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Abstract Big data computing and other technologies can improve the effectiveness of photovoltaic power plant 
management optimization. This paper uses the traditional gray wolf optimization (GWO) algorithm to optimize and 
extract the five parameters of the single diode model of photovoltaic components. Considering the objective function 
of purchase cost and cost loss, the paper seeks the possibility of achieving the optimal configuration with the lowest 
total cost. A spatial recognition mechanism is introduced to optimize the gray wolf algorithm, and the degree of 
violation of multi-step calculation time constraints is calculated to iteratively complete the global solution through 
local optimization breakthroughs. Research shows: The Gray Wolf optimization algorithm achieved a 100.0% 
success rate in optimization across five test functions. The optimized power generation cost was only 1.20270 × 10
⁴  yuan, and the optimal solution was obtained after 118 iterations. The improvement in photovoltaic power 
generation reached up to 51.5%, with voltage fluctuations under different operating conditions less than 0.01V, 
achieving efficient and stable power generation. 
 
Index Terms photovoltaic module model, gray wolf optimization algorithm, parameter extraction, spatial 
identification mechanism, constraint violation degree. 

I. Introduction 
Photovoltaic power plants utilize the photovoltaic effect of solar energy to directly convert solar radiation into 
electrical energy. As a key component of the renewable energy sector, they are increasingly playing a significant 
role in the global energy structure [1]-[3]. Photovoltaic power plants primarily consist of photovoltaic modules, 
combiner boxes, inverters, box-type transformers, and monitoring systems [4], [5]. Photovoltaic modules are the 
core power-generating units of the power plant, composed of multiple photovoltaic cells connected in series and 
parallel. They are responsible for converting solar energy into direct current. During operation, photovoltaic modules 
are subjected to atmospheric pollution, dust, and dew, which severely impact the efficiency and reliability of 
photovoltaic power plants [6]-[9]. Therefore, improving module efficiency is crucial for ensuring the normal operation 
and long-term reliability of photovoltaic power plants, and intelligent management provides the technical support to 
achieve this goal [10], [11]. 

Based on current practical experience in the operation and management of photovoltaic power plants, to ensure 
the safe, economical, and efficient operation of photovoltaic power generation systems, it is particularly important 
to adopt an integrated photovoltaic power plant intelligent management strategy that combines real-time monitoring, 
centralized management, intelligent early warning analysis, and disaster prevention to establish standardized and 
effective management mechanisms, especially to ensure efficient operation and maintenance management [12]-
[15]. Through data collection and transmission, information storage and processing, and intelligent analysis and 
prediction, intelligent management of photovoltaic power plants enables plant managers to more accurately predict 
potential events in plant operations and management, more promptly allocate resources, and take timely and 
effective measures for mitigation, prevention, and resolution, thereby maintaining the effective operation and 
management of photovoltaic power plants [16]-[19]. In this context, intelligent algorithms can be utilized to enhance 
the efficiency of power plant components. The Gray Wolf optimization algorithm, as an emerging optimization 
algorithm, exhibits significant optimization effects in complex and dynamic environments. By optimizing the 
parameter configuration, model prediction, and control strategies of the power plant system, it can enhance the 
efficiency of photovoltaic power plant components, thereby ensuring the efficiency, safety, and reliability of 
photovoltaic power plants [20]-[23]. 

