RF prediction model is established, 
enabling stock index prediction. 

 
II. B. 3) Determination of PSO-RF model parameters 
In the application of particle swarm optimization algorithms, the number of particles is a critical parameter that must 
be determined initially. Increasing the number of particles can expand the search space and enhance the likelihood 
of finding the global optimal solution; however, this also means that the algorithm's runtime will increase. Generally, 
for conventional problems, the number of particles is recommended to be set between 20 and 40. For more complex 
problems, the number of particles may need to be adjusted to the range of 100 to 200. After extensive 
experimentation, this paper preliminarily decided to conduct simulation experiments of the particle swarm algorithm 
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at the values of 20, 25, 30, 35, and 40 to identify the optimal range of particle numbers. The experimental results 
are shown in Tables 1 and 2. 

As shown in Tables 1-2, when the number of particles is set within the range of 20 to 40 and increased in 
increments of 5, it is observed that the model's prediction performance evaluation metrics gradually decrease as 
the number of particles increases. Specifically, when the number of particles is 30 and 35, the evaluation metric 
values are relatively close, but when the number of particles increases to 40, the evaluation metric values actually 
increase. This suggests that the optimal number of particles may be between 30 and 35. When the particle count 
reaches 32, the model's evaluation metrics achieve their optimal values, specifically 0.026, 0.085, and 0.094. 
Therefore, after comprehensive analysis, it is determined that the most suitable particle count for this model is 32. 

Table 1: Prediction of the number of different particles (span 5) 

Number of particles MSE MAE RMSE 

20 0.091 0.185 0.192 

25 0.078 0.159 0.189 

30 0.065 0.133 0.135 

35 0.049 0.098 0.116 

40 0.062 0.117 0.153 

Table 2: Prediction of the number of different particles (span 1) 

Number of particles MSE MAE RMSE 

30 0.073 0.132 0.135 

31 0.057 0.115 0.129 

32 0.026 0.085 0.094 

33 0.042 0.093 0.105 

34 0.045 0.096 0.115 

35 0.049 0.098 0.116 

 
II. C. Experiments and Analysis of Results 
II. C. 1) Experimental Preparation 
The dataset used in the experiment is a binary classification dataset, all of which are sourced from the UCI database, 
with detailed descriptions as shown in Table 3. Preprocessing was performed on the dataset in the experiment: 
missing data were removed from the dataset; to avoid the influence of different scales between features on the 
experimental results, the data were standardized using the maximum-minimum method. 

The random forest algorithm used in the experiment employs CART decision trees as base classifiers, with 200 
decision trees and the number of candidate features at each node set to mtry m  is the number of features in 

the dataset). PSO-RF algorithm parameter settings: ant colony size m  = 10, pheromone importance coefficient 
  = 1, heuristic factor importance coefficient   = 3, pheromone volatility coefficient   = 0.2, total pheromone 

release quantity Q  = 20, maximum iteration count _ maxt  = 15.  

Table 3: Ci data set used in the experiment 

Data set name Sample size Characteristic number 

Breastcancer 289 11 

Heart 272 15 

Ionosphere 355 36 

Sonar 207 62 

ILPD 574 13 

Australian 694 16 

 
The experimental code was implemented using Matlab 2014a. The experimental environment was a Win7 64-bit 

operating system with 4GB of memory and an Intel® Core™ i7-3520M CPU@2.90GHz. 
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II. C. 2) Verifying the quality of subforests 
Evaluate the quality of the subforests selected by the PSO-RF algorithm. The similarity (or diversity) between 
decision trees in the ensemble forest is measured using the Kappa metric. The size M of the subforests ranges from 
[40, 80], increasing by increments of 10 decision trees. Experimental evaluation metrics: prediction accuracy (ACC); 

average similarity of the forest 
 ; and forest size EA. Experimental method: 10-fold cross-validation was applied 

to each dataset, and the average value of the sub-forest evaluation metrics was taken as the final result. The 
experimental results are shown in Tables 4 and 5. Symbol explanations in the tables: Original random forest AllRF ; 

Sub-forest ARF  integrated from high-performance decision trees selected from AllRF ; Sub-forest B
MRF  of size M 

selected from ARF . 

