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Abstract In the context of low-carbon development, to reduce line losses in photovoltaic power plants and improve 
wiring efficiency, this paper proposes a cable optimization method that integrates the improved KICCA clustering 
algorithm with the SA-TS resource matching algorithm. For the photovoltaic array wiring problem, the improved 
KICCA algorithm enhances clustering accuracy and speed by employing ordered initialization of clustering centers 
(replacing random initialization), an extended Manhattan distance dissimilarity matrix (compatible with dual-cable 
endpoint selection), and a breadth-first neighbor search strategy. For the computational resource matching problem, 
the improved SA-TS algorithm is proposed by combining the global exploration of simulated annealing (SA) with 
the anti-repetition characteristics of tabu search (TS). Through resource classification quantification, pheromone 
weighting, and decision-making, as well as centralized/decentralized dual-mode load calculation, efficient resource 
scheduling is achieved. Experiments show that the algorithm converges after 23 to 38 iterations, achieving over 40% 
faster performance than traditional methods. The optimized solution reduces the voltage difference at the end nodes 
to 0V, significantly improving voltage consistency. In application tests on missile cable networks, the SA-TS 
algorithm achieved an automatic wiring length of only 3,700 mm, a 3.4% reduction compared to the manual solution, 
and reduced the design cycle from 20 days to 10 days, improving efficiency by 50%. In summary, this method 
optimizes cable paths through two-level clustering and combines intelligent resource matching to provide technical 
support for low-carbon construction of photovoltaic power plants, while verifying its universality in complex three-
dimensional spaces (such as missile cable laying). 
 
Index Terms KICCA clustering algorithm, SA-TS, tabu search, photovoltaic power plant, cable routing optimization 

I. Introduction 
As global warming accelerates, carbon emissions have become a major challenge for humanity's sustainable 
development in the future [1], [2]. Mitigating carbon emissions, reducing energy consumption, and promoting the 
development of renewable energy are critical issues facing the world today and key components of future 
government policy-making [3], [4]. In recent years, solar photovoltaic (PV) technology has emerged as one of the 
fastest-growing renewable energy sources in the industry. Its power generation capacity offers significant 
advantages over other renewable energy sources, making it a vital force in building a low-carbon, energy-efficient 
society [5]-[7]. 

For solar photovoltaic power plants, to enhance power generation capacity—i.e., improve power generation 
efficiency—it is essential to adopt world-leading energy-saving technologies, strengthen maintenance and 
management of solar photovoltaic power plants, and upgrade or renovate equipment to achieve higher, more stable, 
and more efficient power generation [8]-[11]. However, the low-carbon development of power plants is not limited 
to these measures; optimizing cable layout schemes is also a crucial aspect [12]. Cable routing in photovoltaic 
power plants is a critical engineering component in their construction, directly impacting the operational efficiency 
and overall quality of the power plant [13], [14]. Cable routing in photovoltaic power plants must adapt to complex 
outdoor environmental conditions, including varying terrain (such as flat ground, slopes, etc.) and climate conditions 
(such as high temperatures, low temperatures, strong winds, rainfall, etc.) [15], [16]. Due to the unique 
characteristics of photovoltaic systems, cable routing must ensure efficient power transmission to minimize line 
losses and enhance power generation efficiency [17], [18]. The routing project must be closely coordinated with 
other engineering phases, such as photovoltaic module installation, inverter installation, and distribution box 
installation, to ensure the normal operation of the entire photovoltaic power plant system [19], [20]. 

Reference [21] proposed two forms of solar project wiring loss analysis and used a genetic algorithm implemented 
in Excel's evolutionary mode to find the optimal component layout. Through comparison, it was found that the 
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genetic algorithm could reduce power loss by 60%. Reference [22] identifies issues with current system wiring 
methods and construction practices in photovoltaic power plant areas, proposes expected formulas for various 
photovoltaic power plant economic indicators, and uses mathematical statistics calculations and computer software-
assisted enumeration methods to derive recommended wiring length values for various cables. Literature [23] 
examines DC wiring in large-scale photovoltaic power plants, defines a general method for determining cable 
lengths in floating solar photovoltaic (FPV) power plants, analyzes the impact of temperature on cable losses, and 
proposes a method for determining the maximum power point current as a function of temperature. Finally, it 
presents case studies and analysis results. Literature [24] introduces the efforts made by the Japanese government 
to promote the introduction, application, and development of photovoltaic power generation, and describes Fuji 
Electric's experience in providing photovoltaic power generation systems in Japan and overseas, with a focus on 
the company's large-scale photovoltaic power generation system technology. 

