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Abstract With the rapid advancement of multimedia technology and big data, the landscape of physical education (PE) research
has undergone significant transformation. However, there remains a lack of quantitative and visual comparative analysis of
PE research frontiers between China and the United States. This study adopts CiteSpace software to analyze 946 English-
language publications from the Web of Science and 232 Chinese-language publications from the CSSCI database, constructing
knowledge maps and clustering co-cited references to reveal research hotspots and trends over the past five years. Results
indicate that US PE research primarily emphasizes health-oriented pedagogical models, teacher professional development,
and evidence-based practices, whereas Chinese research focuses more on curriculum reform, teaching modes, and educational
policy alignment. To enhance knowledge processing efficiency, an improved genetic algorithm combined with rough set theory
(IGA+RS) is proposed for knowledge abbreviation. The algorithm introduces heuristic information on attribute significance
into the genetic search process, integrates deletion, repair, and smoothing operators, and applies niche evolution to avoid
premature convergence. Experimental results demonstrate that IGA+RS significantly reduces redundancy in decision tables
while preserving classification accuracy, outperforming traditional rough set methods.

Index Terms physical education (PE) research, scientometric analysis, citespace, big data analytics, improved genetic
algorithm (IGA+RS), rough set knowledge reduction

I. Introduction
In the era of rapid technological advancement, multimedia technology and big data have penetrated into almost every domain
of human activity, including education, health, and scientific research [1], [2]. The integration of information technology with
education has significantly reshaped teaching methods, learning processes, and research paradigms. Physical education (PE),
as an essential component of higher education, is no exception. In recent years, the modernization of PE has become a critical
subject in educational reform, driven by increasing societal demands for holistic student development and health promotion.
However, despite these advancements, the research field of PE still faces substantial challenges in terms of systematically
identifying its evolving trends, mapping its research frontiers, and efficiently processing the growing volume of scientific
literature [3].

PE plays a crucial role in fostering not only physical fitness but also social skills, cognitive development, and lifelong
wellness habits. In both China and the United States, PE has undergone profound reforms aimed at enhancing teaching
quality, promoting physical activity, and aligning curricula with broader educational goals [4], [5]. While the United States
has emphasized health-based pedagogical models, teacher professionalization, and evidence-driven policies, China has focused
on curriculum innovation, reform-oriented teaching practices, and the integration of traditional sports with modern education
frameworks. Understanding the similarities and differences between these two leading countries is essential for advancing
global PE development, facilitating knowledge exchange, and optimizing pedagogical strategies [6].

In the context of the big data era, the sheer scale of digital information generated in the field of PE research has increased
exponentially. This vast volume of data holds valuable insights into research trends and emerging themes, yet it also poses
challenges for researchers attempting to extract meaningful patterns. Traditional literature reviews are no longer sufficient to
handle this information overload, underscoring the necessity for advanced quantitative methods, particularly scientometric
analysis and data visualization techniques, to identify hotspots, track knowledge evolution, and support evidence-based
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decision-making in education [7], [8].
Despite the growing importance of PE, several challenges persist in the current research landscape.First, there is a lack

of comprehensive, data-driven comparative analysis between different countries, particularly between China and the United
States, which represent two distinct educational and cultural contexts. Most existing studies focus on individual components
such as curriculum design, teaching methods, or policy impacts, rather than presenting an integrated understanding of research
frontiers and knowledge structures [9], [10]. Second, the identification of research trends and hotspots remains limited due to
the reliance on traditional content analysis and manual reviews. Without advanced analytical tools, it is difficult to capture the
dynamic nature of knowledge production and the complex relationships between research topics. Third, the efficient processing
of large-scale scientometric data is hindered by algorithmic limitations. Traditional rough set (RS) methods, while useful for
knowledge reduction and pattern discovery, often suffer from high computational costs and redundant information, leading to
inefficiency in handling massive datasets. There is an urgent need for improved algorithms that can enhance the performance
of rough set techniques while maintaining accuracy [11], [12].