Table 4 shows the average size of the sub-forest ARF  integrated from the decision trees with high predictive 

performance selected from AllRF  by the PSO-RF algorithm. It is known that the size of AllRF  in the experiment 

is 200. It can be seen that the size of ARF  after selection is approximately half of the original size. At this point, 

the strength of the decision trees integrated in ARF  is generally higher than that in AllRF  . Table 5 shows the 

quality of subforests of different sizes selected by the PSO RF algorithm. It can be seen that, across the six datasets, 
the average similarity of ARF  has increased compared to AllRF ; however, the prediction accuracy of ARF  has 

only increased on the Sonar and Ionosphere datasets, while it has decreased on the remaining datasets. Therefore, 
if only the strength of the decision trees in the ensemble forest is increased without considering the diversity of the 
trees in the ensemble forest, it may not only fail to improve the performance of the forest but may even reduce it. 

Observe the quality of the sub-forest B
MRF  selected by the PSO-RF algorithm in Table 5. It can be seen that the 

prediction accuracy of B
MRF  is higher than that of AllRF  and ARF  on all six datasets, and the average similarity 

of B
MRF  is lower than that of ARF  on average. For different scales of B

MRF , it can be seen that except for the 

Heart and Ionosphere datasets, the prediction accuracy of the remaining datasets reaches its highest value when 
the forest scale is M=40. Among these, the Sonar dataset shows the greatest improvement, with the prediction 
accuracy of 

40
BRF   increasing by 11.4% compared to AllRF   and by 9.07% compared to ARF   The smallest 

improvement was observed in the Ionosphere dataset, where the prediction accuracy reached its peak at a forest 
size of M=70, improving by 2.45% compared to AllRF  and by 1.79% compared to ARF . 

Therefore, we conclude that the sub-forest B
MRF  selected by the PSO-RF algorithm contains fewer trees, not 

only achieving higher prediction accuracy but also having a lower average similarity than ARF , thus demonstrating 

that the PSO-RF algorithm achieves optimization of the random forest algorithm. 

Table 4: The size of the selected Subforest PSO-RF of the experimental data set 

Data set Breastcancer Heart Ionosphere Sonar ILPD Australian 

EA 105.5 106.6 107.4 100.2 103.0 109.3 

Table 5: The quality of the subforests of different sizes 

 Breastcancer Heart Ionosphere 

 ACC 
  ACC 

  ACC 
  

AllRF  0.8110 0.3379 0.8544 0.4695 0.9537 0.6951 
ARF  0.7964 0.3951 0.8507 0.5504 0.9594 0.7726 

40
BRF  0.8398 0.3771 0.8989 0.5435 0.9708 0.7622 

50
BRF  0.8325 0.3912 0.9026 0.5382 0.9737 0.7632 

60
BRF  0.8253 0.3833 0.8878 0.5463 0.9737 0.7666 

70
BRF  0.8217 0.3826 0.8915 0.5440 0.9765 0.7683 

80
BRF  0.8181 0.3902 0.8878 0.5451 0.9708 0.7681 

 Sonar ILPD Australian 
AllRF  0.8295 0.3032 0.7092 0.2101 0.8797 0.6046 
ARF  0.8491 0.3847 0.7041 0.2297 0.8783 0.6724 



Research on the Optimization of Random Forest Algorithm and Its Application Effectiveness in Stock Index Prediction 

7756 

40
BRF  0.9355 0.3801 0.7663 0.2263 0.9087 0.6603 

50
BRF  0.9210 0.3742 0.7628 0.2268 0.9044 0.6642 

60
BRF  0.9160 0.3768 0.7507 0.2274 0.9015 0.6671 

70
BRF  0.9114 0.3797 0.7508 0.2271 0.8986 0.6683 

80
BRF  0.8969 0.3834 0.7438 0.2284 0.8913 0.6677 

 
II. C. 3) Verification of results obtained using different measurement methods 
This chapter introduces three different measurement methods: Kappa, Q-statistic, and dissimilarity measure. In the 
PSO-RF algorithm, these three methods are used to measure the similarity (or diversity) between decision trees in 
the ensemble forest. The prediction accuracy (ACC) is used as the evaluation metric for the experiment, with the 
remaining settings consistent with those in the previous section. Figure 1 shows the average prediction accuracy 
of the selected sub-forests B

MRF  using the PSO-RF algorithm with the three different measurement methods. In 
the figure, the horizontal axis of the six bar charts starts at the prediction accuracy of AllRF  corresponding to the 
dataset or a higher value. It is evident that, across the six datasets, the PSO-RF algorithm effectively measures the 
similarity (or diversity) between decision trees in the ensemble forest using the three methods, achieving 
optimization of the random forest algorithm. 