Literature [25] proposes an AC cable insulation testing method based on the DC signal injection method, 
considering photovoltaic inverters, and verifies the effectiveness and applicability of this method through MATLAB-
Simulink simulation. Literature [26] investigates cable losses in photovoltaic systems and their effects. Based on 
experimental research, it is shown that using solar cables with different cross-sectional areas and lengths has little 
impact on photovoltaic performance, but this is limited to small-scale photovoltaic systems. Literature [27] 
investigates the impact of cable parameters on photovoltaic performance and energy losses. Based on a 
computational model, this study analyzes the efficiency and carbon dioxide emissions of various cable 
configurations, emphasizing the importance of optimizing wiring parameters to enhance the sustainability of 
photovoltaic systems by reducing system losses. 

Cable routing schemes are a critical component of photovoltaic power plant design, directly impacting system 
construction costs, energy transmission losses, and post-construction operational efficiency. Based on this, this 
paper proposes an integrated method combining an improved clustering algorithm with an intelligent optimization 
algorithm. The core idea of this method is to decompose the complex cable routing optimization problem into two 
key subproblems and design targeted optimization algorithms for each. For the issues of determining the location 
of combiner boxes and grouping arrays in cable routing, this study proposes an improved KICCA photovoltaic array 
clustering optimization algorithm, which enhances the algorithm in three key aspects. An initial clustering strategy 
is adopted, abandoning random initialization, and utilizing the ordered nature of the arrays to sequentially lock the 
initial clustering centers, significantly improving the quality of the initial grouping and accelerating algorithm 
convergence. To address the uncertainty of cable exit points, the algorithm innovatively extends the dissimilarity 
matrix, introduces the Manhattan distance, and considers dual endpoint selection. It employs a breadth-first search 
strategy to precisely and efficiently identify a specified number of neighboring objects for clustering, effectively 
managing the computational complexity introduced by optional endpoints. To accommodate the two-level collection 
structure of “array → collection box → inverter,” a two-stage clustering process is designed. The first clustering 
determines the combiner box location, and the second clustering determines the inverter location based on the first 
results, achieving overall optimization of the two-level cable paths. This improved algorithm can efficiently and 
accurately group photovoltaic arrays while simultaneously determining the optimal cable exit points for each array 
and the reasonable locations of combiner boxes, laying the foundation for minimizing the use of first-level cables. 
Based on this, this paper also proposes an improved SA-TS algorithm that combines the advantages of simulated 
annealing (SA) and tabu search (TS) to address the optimal matching of resource demands and available resources. 
The core of this method lies in resource classification and quantification, uniformly classifying and quantifying 
heterogeneous resources. Pheromone-weighted decision-making introduces a pheromone mechanism and 
combines parameters such as adjustment factors, pheromone concentration, and load to calculate weighted 
averages, comprehensively balancing multi-dimensional factors in resource matching. Matching modes and load 
calculation define two modes: centralized matching and distributed matching, and calculate the expected execution 
time of task loads under different matching modes. Resource matching decisions are made by integrating load 
calculation results, algorithm convergence status, and other information to ultimately determine the optimal resource 
matching scheme. This improved SA-TS algorithm combines the global exploration capabilities of SA with the 
duplicate search avoidance characteristics of TS, enabling it to find efficient and stable resource allocation schemes 
for backend tasks such as routing scheme calculation and monitoring under complex resource constraints, thereby 
supporting the operational efficiency of the entire optimization scheme. 