Reference [24] proposes an IoT-based solar photovoltaic monitoring, maintenance, and management model, 
constructs a mathematical model for solar photovoltaics and its implementation algorithm, and designs an 
embedded expert system as a proof of concept, demonstrating the system's effectiveness in fault identification, 
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classification, and analysis while ensuring data integrity. Reference [25] identifies the challenges currently faced in 
smart grid management, reviews theoretical prediction methods for solar resources and photovoltaic power 
generation, and explores the application of solar prediction in smart grid management. Reference [26] develops a 
smart management system for photovoltaic panel equipment, which employs the YOLOv5 object detection model 
to identify and detect the number and anomalies of photovoltaic panels based on images, demonstrating 
advantages such as efficient intelligent management, high-precision identification, and comprehensive anomaly 
detection. Literature [27] proposes an IoT-based intelligent operation and maintenance system for distributed 
photovoltaic power plants, which can achieve real-time monitoring, fault prediction, performance optimization, and 
automated maintenance decision-making. Experiments have validated its effectiveness in improving the operational 
efficiency and stability of photovoltaic power plants. Literature [28] reviews the application of artificial intelligence 
and IoT technologies for autonomous monitoring and analysis of large-scale photovoltaic power plants, aiming to 
automate the photovoltaic system status monitoring process. Research indicates that the development of 
autonomous monitoring and analysis for photovoltaic power plants can enhance the efficiency and reliability of 
photovoltaic systems. The above studies examine the intelligent management of photovoltaic power plants, outlining 
its significant advantages in areas such as power plant safety monitoring and fault detection, while also revealing 
the challenges it currently faces. 

Literature [29] introduces photovoltaic (PV) technology and its advantages, and examines the impact of changing 
operational parameters such as irradiance intensity, humidity, and dust on PV module performance. The results 
indicate that these factors all influence PV module performance. Literature [30] discusses the types of defects 
formed in photovoltaic panels and proposes a method to determine defects based on the temperature and output 
power of aged photovoltaic modules. The study ultimately verifies that this method effectively reduces output losses 
in solar power plants and improves the efficiency of photovoltaic power plants. Literature [31] introduces the 
application of meta-heuristic techniques such as Gray Wolf Optimization (GWO) under different conditions, 
proposes the optimal size of PV modules and inverters, as well as the optimal distribution of PV modules within 
inverters. Through comparison, it demonstrates that this method is highly effective in addressing PV power plant 
optimization design issues. Literature [32] proposes an improved Gray Wolf Optimization Algorithm (GWOA) aimed 
at achieving maximum power point tracking (MPPT) for photovoltaic module arrays. Simulation studies reveal the 
effectiveness of the improved GWOA algorithm, demonstrating excellent tracking speed response and steady-state 
response. Reference [33] proposes an optimization configuration method for PV intelligent edge terminals (IETs). 
Based on the economic and reliability aspects of PV IET optimization, a two-layer optimization model is constructed, 
and improved adaptive genetic algorithms and gray wolf optimization algorithms are proposed. The study 
demonstrates that the aforementioned optimization configuration methods ensure reliability and cost control. The 
above studies identify factors influencing the performance of photovoltaic power generation components, 
emphasize their impact on photovoltaic power generation efficiency, and highlight methods such as gray wolf 
optimization and improved gray wolf optimization algorithms that can enhance the performance, efficiency, and 
safety of photovoltaic power plants and components. 

This paper focuses on the advantages of intelligent optimization algorithms in improving the configuration 
efficiency of photovoltaic power plant components. Through methods such as model construction and computational 
solution, it explores optimal configuration schemes. Based on a five-parameter model using a single diode, a 
mathematical model of photovoltaic modules is established, and the gray wolf algorithm is employed to extract and 
adjust optimal parameters. Investment costs and reliability cost losses are quantified, and the efficiency 
improvement problem is transformed into a target function for solution. To address multi-dimensional constraint 
relationships, a spatial identification mechanism is introduced to enhance the traditional gray wolf algorithm's ability 
to calculate constraint violation degrees during search. By improving the performance of global solution iteration 
comparison, the optimal efficiency improvement scheme for photovoltaic modules is identified. 

II. Technology for improving the efficiency of photovoltaic power station components 
based on the gray wolf optimization algorithm 

II. A. Research on Mathematical Models of Photovoltaic Modules 
II. A. 1) Equivalent circuit model and internal parameters of photovoltaic modules 
The equivalent circuit model of photovoltaic modules can be divided into single-diode models and double-diode 
models based on the number of diodes connected in parallel. Figure 1 shows the single-diode model of a 
photovoltaic module. Figure 2 shows the double-diode model of a photovoltaic module. 
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Figure 1: Single diode model of PV module 
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Figure 2: Double diode model of PV module 