  

(a) Breastcancer (b) Heart 

  

(c) Ionosphere (d) Sonar 

  

(e) ILPD (f) Australian 

Figure 1: Mean prediction accuracy 
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III. Stock index prediction based on improved random forests 
III. A. Data Selection and Explanation 
The experiment selected commonly used technical indicators in the stock market as the basis for analysis and used 
an improved random forest model to train the CSI 500 index dataset. 

 
III. A. 1) Technical Specifications 
Technical indicators are calculated based on stock index time series data and can be used to measure the 
profitability, solvency, and operational capabilities of the constituent stocks included in the CSI 500 Index. The 
technical indicators selected below are relatively widely used by investors and investment institutions at present, 
covering fundamental analysis indicators and dynamic indicators, and can assess the trend of stock index data 
changes from multiple perspectives. The specific definitions of technical indicators are shown in Table 6. 

Table 6: Technical index information list 

Serial number Technical index For short 

1 Market value CMV 

2 Return on equity ROE 

3 Net profit ROA 

4 Mobility ratio CR 

5 P/e PE 

6 Market net PB 

7 Earnings per share EPS 

8 Dividend yield DY 

9 Relative strength and strength index RSI 

10 The exponential smoothness is the average MACD 

11 Momentum line index MOM 
III. A. 2) Experimental Data 
Select data from the CSI 500 Index to form the training sample set and test sample set. The top 500 stocks by total 
market capitalization constitute the sample stocks of the CSI 500 Index, reflecting the comprehensive changes in 
stock value of small and medium-sized companies. The CSI 500 Index differs from others in its constituent stock 
composition, as its sample stocks primarily consist of small and medium-cap stocks with strong growth potential 
and significant development prospects. 

The experimental data spans from January 4, 2023, to December 31, 2027. Technical indicator data from the past 
three years is used to form the experimental sample space, with each trading day's data serving as a single sample 
for calculation. The data from January 4, 2023, to December 31, 2027, is used as the training sample set for model 
training and parameter adjustment, while the data from January 4, 2027, to December 31, 2027, is used as the test 
data set to evaluate the model's predictive performance. 

 
III. A. 3) Evaluation Indicators 
(1) Mean Absolute Error (MAD) 

The Mean Absolute Error (MAD) is the average of the absolute values of the differences between the sample 
label values and the model output values. 

 
1

| |
n

i i
i

Y F
MAD

n




  (6) 

(2) Mean square error 
Mean square error (MSE) is calculated by taking the average of the squared differences between the sample 

label values and the model output values. 

 
2

1

( )
n

i i
i

Y F
MSE

n




  (7) 

(3) Mean Absolute Percentage Error (MAPE)   
MAPE is calculated by first summing the absolute values of the differences between the sample label values and 

the model output values, divided by the model output values, and then taking the average. MAPE reflects the relative 
magnitude of prediction errors and eliminates the influence of measurement units.   
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III. A. 4) Modeling Process 
Using an improved random forest model to train a financial time series dataset, the main process can be divided 
into two parts: preprocessing of financial time series data and construction of a regression random forest model. In 
the preprocessing of financial time series data, the sequence data must first undergo a stationarity test. If the test 
is passed, a pure randomness test (i.e., white noise test) can be conducted. If the test is not passed, differential 
processing must be performed, followed by another test to determine whether the sequence is a stationary non-
white noise sequence. Sequences that pass the test can then be input into the improved random forest model for 
training and prediction. The flowchart for stock index prediction modeling is shown in Figure 2. 

Financial time series dataset

Stationarity 
test

Difference operation

White noise 
test

Training
Output 

prediction errorTest set

Yes
No

Yes

Preprocessing of 
time series data

Regression 
random forest 
construction  

Figure 2: Index prediction modeling flow chart 

III. B. Preprocessing of stock index data 
III. B. 1) Stability test 
(1) Unit root test 

The ADF test [29] is an extension of the DF test, which is more suitable for small sample tests and can avoid the 
impact of high-order lag correlation in time series. Therefore, the ADF test is selected for the following tests. 

The DW test is used to test the first-order correlation of time series residual values. Assuming that the residuals 
are 

te , the correlation equation for each residual is expressed as 
1i i ie e v   . 