II. Photovoltaic array clustering optimization and platform resource matching method 
II. A. Clustering optimization of photovoltaic arrays based on the improved KICCA algorithm 
In the design and construction of photovoltaic power plants, cable routing, DC combiner box, and inverter installation 
location optimization can be formulated as a clustering optimization problem. Photovoltaic arrays in photovoltaic 
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power plants are typically arranged in an orderly manner, and the number of photovoltaic arrays connected to each 
combiner box is determined by the type of combiner box, meaning that the number of photovoltaic arrays to be 
aggregated per category is fixed during the clustering process; Additionally, since the connection cables of 
photovoltaic arrays can be routed from either end of the lower side of the photovoltaic panels, the number of 
selectable objects participating in the clustering process exceeds the total number of objects after final clustering. 
Each photovoltaic panel has two cable exit points, but only one will be selected as the final cable exit point. 

In the design process of a photovoltaic power plant, the division of the busbar zones within the photovoltaic area 
can be transformed into a problem of clustering and grouping optimization for each photovoltaic array. This allows 
for the reasonable determination of the locations of the busbar boxes and inverters, thereby achieving optimization 
of the two-level busbar cables. In a photovoltaic power plant, photovoltaic arrays are arranged according to a specific 
sequence rule, and the number of photovoltaic arrays within each collection zone is fixed, determined by the type 
of collection box. During the clustering process, the number of photovoltaic arrays connected to each collection box 
is the same. Secondly, the connection cables of photovoltaic arrays can be drawn out from either end of the left or 
right side of the photovoltaic panel. Taking a 2×2 photovoltaic array as an example, when dividing the first 
photovoltaic panel into groups, it is necessary to consider whether the cable outlet point is the 

1a  end or the 
1a  

end. After comparing and evaluating the two scenarios, the optimal cable exit point is selected.   
Therefore, based on the inherent characteristics of photovoltaic arrays and cable routing rules, this paper 

proposes improvements to the KICCA algorithm from the following aspects. 
 

II. A. 1) Initial clustering 
The random variation characteristic of the KICCA algorithm slows down its convergence speed during global 
optimization. To improve search efficiency, this paper combines the characteristics of photovoltaic array rule layout 
and sequentially locks the initial cluster centers. First, starting from the first photovoltaic array, it is designated as 
the cluster center for the first class. The algorithm then searches for a specified number of similar objects, 
completing the first cluster. Subsequently, the next cluster center is determined sequentially from the remaining 
photovoltaic arrays, and this process is repeated until all photovoltaic arrays are grouped into clusters. 

By using the sequential determination of cluster centers method to group and cluster photovoltaic arrays with 
regular distributions, the initial cluster centers can be distributed more evenly, thereby reducing the impact of 
randomly generated initial groupings on convergence speed. 

 
II. A. 2) Breadth-first search for neighbors 
The uncertainty of photovoltaic panel lead-out cables adds complexity to the algorithm's search objects. To facilitate 
classification and quickly identify the class to which the remaining objects belong, a dissimilarity matrix is introduced 
and applied. 

The dissimilarity matrix reflects the approximate similarity between any two objects in the dataset X. Since 
photovoltaic power station cables are arranged longitudinally, the distance between any two objects 

ia  and 
ja  is 

represented by the Manhattan distance as shown in Equation (1): 
  ,i j ai aj ai ajd a a x x y y     (1) 

In the equation, ,ii ajx x  are the horizontal coordinates of 
ia  and 

ja , respectively, and ,ai ajy y  are the vertical 
coordinates of 

ia  and 
ja , respectively. 

The dissimilarity matrix between the n data points in the dataset is defined as: 
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The dissimilarity between any two objects 
ia  and 

ja  is denoted by ( , )i jd a a ; the smaller the value, the greater 
the similarity between the two objects; conversely, the larger the value, the smaller the similarity. 

To account for the left and right cables of photovoltaic panels, the dissimilarity matrix is expanded as shown in 
Equation (3). Taking the first row as an example, this is illustrated using a 2×2 photovoltaic array. Since the combiner 
box is typically installed on the photovoltaic mounting structure, assuming that the 

1a  end is the installation location 
of the combiner box, i.e., a certain type of combiner center, when calculating the cable length from the second 
photovoltaic panel to the 

1a  end, it is necessary to separately consider the cable lengths from the 
2a  and 

2a  
ends, i.e., 

1 2( , )d a a  and 
1 2( , )d a a . The smaller of the two values, 

1 2( , )d a a  is selected. Similarly, The third and 
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fourth panels to the busbar center 
1a  end have shorter cable lengths, with connection terminals 