Among these, the single diode model has five internal parameters: photogenerated current 
phI , diode saturation 

reverse current 
oI , diode quality factor A , equivalent parallel resistance 

shR , and equivalent series resistance 

sR . Compared to the single diode model, the double diode model further accounts for the fact that the depletion 
region of a photovoltaic cell has some recombination current loss, and adds an additional equivalent diode in parallel 
to the single diode model, thereby achieving higher accuracy. However, since the dual-diode model includes an 
additional equivalent diode, it introduces two additional model parameters: the diode reverse saturation current 

2oI  
and the diode quality factor 

2A , resulting in a total of six model parameters. This makes the establishment of such 
a model more challenging and reduces computational efficiency. 

Comparing and evaluating the two models, it was found that the single-diode model offers a better balance 
between model establishment difficulty and accuracy compared to the double-diode model, making it more suitable 
for theoretical analysis and engineering applications. Therefore, this paper establishes a mathematical model for 
photovoltaic modules based on the single-diode model (or five-parameter model).   

Equation (1) is the UI characteristic equation of the single-diode five-parameter model:   

  
exp 1s s

ph o
sh

q U IR U IR
I I I

ATK R

         
   

 (1) 

In the equation, U   is the component output voltage; I   is the component output current; 
phI   is the 

photocurrent; 
oI   is the diode reverse saturation current; A   is the quality factor; 

sR   is the equivalent series 
resistance; 

shR  is the equivalent parallel resistance; T  is the absolute temperature of the component  K ; K  
is the Boltzmann constant; q  is the electron charge. 

 
II. A. 2) Intelligent Optimization Algorithm 
Intelligent optimization algorithms, such as the artificial fish school optimization algorithm, symbiotic biological 
search algorithm, artificial bee colony optimization algorithm, artificial neural network algorithm, and gray wolf 
optimization algorithm, have been incorporated into the extraction of five parameters and the establishment of a 
component model. Since intelligent optimization algorithms retain all parameters of the photovoltaic component 
single diode model during parameter extraction, avoiding accuracy loss caused by equation simplification, this 
method has significant advantages in terms of accuracy and reliability compared to the other three methods. 
However, most traditional intelligent optimization algorithms often suffer from issues such as getting stuck in local 
optima and excessive algorithm optimization time. 

For the establishment of the mathematical model, the five-parameter values obtained under STC conditions are 
substituted into the empirical formulas varying with S   and T   (Equations (2)–(7)), and combined with the UI 
characteristic equations obtained using the Lambert W function decoupling method (Equations (8)–(9)), to establish 
the mathematical model of the photovoltaic module under any operating conditions: 
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In the above equation, 
,ph refI  , 

,o refI  , 
,sh refR  , 

,sh refR  , and 
refA   are the corresponding parameter values under 

STC conditions and can be calculated; 
gE  is the bandgap energy value of the photovoltaic module, with a typical 

value of 
,g refE   being 1.13 eV; 

Isc   is the short-circuit current temperature coefficient, with the coefficient   

typically set to 0.218, and the coefficient   typically set to 1/ K . 

In this paper, the gray wolf optimization algorithm is selected to extract the five parameters of the single diode 
equivalent circuit model of the photovoltaic module. However, due to certain limitations of the gray wolf optimization 
algorithm, this paper further improves upon these limitations, and subsequently applies the improved gray wolf 
optimization algorithm to the parameter extraction process. Based on this, through extensive experiments, the five 
parameter values under different operating conditions were extracted. Subsequently, the empirical formulas for the 
five parameters as functions of S   and T  , i.e., Equations (2) to (7), were revised, ultimately establishing a 
photovoltaic module mathematical model with high accuracy under any operating conditions. 

 
II. B. Optimization configuration model for photovoltaic intelligent edge terminals 
This paper considers both the purchase cost of photovoltaic smart edge terminals and the cost losses caused by 
reduced reliability, and constructs an optimization configuration model for photovoltaic smart edge terminals with 
the goal of minimizing total cost. 
 