The results of the unit root test for the CSI 500 are shown in Table 7. Among the original indicators, only the ADF 
test p-value for the CSI 500's DY indicator is less than the significance level of 0.05, allowing us to reject the null 
hypothesis and conclude that the CSI 500's DY indicator series is stationary. The p-values of the ADF tests for the 
remaining indicators are all much greater than 0.05, meaning that the series did not pass the unit root test and the 
null hypothesis that the time series contains a unit root cannot be rejected. Therefore, the original series is not 
stationary and requires further differencing. We performed first-order differencing on the indicators and then 
conducted ADF tests again. As shown in the table, the differenced indicator data all passed the ADF test, meaning 
that the differenced indicator series is stationary. 

Table 7: Comparison of unit root test of CSI 500 

 
Perform an ADF test for p 

values 
DW statistics 

The p value of the ADF test after difference is 

one 

Differenced DW 

statistics 

CMV 0.8709 1.9672 0.0005 2.0031 

ROE 0.5259 2.0599 0.0065 2.051 

ROA 0.7845 1.9398 0.0100 2.0001 

CR 0.2484 1.9882 0.0138 2.0018 

PE 0.6763 1.8702 0.0084 2.0036 

PB 0.3558 1.9998 0.0003 2.0019 

EPS 0.3603 1.9932 0.0022 2.0014 

DY 0.0512 2.0351 - - 
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RSI 0.777 1.9818 0.0006 2.0023 

MACD 0.7792 1.9681 0.0004 2.0024 

MOM 0.7731 1.9808 0.0075 2.0024 

 
(2) Auxiliary verification 
For the technical indicators CMV, ROE, and ROA in the CSI 500, the autocorrelation coefficient and partial 

autocorrelation coefficient with a maximum lag period of 3 periods are calculated, and the autocorrelation plot and 
partial autocorrelation plot are shown in Figure 3. The autocorrelation coefficient plots in the figure are all first-order 
truncated, and the partial autocorrelation plots of the differenced technical indicator sequences all exhibit a tailing 
characteristic. Therefore, it can be verified that the time series data of each technical indicator after differencing is 
stationary and can be further analyzed.   

  

(a) CMV (b) ROE 

 

(c) ROA 

Figure 3: Correlation and partial correlation diagram of CSI 500 index 

III. B. 2) Pure randomness test 
Pure randomness tests generally select the 

BPQ  statistic and the 
LBQ  statistic. The 

LBQ  statistic is a modified 
version of the 

BPQ   statistic, and 
LBQ   is more suitable for small sample tests. Therefore, based on the 

characteristics of the dataset, the following experiment selects the 
LBQ  statistic as the test statistic. The formula 

for calculating the 
LBQ  statistic is as follows: 

 
2

1

ˆ
( 2)

h
k

LB
k

Q n n
n k




 
  (9) 
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where n  is the sample size, h  is the number of sequences, 2ˆ
k  is the correlation coefficient of the k th lag of 

the sample, and the statistic follows a chi-square distribution with h  degrees of freedom. At a given significance 

level  , the rejection region is 2
1 ,LB hQ   , i.e., the sequence is a white noise sequence at this point. 

The maximum lag order of 1–12 for the 
LBQ  statistic after calculating the difference for each indicator in the CSI 

500 is shown in Table 8, along with the mean and range of the statistic. As shown in the table, the p-values for the 
randomness test are all less than 0.05 when retaining four decimal places, so they are not listed in the table. Since 
all p-values are less than 0.05, the null hypothesis can be rejected, meaning the sequence is not white noise. The 
data of each index sequence is not purely random, and further model training can be conducted to extract effective 
information and relevant trends from the sequence. 

Table 8: LB statistical range 

Index Certificate 500 

CMV 198.232±5.83 

ROE 117.162±1.724 

ROA 165.441±2.901 

CR 199.159±9.874 

PE 171.215±2.572 

PB 179.643±2.875 

EPS 195.738±3.214 

DY 169.223±0.146 

RSI 199.674±5.173 

MACD 192.291±5.011 

MOM 199.183±5.343 

 
III. C. Empirical Analysis 
The loss of the PSO-RF stock index prediction model during the training process is shown in Figure 4, and the 
results of the model's actual values and predicted values on the test set are shown in Figure 5. As can be seen from 
Figure 4, during the first few rounds of training, the RMSE and loss showed an upward trend, but during the last 
few rounds of training, they began to show a downward trend and finally slowly leveled off. In Figure 5, the purple 
line represents the actual closing price data, and the blue line represents the predicted values from the PSO-RF 
model. It can be observed that in some samples, the predicted values are slightly higher than the actual values, in 
some samples they are slightly lower, and in some samples they are closely aligned with the actual values. Overall, 
the fitting performance is superior to that of the RF model, indicating that the stock price index prediction model 
proposed in this paper, which utilizes particle swarm optimization to enhance the random forest algorithm, 
demonstrates excellent fitting performance. 