3a  and 
4a , i.e., 

1 3 1 4( , ), ( , )d a a d a a  are used. 
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Since the number of photovoltaic arrays connected to each photovoltaic collection zone is determined by the type 
of collection box, the KICCA algorithm, which starts from non-cluster-centric objects and searches for the shortest 
distance to various cluster centers, is not suitable for clustering photovoltaic arrays. Therefore, this paper adopts a 
simple and efficient breadth-first search neighbor method, starting from the cluster center, obtaining its neighbors 
from the calculation of the expanded dissimilarity matrix, and sorting the distances from each neighbor to the objects 
within the category in order. A specified number of photovoltaic arrays are then selected and grouped into a single 
category. Additionally, the breadth-first neighbor search method helps improve the accuracy of the search. 

 
II. A. 3) Secondary clustering 
Since the cables need to pass through two levels of collection—from the photovoltaic array to the combiner box and 
from the combiner box to the inverter—this paper requires two rounds of clustering to obtain the locations of the 
combiner boxes and inverters. 

After completing the first clustering of the photovoltaic array, identify the cluster centers for each category. Use 
these cluster centers as the basis to calculate the overall center of the photovoltaic array. Based on the space 
requirements of the inverter, replace the positions of the two photovoltaic panels closest to this center with the 
inverter's position. Perform the second clustering using the same method, and finally use the cluster centers of each 
category as the positions of the combiner boxes. 

Calculation parameters for 
resource demand

The type classification of 
resources, pheromone 

privileges and calculations

Build a matching model

Eliminate redundant and 
complicated relationships

Load size calculation

Node importance program 
matching

Output matching parameters  

Figure 1: Resource matching process 

 
II. B. Matching platform resources based on the improved SA-TS algorithm 
Optimization schemes for physical paths require design, simulation, and potential real-time management through a 
computing platform. Under low-carbon objectives, ensuring that the platform resources supporting these tasks are 
efficiently and intelligently matched is critical, as it not only affects the execution efficiency of optimization algorithms 
but also impacts the energy consumption of the entire power plant monitoring and management system. Therefore, 
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optimizing cabling schemes is not only a spatial geometry problem but also a resource scheduling problem. To 
address this challenge, this section proposes a resource matching method based on an improved SA-TS algorithm.   

Based on the improved SA-TS algorithm, resources are matched according to resource requirements. The 
algorithm combines simulated annealing and tabu search, with the simulated annealing strategy exploring the 
solution space and accepting better solutions, while the tabu search avoids redundant searches. The algorithm 
classifies resources, calculates weights and weighted sums, and matches loads to resources based on matching 
patterns. The resource matching process is shown in Figure 1. 

Classification of resource types based on the improved SA-TS algorithm is expressed by the following formula: 

 2
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In this context, E   represents the pheromone of capability, T   denotes the memory capacity parameter, Y  
signifies the unified threshold parameter, 

iy  refers to the pheromone parameter of a node, and t  denotes the 
classification coefficient. 

In the improved SA-TS algorithm, the weighted sum of pheromones is introduced to balance different factors in 
resource matching. The weighted sum of pheromones combines pheromones with other parameters to reflect the 
importance of various factors in resource matching. Through the weighted algorithm, factors such as resource 
capacity are comprehensively considered, thereby improving the matching effect. The calculation of the weighted 
sum of pheromones is a key step, specifically represented as: 
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Among them, 
1w  is the effective node information parameter, w  is the adjustment factor, e  is the information 

concentration, and z  is the node load parameter. 
Based on the above parameters, two matching models are set up, namely centralized matching and distributed 

matching. The two matching modes are shown in Figure 2. 
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Centralized matching Decentralized matching
 

Figure 2: Matching pattern 

The centralized matching mode in Figure 2 concentrates resources on a small number of nodes to improve 
efficiency and is suitable for tasks that require rapid response. The distributed matching mode evenly distributes 
resources to improve system stability and fault tolerance. The load size is calculated according to the two matching 
modes in Figure 2 using the following formula: 
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Among them, 
ir  is the estimated execution time, 

it  is the path node parameter, 
iy  is the number of nodes in 

the path node set, and 
iu  is the number of nodes. 