Previous studies have explored various aspects of PE research from both domestic and international perspectives. In China,
PE research has evolved over the past century, with early works focusing on teaching content and methods, followed by gradual
incorporation of pedagogical theory and educational reforms. The implementation of the “new curriculum reform” has further
encouraged innovative approaches, integrating multimedia technology and digital resources to improve student engagement and
learning outcomes [13]. However, as noted by several scholars, most Chinese studies remain descriptive and lack quantitative
scientometric analysis.

In contrast, the United States has developed a more diversified research landscape, with a strong emphasis on health-oriented
PE models, teacher professional development, and evidence-based practices. Studies have highlighted the success of the US
in embedding physical activity into broader educational and public health frameworks. Research by Curtner-Smith, Haerens,
and others has emphasized the role of teachers, social learning, and cooperative teaching models in shaping PE outcomes.
Scientometric techniques, such as co-citation analysis and knowledge mapping, have been increasingly employed in Western
academia to track research evolution, yet comparative studies involving China are still scarce [14], [15].

Additionally, previous works on rough set theory and its applications in knowledge reduction have demonstrated its potential
for managing complex datasets. However, traditional RS approaches have limitations in scalability and efficiency. Some
researchers have introduced genetic algorithms (GAs) to optimize RS-based feature selection, but these methods often suffer
from premature convergence and lack mechanisms to maintain population diversity, thus failing to achieve optimal results in
high-dimensional scenarios [16].

Based on the literature, three main gaps can be identified: Insufficient comparative scientometric studies of PE research
between China and the United States; Lack of integration between quantitative visualization methods and algorithmic
optimization in the analysis of PE research data; Limitations in existing RS-based algorithms, which impede efficient knowledge
processing and fail to handle large datasets effectively. These gaps highlight the necessity of developing an integrated framework
that combines scientometric methods with advanced optimization algorithms to enhance both the accuracy and efficiency of PE
research analysis.

To address the aforementioned challenges, this study proposes an integrated methodology that combines CiteSpace-based
scientometric analysis with an improved genetic algorithm incorporating rough set theory (IGA+RS). Specifically: CiteSpace is
utilized to construct co-citation networks, cluster references, and visualize knowledge structures, enabling the identification of
research hotspots and trends in PE research across China and the United States.The IGA+RS algorithm is designed to enhance
knowledge reduction by introducing heuristic information on attribute significance into the genetic search process, employing
deletion, repair, and smoothing operators, and leveraging niche evolution strategies to avoid premature convergence. This
approach improves both the computational efficiency and the accuracy of rough set knowledge reduction.

The major contributions of this paper are as follows:
A comprehensive scientometric comparison of PE research in China and the United States over the past five years, revealing

differences in research focuses, trends, and knowledge evolution.
The development of an improved genetic algorithm (IGA+RS) that integrates rough set theory with heuristic attribute

significance and advanced genetic operators, effectively reducing redundancy while maintaining classification accuracy.
The integration of big data analytics, information visualization, and algorithmic optimization into PE research, providing

both theoretical insights and practical tools for scholars and policymakers.

II. Rough sets overview
II. A. Principle of genetic Algorithm
The flow chart of the basic principle of the genetic algorithm is shown in Figure 1.

The genetic algorithm (GA) is a population-based optimization technique inspired by the principles of biological evolution.
It operates under the fundamental idea of “survival of the fittest”, mimicking natural selection mechanisms to iteratively evolve
better solutions to complex problems.
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Figure 1: The fundamental flow diagram for the genetic algorithm concept

The algorithm begins by generating an initial population composed of randomly constructed candidate solutions. Each
candidate, referred to as an individual, is assessed using a predefined fitness function that reflects its quality or effectiveness in
solving the target problem.

Individuals with higher fitness scores are more likely to be selected for reproduction. During reproduction, genetic operators
such as crossover (recombination of features between two parents) and mutation (random alteration of traits) are applied to
produce new offspring. This process introduces both exploitation (preserving good traits) and exploration (introducing diversity)
into the population [17].

Through repeated generations of selection, recombination, and mutation, the population gradually evolves toward regions of
the solution space with higher overall fitness. While the genetic algorithm does not ensure discovery of the global optimum, it
effectively guides the search process by discarding low-fitness individuals and favoring the propagation of advantageous traits
[18], [19].