II. B. 1) Objective Function 
1) Equal annual investment cost. The equal annual investment cost of photovoltaic smart edge terminals is: 

 1 (1 ) ( , )DC C A r n   (10) 

 D TC P N  (11) 
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In the formula: IC   is the equivalent annual investment cost; DC   is the cost of purchasing a batch of 
photovoltaic smart edge terminals;   is the ratio of maintenance and operating costs of photovoltaic smart edge 
terminals to the purchase cost of photovoltaic smart edge terminals; ( , )A r n   is a factor measuring economic 
efficiency; r  is the discount rate; n  is the service life of photovoltaic smart edge terminals; N  is the number of 
photovoltaic smart edge terminals deployed in the region; TP   is the price per unit of photovoltaic smart edge 
terminal. 

2) Cost reduction due to reliability losses. Different distributed photovoltaic power plants have varying capacities, 
power generation levels, and importance, leading to different losses due to reduced reliability. Therefore, different 
power plants should be treated differently. This paper uses capacity ratio as the basis for determining importance 
weights, with a distributed photovoltaic power plant of capacity TW   as the standard, and the ratio of each 
distributed photovoltaic power plant's capacity to TW  as its importance weight. 

The distance loss coefficient k  is:   

 j

T

W
k

W
  (13) 
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In the formula: TW  is the standard capacity; 
jW  is the capacity of distributed photovoltaic power station j . 

The cost CC  caused by reliability loss is: 
 C 2

uvC L k  (14) 

In the formula:   is a constant coefficient related to cost losses; 
uvL  is the distance between photovoltaic smart 

edge terminal u  and distributed photovoltaic power station v . 
In summary, the objective function of this paper is: 
 C 1minC C C   (15) 

II. B. 2) Constraints 
1) Communication connection constraints. Distributed photovoltaic power stations within the region must establish 
a communication connection with any photovoltaic intelligent edge terminal within the region: 
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A
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In the equation: M   represents the total number of distributed photovoltaic power stations in the region; u  
represents the u  th photovoltaic intelligent edge terminal in the region; v   represents the v  th distributed 
photovoltaic power station in the region; 

uvA   is a 0-1 variable. If the u  th PVIET in the region establishes a 
communication connection with the v th distributed photovoltaic station in the region, then it is 1.0; otherwise, it is 
0.0. 

2) Initial funding constraints. Due to funding limitations, the cost of purchasing photovoltaic intelligent edge 
terminals cannot exceed the initial funding TC . 

 0 D TC C   (18) 

3) Communication distance constraints. The communication distance between photovoltaic smart edge terminals 
and distributed photovoltaic power stations within various communication areas cannot exceed the maximum 
communication distance 

maxR . Since the maximum communication distance is related to the type of communication 
cable, the selection of 

maxR  is influenced by the type of communication cable used. 
 

maxuv uvA L R  (19) 

4) Communication connection quantity constraint. The number of distributed photovoltaic power stations 
connected to a single photovoltaic intelligent edge terminal cannot exceed 

maxU . 
 

maxuU U  (20) 

In the equation: 
uU  represents the number of distributed photovoltaic power plants connected to photovoltaic 

intelligent edge terminal u . 
Analyzing the characteristics of the above problem, it is found that when the number of photovoltaic intelligent 

edge terminals N  is already determined, the problem becomes a special assignment problem of assigning N  
photovoltaic intelligent edge terminals to M  distributed photovoltaic power plants. Both assignment problems and 
unequal assignment problems have mature solutions. However, since the total cost is not only related to the cost 
losses caused by reduced reliability but also to the procurement cost of photovoltaic intelligent edge terminals, the 
number of photovoltaic intelligent edge terminals cannot be determined, the optimization layout model has 
numerous constraints, and there is strong coupling between integers, making it difficult to solve using traditional 
integer linear programming methods. The gray wolf optimization algorithm is a meta-heuristic optimization algorithm 
suitable for solving large-scale real-world multimodal, discontinuous, and non-differentiable problems. Therefore, 
this paper proposes a gray wolf optimization algorithm based on mutation and reverse learning to solve the model. 