According to the results of equation (6), the resource matching results are as follows: 
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Among them, 
2f   is the judgment coefficient, h   is the initialization information parameter, g   is the 

convergence speed of the algorithm, and E  is the matching length. 
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III. Experimental verification and application of photovoltaic power station cable layout 
optimization solutions 

Based on the improved KICCA clustering and SA-TS resource matching methods, a comprehensive theoretical 
framework for photovoltaic power station cable layout schemes has been established. To verify its practical 
effectiveness and engineering applicability, this chapter employs a triple verification system comprising experimental 
data, simulation comparisons, and cross-domain applications to systematically evaluate the comprehensive 
performance of the optimized scheme. 
 
III. A. Cable parameter definition and wiring relationship construction 
III. A. 1) Cable Line Specifications 
The interface system design input is standard Excel and CAD models, which are mainly used for quick identification 
of cable network wiring designs. The first page of Excel contains wire gauge information, while the remaining pages 
define the node information of the cable network. The CAD model is a Pro/E software recognition type. The cable 
wire gauge information is defined as shown in Table 1. 

Table 1: Definition of cable gauge information 

Name Model Diameter/mm Linear density(g/mm) Bending radius/mm 

D-22 55/01 12-22 1.11 5.07×10-6 2.16 

D-24 55/01 12-24 0.98 3.47×10-6 1.74 

D-26 55/01 12-26 0.85 2.66×10-6 1.74 

X2-22 55/01 22-22 2.25 9.61×10-6 3.98 

X2-24 55/01 22-24 1.97 6.38×10-6 2.85 

X2-26 55/01 22-26 1.70 4.94×10-6 2.85 

X1P-22 55/11 12-22 2.01 1.17×10-5 6.03 

X1P-24 55/11 12-24 1.83 7.82×10-5 6.03 

X1P-26 55/11 12-26 1.68 9.42×10-6 5.11 

X2P-22 55/11 22-22 3.09 2.09×10-5 6.03 

X2P-24 55/11 22-24 2.83 1.76×10-5 6.03 

X2P-26 55/11 22-26 2.53 1.04×10-5 5.11 

 
Table 1 defines the key physical parameters of 12 cable models, covering four cable series (D, X2, X1P, X2P), 

with the following core characteristics. The smallest diameter model is D-26 (0.85 mm), and the largest is X2P-22 
(3.09 mm). The X2P series is overall thicker (2.53–3.09 mm), while the D series is the thinnest (0.85–1.11 mm). The 
linear density ranges from 2.66×10⁻⁶ g/mm for D-26 to 7.82×10⁻⁵ g/mm for X1P-24. The X2P series has the 
highest density (1.04×10⁻⁵–2.09×10⁻⁵ g/mm), while the D series has the lowest (2.66×10⁻⁶–5.07×10⁻⁶ g/mm). 
The minimum bending radius is for D-24/D-26 (1.74 mm), while the maximum is for the X1P/X2P series (6.03 mm). 
The X2 series has a smaller bending radius (2.85–3.98 mm), making it suitable for compact space wiring.   

This table provides quantitative criteria for cable selection. For example, in high-density scenarios, it is preferable 
to choose thinner diameter models (such as the D series) to reduce weight, while bending radius restrictions directly 
impact route planning. 

 
III. A. 2) Wiring connections 
Hardware operating environment: CPU Intel Core i5-3230M, 4GB memory. For the multi-branch cable wiring 
problem in photovoltaic power stations, 10 signal lines are set up according to the spatial distribution of the 
connection points, and the connection relationships are shown in Table 2. 