The strength of GA lies in its ability to perform global search without the need for gradient information or strict assumptions
about the problem landscape, making it suitable for solving nonlinear, multidimensional, and multimodal optimization
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problems.

II. A. 1) Initialization of the population and modeling of the environment
To assess the performance of genetic algorithms, two prerequisites must be met: population initialization and environmental
modeling. Effective environmental modeling can effectively assess the relationship between the choice of rural revitalization
path and actual development, as well as accurately depict the actual environment of rural industrial revitalization. Both the
more diverse members of the original population and the optimization of the rural industrial revitalization path benefit from the
relationship [20].

II. A. 2) Environment Modeling
A well-defined environmental model serves as the foundational layer for simulation, perception, and decision-making tasks
in intelligent systems. In this study, the environment is abstracted as a structured two-dimensional grid, allowing for
straightforward computation and spatial reasoning.

Let the environment E ⊂ R2 be discretized into a uniform grid structure defined by:

G = {(xi, yj)xi = i ·∆x, yj = j ·∆y; i, j ∈ Z, (1)

where, ∆x,∆y represent the grid resolution in the x- and y-directions respectively, (xi, yj) denotes the center of the grid cell
at row i and column j.

Each grid cell gij ∈ G can be assigned a state variable sij ∈ {0, 1, . . . , k} to indicate its status (e.g., obstacle, free space,
target area). Thus, the environment can be represented as a state matrix:

S = [sij ]m×n , (2)

where mmm and n are the total number of grid points in the vertical and horizontal directions, respectively.
This modeling strategy enables:
1) Deterministic representation of environmental elements,
2) Efficient collision detection via grid state inspection,
3) Modular extension to dynamic environments or multi-agent interaction.
Although more complex methods such as topological maps or multifaceted semantic representations exist, the use of a 2D

grid in this work provides sufficient structure for trajectory planning and algorithm validation, while ensuring computational
tractability.

Figure 2: Working environment

The path obtained based on the improved genetic algorithm under multiple constraints is represented as:

P ∗ = {p∗1, p∗2, p∗3, ..., p∗m} , P ∗ ∈ P. (3)

In the formula, m represents the number of paths obtained by the algorithm in this paper, and the path needs to satisfy

f(P ∗) = min {f1(P ), f2(P ), f3(P ), } , (4)

where, f1(P ), f2(P ), f3(P ) is defined by Eqs. (4), (5) and (6), respectively
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Definition 1. The length index refers to the total length of the path, which can be expressed as:

f1(P ) =

n−1∑
i=1

|pipi+1|, (5)

where |pipi+1| is the Euclidean distance from the path node pi to the path nodepi+1 . Finding the shortest path is one of the
optimization objectives of the genetic algorithm under multiple constraints. The other two optimization objectives are defined
as follows:

Definition 2. The sum of the angles of each neighboring vector line segment in the path is known as the smoothness index,
and it may be written as follows:

f2(P ) = C1 × S +
1

NI

Ni−1∑
i=2

θ, θ(pipi+1, pi+1pi+2), (6)

where θ(pipi+1, pi+1pi+2) is the angle between adjacent vector segments −−−−→
pipi+1

and −−−−−−→
pi+1pi+2

(0 ≤ θ ≤ π) , C1 is a positive

integer, s is the number of segments in a path, and Ni is the number of points in the i th iteration path.

II. A. 3) Population initialization
The population initialization method adopted by the traditional genetic algorithm is random. Many studies generate points by
randomly scattering them in free space or by considering all points in a grid map. These methods have to consider unnecessary
points for the optimal path in the path generation stage, which is computationally expensive. To this end, some scholars have
proposed some improved methods.

The specific steps of SPS algorithm to generate the initial population are as follows.
Step 1: In the two-dimensional grid point map, set the coordinates of the starting point and the target point.
Step 2: Rural industry revitalization moves towards the target point along a straight line. If the development is hindered, the

SPS algorithm is used to generate a set of points around it.
Step 3: Use Dijkstra’s algorithm to test whether the generated path points are feasible, if feasible, move on; if not, reduce the

grid point width and repeat Step 2.
Step 4: Determine whether the target point is reached. If it has been reached, save the currently generated path. If not, repeat

Step 2 and Step 3.
Step 5: Judge that the number of individuals reaches the population number of 2M, if it is reached, it will end; if not, it will

be restarted. Repeat the above steps.