  

(a) RMSE (b) Loss 

Figure 4: Loss diagram during training 
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Figure 5: PSO-RF model prediction result figure 

The performance of the PSO-RF stock index prediction model was validated on datasets from different time 
periods of the CSI 500 Stock Price Index, as shown in Table 9. During the period from January 4, 2023, to December 
31, 2024, the PSO-RF prediction model achieved a 2R  value of the PSO-RF prediction model's evaluation metrics 
was 98.94%, slightly higher than the 2R  value over the four-year period from January 4, 2021, to December 21, 
2027. However, its MAE and RMSE values were higher than those of the latter. Overall, the six-year data prediction 
results were closer to the actual values. Over the four-year period from January 4, 2021, to December 31, 2024, 
the PSO-RF prediction model's evaluation metric 2R  value of the PSO-RF prediction model's evaluation metrics 
was 99.47%, which is 0.51 percentage points higher than the 2R  value for the four-year period. Both the MAE and 
RMSE values are significantly lower than those of the latter, indicating that the PSO-RF prediction model performs 
optimally in the four-year period. However, overall, it demonstrates good performance on the CSI 500 Index dataset. 

Table 9: PSO-RF prediction effect in different time periods 

Time 2R  RMSE MAE 

Two years 98.94% 178.42 151.07 

Four years 99.47% 67.39 55.22 

Six years 98.86% 125.41 91.43 

 
Table 10 presents the evaluation metrics results for several common regression-based stock index prediction 

models. Among the single prediction models—LR, SVR, GRU, LSTM, and TCG—the GRU model has the highest 
2R  value, the lowest RMSE and MAE values, and the best prediction performance; the SVR model, on the other 

hand, has the worst prediction performance; while the LR, LSTM, and TCG prediction models fall between the two, 
with the time-convolutional network (TCG) having a higher accuracy rate. The GRU network model is an effective 
variant of the LSTM network, with fewer parameters while retaining the long-short-term memory functionality of the 
LSTM network. This demonstrates that the LSTM network and its optimized models perform well in financial time 
series prediction. In contrast, the LR and SVR models have lower prediction accuracy compared to the LSTM and 
GRU models. 

For the CNN-LSTM and WOA-LSTM models, the accuracy of the proposed prediction model is the highest, while 
the CNN-LSTM model performs the worst, with an 2R  value of 93.66%, an RMSE value of 239.22, and an MAE 
value of 179.22. The GRU model has an 2R  value of 98.12%, an RMSE value of 141.24, and an MAE value of 
90.72, which are respectively 0.81 percentage points lower, 16.8 higher, and 0.46 lower than the PSO-RF stock 
index prediction model. Overall, the PSO-RF model demonstrates superior prediction performance and achieves 
the best fit with stock index data among the aforementioned single and combined models. 
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Table 10: Different prediction model regression effect 

Prediction model 2R  RMSE MAE 

LR 93.74% 237.48 91.58 

SVR 91.25% 311.36 253.34 

GRU 98.12% 141.24 90.72 

LSTM 96.47% 189.75 129.54 

TCG 97.69% 162.11 103.63 

CNN-LSTM 93.66% 239.22 179.22 

WOA-LSTM 98.52% 160.36 131.46 

PSO-RF 98.93% 124.45 91.18 

 

IV. Conclusion 
The study proposes a random forest model based on the particle swarm optimization (PSO) algorithm, adjusting 
key parameters within the random forest model and setting the number of particles to 32. Experimental validation 
demonstrates that the PSO-RF algorithm reduces the forest size while enhancing prediction accuracy, achieving 
the desired optimization effects for the random forest algorithm. Using the optimized random forest model to conduct 
empirical analysis on the CSI 500 index data, the ADF test and DW statistic method were employed to examine the 
stationarity of the selected indicators. The results showed that most indicators were greater than 0.05, failing to 
reject the null hypothesis, necessitating differential processing. Those that passed the test were used as feature 
inputs. The empirical results indicate that the index prediction model proposed in this paper achieves excellent 
results in processing the CSI 500 time series data. 
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