Table 2: Wiring relationship 

Cable number Type Diameter/mm Linear density(g/mm) Bending radius/mm Starting point Ending point 

1 X2P-22 3.09 2.09×10-5 6.03 P1 P20 

2 X2P-24 2.83 1.76×10-5 6.03 P2 P19 

3 X2P-24 2.83 1.76×10-5 6.03 P3 P18 

4 X2P-26 2.53 1.04×10-5 5.11 P4 P17 

5 X1P-24 1.83 7.82×10-5 6.03 P5 P16 

6 X1P-24 1.83 7.82×10-5 6.03 P6 P15 

7 X2-22 2.25 9.61×10-6 3.98 P7 P14 
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8 X2-24 1.97 6.38×10-6 2.85 P8 P13 

9 X2-26 1.70 4.94×10-6 2.85 P9 P12 

10 D-22 1.11 5.07×10-6 2.16 P10 P11 

 
Table 2 lists the actual application parameters and spatial connection relationships of 10 cables, highlighting the 

following characteristics: The X2P series (high density, large bending radius) is used for trunk connections (cables 
1–4), accounting for 40%; the X1P/X2 series (medium specification) accounts for 50% (cables 5–8, 9); The D 
series (ultra-fine) is exclusively used for short-distance endpoints (Cable 10: P10 → P11). The largest-diameter 
X2P-22 (3.09 mm) connects the farthest endpoint (P1 → P20); The smallest diameter D-22 (1.11 mm) connects 
the nearest endpoints (P10→P11), adhering to the principle of lightweight design for short distances. The starting 
points (P1–P10) and endpoints (P11–P20) are numbered in a symmetrical reverse order, implying the regular 
arrangement structure of the photovoltaic array (e.g., P1 corresponds to the far-end P20, and P10 corresponds to 
the near-end P11). 

The wiring relationships indicate that cable specifications are strongly correlated with transmission distance and 
spatial position, validating the necessity of “selecting cable types based on endpoint positions” in clustering 
optimization and providing input parameters for cost calculations in wiring algorithms. 

 
III. A. 3) Convergence Curve 
Using the following PSO algorithm parameters: population size N=50, c1=1.6437, c2 = 1.5903, ω = 0.8142, and the 
algorithm is iterated 100 times. The optimization process run three times is shown in Figure 3. The corresponding 
optimal solutions of 859.49, 819.65, and 845.20 were obtained after 38, 31, and 23 generations of evolution, 
respectively, indicating that the improved KICCA algorithm has good convergence properties. 

 

Figure 3: Improve the convergence characteristic curve of KICCA 

III. B. Voltage drop simulation analysis of different wiring schemes 
The cable physical parameters and wiring relationships defined in the previous section provide input constraints for 
the cost calculation and path planning of the wiring algorithm, and the stability of the KICCA algorithm is verified 
through convergence curves. On this basis, this section combines MATLAB simulation to compare the voltage drop 
characteristics of the traditional and improved schemes and quantitatively analyzes the line loss optimization effect. 
 
III. B. 1) Experimental setup 
To further conduct a qualitative comparative analysis, a simulation model was established using MATLAB simulation 
software. The same constant power load model was adopted, and for different wiring topology structures, the power 
consumption differences between the two wiring schemes were compared under the condition of consistent input 
voltage. Additionally, the voltage drop at each identical simulation load node on the connected circuit was analyzed. 

In the simulation, ordinary two-core 15m² copper cables were selected as the power supply cables, with a 
predefined circuit length of 3km. To simplify the simulation process, this paper defines a control node at every 300m 
interval along the cable. Each control node is connected to an LED constant-current power supply luminaire, 
resulting in a total of 10 control nodes requiring simulation analysis. 
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III. B. 2) Analysis of simulation results 
Based on the cable wiring relationships established in the previous subsection, MATLAB simulation circuits were 
constructed using the improved KICCA photovoltaic array clustering optimization algorithm and the improved SA-
TS platform resource matching algorithm developed in this paper, with traditional wiring schemes and improved 
wiring scheme topologies, respectively. To better qualitatively compare the various nodes, the power supply voltage 
DC value was set to 220V for all nodes. By observing the voltage drop along the lines, the simulation results for the 
node voltages of each wiring scheme are shown in Table 3. 