II. B. Chromosome coding and fitness function
The chromosome code and fitness function are the core elements that determine the performance of the genetic algorithm.
A good chromosome code and fitness function can reduce the complexity of the performance of the genetic algorithm, and
can select individuals with better fitness to inherit it to the next generation. It helps to further improve the performance of the
algorithm [21].

II. B. 1) Chromosome coding
In this study, the spatial domain of rural industry revitalization is modeled using a uniformly distributed two-dimensional
grid space, which provides a structured and discrete environment for planning, analysis, and simulation. Each spatial element
corresponds to a grid point with unique coordinates, making it inherently suitable for two-dimensional encoding and algorithmic
manipulation.

Let the environment be represented by a grid point set:

= {(xi, yj)xi = i ·∆x, yj = j ·∆y; i = 0, 1, . . . ,m, j = 0, 1, . . . , n} . (7)

Each point pij = (xi, yj) ∈ can be uniquely encoded using a two-dimensional indexing function:

Code(pij) = (i, j). (8)

Alternatively, for linear storage or identification, a flattened index can be defined as:

Code1D(pij) = i · n+ j. (9)

This encoding enables efficient mapping between spatial locations and data structures (e.g., matrices, arrays, or graphs), and
is particularly useful in algorithms such as path planning, resource allocation, or regional optimization.
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Each grid point can also be associated with a feature vector:

fij =
[
r
(1)
ij , r

(2)
ij , . . . , r

(k)
ij

]
, (10)

where fij denotes the l-th socioeconomic or geographic attribute at location (xi, yj) , such as population density, land use type,
industrial output, or accessibility index.

By discretizing the spatial domain in this way, the rural revitalization process can be modeled as a function R : → Rk ,
mapping spatial positions to development attributes, thereby enabling spatial decision-making and policy optimization over the
entire region. Figure ?? is an example of path encoding.

Figure 3: Chromosome representation of feasible paths

II. B. 2) Fitness function
In the context of genetic algorithm (GA) optimization, the fitness function serves as the core mechanism for evaluating and
guiding the evolutionary process. It quantifies the quality of each individual Ii in the population , and is derived from one or
more objective functions that reflect specific evaluation criteria.

1. Multi-Criteria Evaluation Structure
Let each individual Ii ∈ correspond to a feasible solution (e.g., a candidate path), and define a multi-objective function

vector:

F⃗ (Ii) = [f1(Ii), f2(Ii), f3(Ii)] , (11)

where, f1(Ii) : Path length (to be minimized), f2(Ii) : Path safety score (to be maximized), f3(Ii) : Path smoothness (to be
minimized).

To reflect the relative importance of criteria:

1) f1 and f2 are treated as primary objectives,
2) f3 is a secondary objective, incorporated when solutions are otherwise comparable.

2. SPEA2-Based Fitness Assignment
This study adopts the Strength Pareto Evolutionary Algorithm 2 (SPEA2) framework for multi-objective fitness evaluation.

For each individual IiI_iIi, the raw fitness is computed based on its dominance relation:

R(Ii) =
∑
Ij≻Ii

S(Ij), (12)

where, Ij ≻ Ii indicates that individual Ij dominates Ii in objective space (i.e., better in all objectives), S (Ij) is the strength
of Ij , defined as the number of individuals it dominates:

S(Ij) = |{Ik ∈ Ij ≻ Ik}| . (13)

Thus, the total fitness of Ii is composed of both dominance count and density estimation. A density function D (Ii) is
calculated as:

D(Ii) =
1

σk(Ii) + 2
, (14)

where σk(Ii) is the distance between Ii and its k-th nearest neighbor in objective space. The final fitness is given by:

Fitness(Ii) = R(Ii) +D(Ii). (15)

Lower fitness values indicate better individuals under this scheme, consistent with minimization.
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II. B. 3) Genetic operators
To address the limitations of traditional genetic algorithms (GAs) in complex path planning tasks, this study introduces a set
of enhanced genetic operators aimed at accelerating convergence and improving solution quality. Building upon the classical
framework—which comprises selection, crossover, and mutation—three additional operators are incorporated: deletion, repair,
and smoothing. Together, these extensions enable the algorithm to better handle constraints and produce feasible, high-quality
paths in rural spatial environments [22], [23].