 
II. C. Model solution based on the gray wolf optimization algorithm 
II. C. 1) Traditional Gray Wolf Algorithm 
The gray wolf algorithm simulates the process of a wolf pack searching for prey. The top 3.0 individuals in the 
population are named   ,   , and   , representing the 3.0 wolves in the leadership class of the gray wolf 
population; the remaining candidate individuals are named  . By solving problems through operations such as 
surrounding prey and hunting, this algorithm has been widely applied in areas such as feature subset selection and 
multi-input multi-output power systems. 

1) Surrounding the prey. After a gray wolf individual confirms its distance from the prey, it predicts the prey's 
movement and approaches it. This behavior of the wolf pack is referred to as “surrounding the prey,” with the 
calculation formula being: 
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In the equation, D  represents the distance between a gray wolf and its prey; A  and C  are parameters; n  
is the number of iterations; ( )pX n  is the prey position in the n th generation; ( )X n  is the position vector of the 

gray wolves in the n th generation; a  is the convergence coefficient; 
1r  and 

2r  are random values between 0.0 

and 1.0. 
2) Hunting. Since the optimal solution position is unknown, it is assumed that the leaders  ,  , and   are 

closer to the prey. The   wolf does not need to directly search for the prey but instead moves toward the center 
value of the three leaders' positions to complete the hunt. The calculation formula is: 

 ( ) ( ) ( )i i iD n C X n X n   (25) 

 , ,i     (26) 
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In the equation, D  , D  , and D   represent the distances between   ,   ,   , and other individuals, 

respectively; X , X  , and X  represent the current positions of  ,  , and  , respectively. 

 
II. C. 2) Spatial recognition mechanism of the current search solution 
The traditional gray wolf algorithm has strong convergence performance, but it ignores the global performance of 
the objective during the search for feasible solutions and struggles to simultaneously optimize multiple objectives 
during the optimization process. To address these issues, a spatial recognition mechanism is introduced based on 
the constraint violation degree of the current search solution, enabling the algorithm to escape the current 
environment and approach the feasible region. The computational steps are as follows: 

1) Set search parameters, including the optimization objective, iteration count, search target, and exit conditions. 
2) Randomly select a computational time slot within the scheduling period and determine the constraint violation 

degree of that time slot. If the constraint violation degree is greater than 0, proceed to step 3; otherwise, proceed to 
step 4.   

3) Based on the constraint violation degree, identify the feasible region of the decision variables in the current 
time slot using stored information. Drive the decision variables toward the feasible region through spatial 
identification of the feasible region. The calculation formula is:   
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 (29) 

In the formula, 
1 7~r r  are random values between 0.0 and 1.0, representing the magnitude of change in the 

decision variables for the current time period; e  is the driving parameter, representing the direction of change in 
the decision variables for the current time period. When the lower limit is violated, e  takes the value 1.0, and when 
the upper limit is violated, it takes the value -1.0. 

4) Adjust the decision variable for the current time period based on the constraint violation information from the 
adjacent time periods to reduce the likelihood of violations occurring in the adjacent time periods due to changes in 
the decision variable for the current time period. The calculation formula is: 

  max min
8t t t tX X er X X    (30) 
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In the equation, 
8r  is a random value between 0 and 1. When both the current and previous time periods violate 

the upper bound, e  is set to -1.0; when both violate the lower bound, e  is set to 1.0; in all other cases, e  is set 
to 0.0. 

5) Repeat steps (2) to (4). After reaching the maximum number of iterations, compare the current search solution 
with the original solution. If the constraint violation degree of the current search solution is no higher than that of the 
original solution, it is considered non-inferior to the original solution. If the target power generation is also greater 
than the original solution, replace it with the current search solution; otherwise, return the original solution. 