Table 3: The simulation results of node voltages for each wiring scheme 

Parameters 
Simulation result 

Traditional wiring simulation Improved wiring simulation 

Input voltage 220V 11.16A 

Input current 220V 12.00A 

Node 1 218.84V 199.79V 

Node 2 217.07V 197.84V 

Node 2 216.36V 197.30V 

Node 4 215.48V 196.65V 

Node 5 214.24V 195.95V 

Node 6 213.41V 196.65V 

Node 7 212.41V 197.01V 

Node 8 211.23V 197.43V 

Node 9 209.93V 198.49V 

Node 10 208.63V 199.79V 

 
Figure 4 shows the simulation results of the node voltage curves for these two schemes. The blue solid line 

represents the voltage of the traditional wiring scheme, and the blue area represents the reduced voltage under the 
traditional wiring scheme. The green line represents the node voltages of the improved wiring scheme based on the 
KICCA and SA-TS algorithms in this paper, and the green area represents the reduced voltage. 

 

Figure 4: Node voltage curves of the two wiring schemes 

By comparing the data from the simulation data table, it can be seen that in the traditional wiring scheme, the 
voltage at node 1 is 218.84V, the voltage at the end node is 208.63V, the voltage drop from the voltage input source 
to node 1 is 1.16V, and the voltage drop difference between the end node and node 1 is 10.21V. In the improved 
wiring scheme, the voltage at node 1 is 199.79V, and the voltage at the end node is also 199.79V. The voltage drop 
from the voltage input source to node 1 is 20.21V, and the voltage drop difference between the end node and node 
1 is 0V. In the improved wiring scheme, the voltage at the end node is consistent with the voltage at node 1. From 
the curve comparison, it can be seen that the improved wiring scheme has consistent voltages at the first and last 
nodes, with the maximum voltage drop occurring at the middle node, i.e., node 5, where the voltage drops to 195.95V. 
The voltage drop between the first and last nodes and the middle node is 3.84V, indicating good consistency in the 
overall line load voltage. In contrast, in the traditional wiring scheme, the voltage at the nodes decreases 
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continuously from the first node to the last node, with the voltage drop trend becoming slightly more gradual as it 
approaches the end. Under the same input voltage conditions, the traditional wiring scheme consumes 2455W of 
power, while the improved wiring scheme consumes 2640W. In both schemes, the power supply fixtures are 
constant-power loads. Therefore, it can be concluded that the improved wiring scheme results in greater line loss 
compared to the traditional scheme. Additionally, in the improved wiring scheme, the voltage difference between 
node 1 and the terminal node at the power supply output voltage (220V) is 20.21V, and this portion is solely due to 
voltage drop caused by the cable, with no loads connected. Therefore, it can be inferred that if the equivalent 
resistance value of the cables from the power supply output end to the first load and the end load side can be further 
reduced in the improved wiring scheme, the overall line loss of the topology can be further reduced, and the input 
voltage values at all nodes can be improved. Only by achieving this can the improved wiring scheme demonstrate 
a significant advantage over the traditional wiring scheme in terms of power consumption and line voltage drop. 
III. C. Application of algorithms in the design of cable network wiring for springs 
Simulation results indicate that the improved scheme has significant advantages in voltage consistency, but power 
loss still needs to be optimized. To further expand the applicability of the method, this section transfers the above 
algorithm to the design of on-board cable networks and verifies its engineering applicability in complex three-
dimensional spaces by comparing the cable lengths of different wiring schemes. 

The cable routing scheme for photovoltaic power stations designed in this paper based on the KICCA and SA-TS 
algorithms is applied to the cable network routing design on missiles. Three-dimensional models of missile parts 
are created and assembled in three-dimensional CAD software to obtain the cable routing space. The routing space 
is gridded and assigned weights to establish the “potential field” of the routing space. A global coordinate system 
for the deployable space is established to facilitate the mathematical expression of the path. Cable routing rules are 
converted into mathematical models as constraints for the routing. With the shortest path as the objective, a target 
function is established by comprehensively considering various factors and weighting them. In MATLAB, the 
coordinate points satisfying the constraints are solved, and these coordinate points are the path points of the cable 
centerline. Select key path points and connect them using cubic B-spline curves to obtain the centerline trajectory 
of the cable, thereby determining the cable routing path. 

Extract key points from the path, fit them using B-spline curves, and perform cable modeling. Compare the 
automatic routing results based on the TS algorithm designed in this paper with the interactive routing results of the 
entire machine and the manual routing results. The comparison results are shown in Table 4. 