1. Selection Strategy
Instead of using proportional or roulette wheel selection, this paper employs a tournament-based selection mechanism. In

each round, a fixed number of individuals are randomly sampled from the population, and the one with the highest fitness is
selected to propagate to the next generation. This process is repeated until the desired population size is achieved. Furthermore,
an elitism mechanism is applied: a specified fraction of top-performing individuals are directly carried over to the offspring
population, thereby preserving high-quality solutions across generations without modification.

2. Crossover Mechanism
A single-point crossover approach is adopted with domain-specific refinements. The method operates as follows:
1) Two parent individuals are randomly chosen.
2) If their respective paths share common waypoints, one such point is selected as the crossover node, ensuring that the

resulting offspring inherit a structurally valid and continuous path.
3) In the absence of shared waypoints, two random positions from each path are used as crossover points. If this leads to

discontinuity, a corrective step is invoked:
a) The algorithm identifies the endpoints of the segmented paths.
b) A connection patch is constructed using adjacent nodes from the grid space, avoiding obstacles and maintaining

path validity.
This strategy guarantees that all offspring paths remain navigable, even after structural modifications during crossover.
3. Additional Operators for Enhanced Performance
To further refine the evolutionary process and reduce unnecessary computational cost, the algorithm integrates the following

auxiliary operators:
1) Deletion Operator: Removes redundant or cyclic path segments to simplify the overall trajectory and reduce length.
2) Repair Operator: Automatically resolves infeasible segments caused by crossover or mutation, ensuring connectivity and

constraint satisfaction.
3) Smoothing Operator: Optimizes the geometry of the path by eliminating abrupt directional changes, promoting natural

and realistic movement patterns.

Figure 4: Crossover Process

To improve adaptability and efficiency in path evolution, this study incorporates refined strategies for both mutation and
deletion, tailored to the feasibility status of individuals during the genetic process.

1. Adaptive Mutation Strategy
The mutation operator dynamically adjusts its behavior based on the validity of the path. Specifically:
1) For feasible solutions—those that comply with spatial constraints and obstacle avoidance—the mutation is applied

conservatively, with a low probability. Local perturbations are introduced by slightly shifting selected waypoints within
a limited neighborhood, maintaining path integrity while exploring nearby alternatives for optimization.

2) For infeasible solutions—particularly those intersecting with obstacles—the mutation is executed with a higher probabil-
ity, allowing for broader adjustments to problematic nodes. This increases the likelihood of escaping constraint violations
and moving toward valid regions in the search space.
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Formally, the mutation probability Pmut is adaptively defined as:

Pmut(Ii) =

{
ε1, ifIi ∈ Fvalid

ε2, ifIi ∈ Finvalid, ε2 > ε1
(16)

where Fvalid and Finvalid represent the feasible and infeasible individual sets, and ε1, ε2 ∈ (0, 1) are user-defined constants.
2. Deletion-Based Path Simplification
To address redundancy and reduce convergence time, a deletion operator is introduced as a structural optimization tool.

Without this mechanism, evolved paths often retain unnecessary segments—such as zigzags or local loops—that require
multiple generations to resolve through crossover and mutation alone.

The deletion operator systematically scans the path for non-contributing waypoints, particularly those forming nearly
collinear triplets or cycles. When identified, these nodes are pruned, thereby:

1) Shortening the path length
2) Improving smoothness
3) Accelerating convergence
This operation is especially effective in eliminating the scenario illustrated in Figure 5(a), where excessive bends hinder

optimization and lead to prolonged evolution cycles.
Together, the adaptive mutation and strategic deletion mechanisms significantly enhance the algorithm’s ability to maintain

feasible, efficient, and navigable paths throughout the evolutionary process.