6) Set 366t   and complete the iterative correction in reverse order of the scheduling cycle. Calculate the upper 
and lower limits of the reservoir capacity for the previous time period, max

1tX 
 and min

1tX 
, and correct 

1tX 
 to satisfy 

the constraints; Set 1.0t t   and sequentially correct the reservoir capacity for each time period until 1.0t  , at 
which point the scheduling cycle iteration is complete. The correction method is as follows: 

 

max max
1 1 1

min max
1 1 1 1 1

min min
1 1 1
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t t t
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X X X X X

X X X

  
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  

 
  
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 (31) 

III. Practical application of gray wolf optimization algorithm to improve the efficiency of 
photovoltaic power station components 

III. A. Analysis of algorithm optimization effects 
III. A. 1) Comparison of algorithm optimization success rates 
Set up a simulation experiment to optimize the efficiency and cost of photovoltaic power plant components, and 
compare its performance with traditional GWO algorithms and particle swarm optimization (PSO) algorithms. By 
statistically analyzing the results of performance tests for the three algorithms, we compare and analyze their overall 
performance to validate the effectiveness of the optimized GWO algorithm with the introduction of a spatial 
recognition mechanism. In the comparative experiments, to ensure a fair comparison, all three algorithms were run 
with the same experimental parameters: the maximum number of evaluations of the fitness function was set to 
20,000 (population size N = 35, maximum iteration count D = 650). The convergence factor decreases linearly from 
3.0 to 0.0 as the number of iterations increases. For the five test functions, each of the three algorithms was run 
independently 35 times, and the average success rate of converging to the optimal solution was recorded. Table 1 
shows the comparison of the optimization success rates of the three algorithms. Across different iteration counts for 
the five test functions, the optimization success rate of the optimized GWO algorithm remained consistently at 
100.0%, while the optimization success rates of the other two algorithms did not exceed 99.0%, typically ranging 
between 96.0% and 99.0%. The optimized GWO algorithm demonstrated a higher and more stable optimization 
success rate. 

Table 1: Comparison of the optimization success rates of 3 algorithms 

Function Algorithm D=50(%) D=350(%) D=650(%) 

F1 

PSO 98.2 96.1 93.6 

GWO 98.5 97.4 94.7 

Optimize GWO 100.0 100.0 100.0 

F2 

PSO 98.4 97.1 96.5 

GWO 98.6 97.8 97.4 

Optimize GWO 100.0 100.0 100.0 

F3 

PSO 98.5 97.9 96.3 

GWO 98.8 98.5 98.1 

Optimize GWO 100.0 100.0 100.0 

F4 

PSO 97.5 97.3 97.0 

GWO 98.2 97.6 97.5 

Optimize GWO 100.0 100.0 100.0 

F5 

PSO 97.6 97.4 97.2 

GWO 98.8 98.3 98.0 

Optimize GWO 100.0 100.0 100.0 

 
III. A. 2) Algorithm Optimization Configuration Results 
Table 2 shows the optimized configuration results of the three algorithms. After iteration, the final component 
operating cost of the optimized GWO algorithm is 1.20270 × 10⁴ yuan, which is lower than the 1.34324 × 10⁴ yuan 
of the PSO algorithm and the 1.27296 × 10⁴ yuan of the GWO algorithm. From a cost perspective, the optimized 
GWO algorithm achieves better final solution results, capable of identifying the lowest-cost solution. 
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Table 2: Optimal configuration results 

Algorithm NPV Qmax/m3 PNPV/kW Q0/m3 Cost/104 yuan 

PSO 801 19587 3 0.8Qmax 1.34324 

GWO 794 17842 2 0.8Qmax 1.27296 

Optimize GWO 327 10093 1 0.8Qmax 1.20270 

 
III. A. 3) Algorithm Convergence Curve 
Figure 3 shows the iteration process of the three algorithms. Under the premise of finding the optimal solution, the 
optimized GWO algorithm only required 118 iterations, which is less than the 378 iterations of the PSO algorithm 
and the 370 iterations of the GWO algorithm. When obtaining a better solution, the optimized GWO algorithm is 
faster and more stable, demonstrating obvious performance advantages. 