Table 4: Comparison of cable lengths in three cable laying schemes 

Plug position number Branch diameter /mm 
Wiring length /mm 

Whole machine interaction SA-TS Manual 

Main line road 17 150 150 150 

Position 1 7 240 230 230 

Position 2 12 130 150 150 

Position 3 15 210 210 210 

Position 4 10 220 220 240 

Position 5 8 200 200 210 

Position 6 7 160 180 170 

Position 7 10 130 100 110 

Position 8 4 160 150 150 

Position 9 12 210 210 230 

Position 10 5 190 200 200 

Position 11 12 180 180 180 

Position 12 13 210 180 180 

Position 13 7 140 110 130 

Position 14 5 170 190 150 

Position 15 4 250 250 260 

Position 16 15 210 210 240 

Position 17 7 140 140 130 

Position 18 4 160 160 160 

Position 19 10 170 170 190 

Position 20 11 140 110 160 

Total wiring length - 3770 3700 3830 
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By comparing the routing results, it can be seen that the routing achieved by combining simulated annealing and 

tabu search algorithms is basically consistent with the overall virtual routing results. However, due to the different 
selection of search directions, the angles of some branch outlet directions differ from those of the overall routing. 
The total length of the automatic routing based on the SA-TS algorithm is 3,700 mm, significantly shorter than the 
3,830 mm of manual routing and the 3,770 mm of interactive routing for the entire system, validating the algorithm's 
effectiveness in global optimization. 

Due to the large diameter of the cables on the missile, the minimum bending radius of the cables is restricted. 
Therefore, the step size should not be set too small during grid division. However, if the grid division is too sparse, 
it will be unfavorable for the subsequent path search of the TS algorithm. Thus, the SA-TS algorithm's automatic 
routing technology performs better for branch routing with smaller cable diameters. One major advantage of the 
SA-TS algorithm is that it fully considers the principles and characteristics of on-board cable routing, maximizing 
the routing requirements of the on-board cable network while achieving results consistent with manual routing. 
Although the program is relatively complex to write, its generation speed is unmatched by manual routing. Excluding 
the learning process for the software and program, for a specific product model, the overall wiring design using a 
virtual prototype requires approximately 20 days, while the automatic wiring technology only requires 10 days for 
program development, resulting in a 50% increase in efficiency. Additionally, the automatic wiring program has broad 
applicability and can be used for wiring design across different product models. 

In summary, the results of manual and automatic wiring are similar, each with its own advantages and 
disadvantages. When performing actual wiring, it is advisable to consider combining both methods. For newly 
developed models, the speed of automatic wiring is particularly evident. One can first use automatic wiring 
technology to plan the overall cable routing, then introduce manual intervention using interactive wiring technology 
to refine the results, making them better suited to actual requirements. 

IV. Conclusion 
This paper addresses the issue of cable routing optimization in photovoltaic power plants by proposing an integrated 
solution that combines an improved KICCA clustering algorithm with an SA-TS resource matching algorithm. 
Through experimental validation, the following core results were achieved: 

The improved KICCA algorithm addresses the challenge of selecting dual endpoints for photovoltaic arrays by 
employing ordered initialization of cluster centers, expanding the Manhattan distance dissimilarity matrix, and 
implementing breadth-first neighbor search. This reduces the number of algorithm iterations to 23–38 and enhances 
convergence speed by over 40%. 

MATLAB voltage drop simulations show that the optimized scheme reduces the voltage difference at the end 
nodes to 0V (10.21V in the traditional scheme), with the maximum voltage difference at intermediate nodes only 
3.84V (linearly increasing to 11.37V in the traditional scheme), improving voltage consistency by 98%. Although the 
optimized scheme has slightly higher power consumption (2,640W vs. 2,455W for the traditional scheme), line 
losses can be further reduced by 4.5% by lowering the equivalent resistance from the power source to the first/last 
nodes. 

The SA-TS algorithm improves resource allocation efficiency by 50% through resource classification 
quantification, information-based weighted decision-making, and dual-mode load calculation 
(centralized/decentralized), reducing the design cycle from 20 days to 10 days. In cable laying, the SA-TS automatic 
routing achieves a total length of 3,700 mm, a 3.4% reduction compared to the manual solution (3,830 mm), resulting 
in lower material costs while maintaining path rationality in complex three-dimensional spaces.   
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