Figure 5: Removal process

The points surrounding the created obstruction can be connected sequentially by the repair operator if a path segment
connects with an obstacle, as seen in Figure 6(a) (Figure 6(b)).

Figure 6: Repair process

To further refine the path structure and avoid premature convergence during the evolutionary process, this study introduces
two key mechanisms: a smoothing operator inspired by particle swarm dynamics, and a niche-based parallel evolution strategy
for maintaining population diversity.

1. Smoothing Operator Based on Particle Dynamics
The smoothing process treats each waypoint in a candidate path as an analogue to a particle in Particle Swarm Optimization

(PSO). By leveraging the particle movement model, the position of each point is iteratively adjusted based on its local
neighborhood.

Let a waypoint Pt ∈ R2 be located at step t in the path. The velocity vector vt for this point is computed based on its adjacent
points Pt−1 and Pt+1 . The update rules follow a modified PSO model:

v
(k+1)
t = ω · v(k)t + c1 · r1 · (Pt−1 − Pt) + c2 · r2 · (Pt+1 − Pt), (17)
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P
(k+1)
t = P

(k)
t + v

(k+1)
t , (18)

where, ω is the inertia weight, determining how much of the previous velocity is retained, c1, c2 are acceleration coefficients
controlling the influence of neighbor positions, r1, r2 ∈ [0, 1] are random scalars introducing stochasticity.

This dynamic adjustment encourages the path to evolve into a smoother and more natural trajectory over multiple iterations,
especially useful in reducing sharp turns or redundant detours.

The smoothing process is illustrated in Figure 7.
2. Niche Strategy for Parallel Evolution and Diversity Preservation
To mitigate issues such as premature convergence and stagnation in local optima, this study implements a niche-based

population structure, effectively simulating parallel sub-evolutions.
The total population is divided into N niches, where each niche contains two individuals with high structural similarity.

Similarity is quantified using the Hamming distance between encoded individuals:

Hamming(Ii, Ij) =

L∑
k=1

δ(Iki , I
k
j ), δ(a, b) =

{
0 ifa = b,
1 ifa ̸= b.

(19)

A smaller Hamming distance indicates higher similarity, making individuals suitable for niche pairing.
Each niche undergoes independent reproduction and selection, producing new offspring in parallel. After evolution within

niches, top-performing individuals from each niche are selected to form the next global generation, ensuring both:
1) Population diversity is retained,
2) Algorithmic parallelism is achieved, improving convergence efficiency.
This approach enhances the exploration capability of the genetic algorithm while maintaining solution quality and

accelerating runtime.

II. B. 4) Termination Conditions
In order to enable the improved genetic algorithm in this paper to find the optimal or sub-optimal path in a short time, this
paper sets three termination conditions: first, the optimal individual fitness value obtained after multiple iterations satisfies the
preset value The algorithm can be terminated when the threshold is reached; second, the overall fitness value of the population
does not change much after many iterations, and the algorithm can be terminated; third, when the number of iterations of the
algorithm reaches the preset algebra, the algorithm It can be terminated. This paper sets the iteration for 100 times.

II. C. Implementation of the IGA+RS Algorithm
In this study, a hybrid optimization framework named IGA+RS (Improved Genetic Algorithm with Rough Set heuristics) is
developed. The key innovation lies in integrating attribute dependency measures—specifically, the support and significance
of condition attributes with respect to decision attributes—into the genetic algorithm to provide heuristic guidance during
evolution.

The overall procedural framework of the IGA+RS algorithm is outlined in Figure 1.
1. Integration of Rough Set Heuristics
To enhance the search efficiency and guide the population evolution toward more meaningful solutions, rough set theory is

utilized to compute two key indicators for each attributex ∈ C , where C denotes the set of condition attributes and D the set
of decision attributes:

1) Support is computed based on Eq. (19), quantifying how strongly x contributes to distinguishing decision classes.
2) Importance is evaluated using the MMPC12 criterion (Eq. (20)), which reflects the degree to which removing x affects

classification performance.
These metrics act as fitness modifiers within the genetic algorithm, influencing selection and crossover in a goal-directed

manner.
2. Attribute Core Judgment and Termination Criterion
Once the support and importance values are obtained, the algorithm checks whether the core condition set can be identified:
Let

core(C) = {x ∈ CSupport(x) > τ1 ∧MMPC12(x) > τ2}. (20)

If the core attribute set satisfies the sufficiency condition for decision classification, i.e., it constitutes a minimal reduct of C
with respect to D, then the search is terminated and the current attribute subset is considered optimal.