 

Figure 3: The iterative situations in the solution processes of the three algorithms 

III. B. Analysis of power generation efficiency before and after optimization 
III. B. 1) Comparison of power generation efficiency before and after optimization 
Based on the optimal solution results, the photovoltaic power plant components were optimized, and the power 
generation efficiency of the photovoltaic power plant before and after optimization was compared to determine the 
effectiveness of the optimization. Table 3 shows the comparison of power generation efficiency before and after 
optimization. The improvement ranges for the eight optimized metrics are between 5.8% and 51.5%, all 
demonstrating positive optimization effects. Among these, the most significant improvement was in power 
transmission losses, with an improvement rate of 51.5%. Through algorithmic optimization, power transmission 
losses can be significantly reduced, thereby enhancing power generation efficiency. 

Table 3: Comparison of power generation efficiency before and after optimization 

Indicator project Before optimization After optimization Improvement range (%) 

Annual power generation/(MW·h) 29742.6 37891.5 27.4 

Average power generation efficiency /% 15.3 20.1 31.4 

System availability rate /% 91.4 98.7 7.9 

Component temperature /℃ 56.8 40.7 28.4 

Inverter efficiency /% 93.4 98.8 5.8 

Power transmission loss /% 6.6 3.2 51.5 

Operation and maintenance cost /(ten thousands·a-1) 31.7 18.5 41.6 

Investment payback period /a 7.9 6.2 21.5 

 
III. B. 2) Optimization of photovoltaic power plant configuration 
To verify the correctness of the obtained optimal solution, all feasible solutions were enumerated using the 
exhaustive method under various operating conditions, proving that the results obtained by the algorithm are optimal 
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solutions. Taking the parallel reactor under full PV power generation as an example, Figure 4 shows the feasible 
solutions for the parallel reactor under full PV power generation. When 1950 kvar reactors are paralleled at 20 
nodes, the fitness function reaches its minimum value of 463.4, which matches the result obtained by the algorithm, 
confirming that this point is the optimal solution. 

 

Figure 4: The shunt reactor has a feasible solution 

By using the optimal solution as the layout scheme for the two types of components—parallel reactors and series 
reactors—in a photovoltaic power plant, the optimized system voltage can be obtained. Figure 5 shows the 
optimized voltage conditions when the photovoltaic system is operating at full capacity. Figure 6 shows the optimized 
voltage conditions when the photovoltaic system is not operating at full capacity. The optimized voltage for the two 
types of components when the photovoltaic system is operating at full capacity ranges from 0.94774 V to 1.04615 
V, while the optimized voltage for the two types of components when the photovoltaic system is not operating at full 
capacity ranges from 0.98869 V to 1.04977 V. As can be seen, after optimizing photovoltaic power plant 
management using the algorithm's solution results, the voltage fluctuation range does not exceed 0.01V under 
either full or non-full load conditions, with very small fluctuations. This indicates that after optimization, the 
photovoltaic power plant's module power generation exhibits stability and reliability, with reduced power generation 
losses and significant improvements in efficiency. 

 

Figure 5: Optimized voltage of photovoltaic power of operating at full capacity 
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Figure 6: Optimized voltage of the photovoltaic power of not fully generated 

IV. Conclusion 
This paper utilizes the Gray Wolf Optimization Algorithm to extract and adjust the optimal component parameters of 
a photovoltaic power plant, thereby enhancing power generation efficiency and stability. Through simulation 
experiments, the Gray Wolf Optimization Algorithm achieved a 100.0% optimization success rate across all five test 
functions. The final operational cost was 1.20270 × 10⁴ yuan, outperforming the traditional Gray Wolf Algorithm and 
Particle Swarm Optimization Algorithm. Additionally, the Gray Wolf Optimization Algorithm required only 118 
iterations to obtain the optimal solution, significantly fewer than the 378 and 370 iterations required by the 
comparison algorithms. After optimizing the photovoltaic power plant components using the solution scheme, the 
positive improvement range for each power generation project was [5.8, 51.5]%, and the voltage fluctuation of the 
components under two different operating conditions was less than 0.01V, achieving the goal of the lowest total cost 
under efficient component operation. In future research, it is possible to explore the introduction of a real-time 
parameter extraction mechanism to investigate the feasibility of dynamic parameter adjustments, enabling 
instantaneous response of component parameters and rapid adjustments in photovoltaic power generation. 
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