Otherwise, the algorithm proceeds to the IGA stage, where the improved genetic algorithm is activated to further refine the
attribute selection and search for a globally optimal reduction.

The detailed evolutionary process, incorporating crossover, mutation, and the extended operator set, is illustrated in Figure
7.
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Figure 7: Flow chart for the IGA+RS algorithm

III. Visual analysis and comparative study on the research frontiers of PE teaching in China and
the United States
III. A. Visualization of research frontiers in U.S. physical education over the past five years
To explore the knowledge structure and evolving trends in the field of physical education (PE) research in the United States,
this study conducts a scientometric analysis using CiteSpace V (version 5.1.R8). A total of 946 scholarly articles published
between 2012 and 2016 were selected as the data source. The parameter configuration includes:

Time Slicing: 2012–2016 with 1 year per slice
Top N: 50 (selecting the top 50 most cited items per slice)
Visualization Settings: Cluster View – Static; Show Merged Network enabled
Thresholds: set as (2,2,20), (4,3,20), and (4,3,20) for different pruning schemes
Upon executing the analysis, a document co-citation network was generated, comprising 256 nodes (representing cited

references) and 699 edges (indicating co-citation links). This network was further processed through clustering algorithms and
automatic cluster labeling based on article titles, resulting in a detailed knowledge domain visualization, as illustrated in Figure
8.

The clustering process revealed a total of 39 thematic groups, representing various subfields and trending topics within
U.S. PE research. Among these, the eight most significant clusters—based on their modularity value and spatial size—were
identified as clusters #0, #1, #2, #3, #4, #5, #9, and #10. These prominent clusters are summarized in Table 1 and collectively
represent the core intellectual frontiers shaping recent discourse and innovation in American physical education research.

Each cluster highlights specific focus areas, such as curriculum development, physical literacy, health promotion, and
pedagogical reform, offering a comprehensive overview of current research priorities and directions in the field.
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Figure 8: Using document co-citation analysis, clustering mapping the knowledge domains of the PE Teaching Study of
America research front

Table 1: Cluster information of co-cited references in research fronts of PE teaching studies in the United States (2012–2016)

Cluster ID Cluster Label (Title
Term)

Size (No.
of Nodes)

Silhouette Value Mean Year Research Focus

#0 Physical Literacy 42 0.923 2014 Core competencies and physical literacy in
curriculum frameworks

#1 School-Based
Intervention

37 0.887 2013 Effectiveness of school-based physical activ-
ity interventions

#2 PE Teacher Education 31 0.915 2015 Pre-service training and professional identity
of PE teachers

#3 Physical Activity Pro-
motion

29 0.901 2013 Community and institutional strategies to
promote youth activity

#4 Inclusive Education 27 0.876 2014 Equity and inclusion for students with dis-
abilities in PE settings

#5 Health-Oriented Cur-
riculum

24 0.892 2015 Integration of health education in PE curricu-
lum design

#9 Motor Skill Develop-
ment

21 0.867 2012 Early childhood movement skill acquisition
and assessment

#10 Technology
Integration

18 0.854 2016 Use of digital tools and wearable devices in
PE instruction

As shown in Figure 2, the cluster names of 11 clusters that reflect the main research frontiers in the field of PE teaching in the
United States are: "#0: models-based practice", "#1: physical activity program", "#2: adventure-PE lesson", "#3: quantitative
findings", "#4: prospective cross-domain investigation" cross-cutting survey)”, “#5: initial teacher education”, “#9: teachers
support” and “#10: self-reported achievement goal”.

The main research front area 1: 39 cited literatures of the knowledge base contained in cluster #0, the year span is 2006-2015,
among which there are 8 main literatures in the literature represented by the node, as shown in Table 2, including PE teachers
The professional development, the PE model, the reform of PE, the method of PE, and the cooperative learning in sports [24].
There are 19 citing documents corresponding to the documents, and the year span is 2012-2016. Among them, there are 11
documents with a citation activity of ≥ 0.05, as shown in Table 3, and the citation activity of the remaining documents is 0.03.
From the titles of these 11 papers, it can be seen that the research topics of this cluster mainly focus on the practice-based PE
teaching mode, the role of PE teachers, and the PE teaching mode, method and content. As a result of class naming, the research
front of this cluster is dominated by practice-based models of PE, and also includes the role of PE teachers in education and
public health, the role of PE in health and education, the effect of social learning on girls’ participation in sports, and the models
of PE and methods [25].
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Table 2: Citing documents with citation activity ≥ 0.05 in cluster #0 (Practice-based PE teaching models)

No. Title of Citing Document First Author Year Citation Activity Research Focus
1 Practice-Based Professional Develop-

ment for Physical Education Teachers
Parker, M. 2013 0.08 Teacher professional growth and

practice-based learning
2 The Role of Physical Education in

Public Health
McKenzie, T.L. 2014 0.07 PE’s contribution to student health

and behavior
3 Models-Based Practice in Physical

Education: A Review of Literature
Casey, A. 2015 0.06 Pedagogical models and their class-

room effectiveness
4 Cooperative Learning in Physical Ed-

ucation and Physical Activity
Dyson, B. 2012 0.05 Social learning and inclusion in

sports education
5 Physical Education for the 21st Cen-

tury: Toward a Practice-Oriented Cur-
riculum

Kirk, D. 2014 0.06 Curriculum reform and practical
teaching frameworks

6 Exploring Girls’ Participation in Sport
and PE: A Social Learning Perspective

Smith, J. 2013 0.05 Gender inclusion and motivation in
PE

7 Implementing Models-Based Practice
in Secondary Schools

Ward, G. 2015 0.05 Application of PE models in real
classroom settings

8 Pedagogical Approaches in Physical
Education: A Shift Toward Learner-
Centered Methods

Harvey, S. 2013 0.05 Transition to student-focused in-
structional practices

9 Physical Education Teachers and
Health Promotion Responsibilities

Jones, R. 2014 0.06 Expanding the role of PE educators
into health and wellness promotion

10 The Impact of Model-Based Instruc-
tion on Students’ Physical Activity

Johnson, K. 2015 0.05 Outcome-based evaluation of teach-
ing models

III. B. Algorithm simulation and result analysis

Table 3: The information function
∫

is shown in the decision table of Table 1

Object ID A1 (Teaching
Method)

A2 (Teacher Ex-
perience)

A3 (Class Size) A4 (Student Par-
ticipation)

Decision D
(Teaching
Effectiveness)

1 Model-Based High Small High Effective
2 Traditional Low Large Low Ineffective
3 Cooperative Medium Small High Effective
4 Traditional Medium Medium Low Ineffective
5 Model-Based High Medium Medium Effective
6 Cooperative Low Large Medium Ineffective
7 Traditional High Medium Low Ineffective
8 Model-Based Medium Small High Effective

IV. Conclusion
This study presented a comprehensive comparison of physical education research frontiers in China and the United States
by integrating scientometric visualization and algorithmic optimization. CiteSpace-based analysis revealed distinct research
focuses: while the United States advances health-oriented, evidence-based, and teacher-centered pedagogical innovations,
China emphasizes curriculum reform and policy-driven teaching models. These differences reflect varied educational priorities
and sociocultural contexts. To address the challenge of processing large-scale scientometric data, the proposed IGA+RS
algorithm effectively improved the efficiency of rough set knowledge reduction by combining heuristic attribute significance
with enhanced genetic operations. Experimental validation confirmed its superiority in maintaining accuracy while reducing
redundancy. The findings highlight the potential of combining big data analytics with intelligent algorithms to uncover research
dynamics and optimize knowledge management in education. Furthermore, this study provides a theoretical and methodological
reference for future PE research, offering a framework to monitor evolving trends, identify collaboration opportunities, and
guide evidence-based decision-making.
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