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Abstract This paper takes the creation of user profiles, prediction of electricity demand, construction of an 
electricity service optimization model, and satisfaction of electricity user needs as its research approach. Using 
electricity big data technology, it obtains residential electricity consumption behavior data from aspects such as 
basic electricity consumption, equipment electricity consumption, advanced electricity consumption, and abnormal 
electricity consumption. Through quantitative analysis of the obtained user electricity consumption behavior data, it 
generates user behavior feature tags from aspects such as basic and behavioral characteristics. By combining the 
generated user behavior tags with the characteristics of changes in electricity consumption behavior data, the core 
content of user electricity consumption behavior profiles is derived, thereby achieving precise user profiling for 
residential users. Additionally, based on existing research, short-term and medium-to-long-term influencing factors 
are screened out, and the Attention-Bi-LSTM model is used for electricity demand forecasting. Y State Grid Power 
Marketing Unit was selected as the experimental subject, and the power user behavior characteristics were 
calculated and analyzed. The proposed model was used to predict power user demand. The proposed prediction 
model not only fits the original data curve well but also maintains the prediction error within the range of [-5000, 
6000], demonstrating high-precision prediction performance. 
 
Index Terms Attention-Bi-LSTM model, user profile, power user demand prediction, behavioral characteristics 

I. Introduction 
With the advancement of industrialization and urbanization, and the increasing reliance on electrical energy, 
accurate forecasting of electricity demand has become increasingly important [1], [2]. Currently, the primary 
methods and technologies for forecasting electricity demand include statistical methods and machine learning [3]. 
Statistical methods analyze historical electricity demand data from users and utilize statistical models such as time 
series models and regression analysis to predict future electricity demand [4]-[6]. These models can capture trends, 
seasonality, and periodicity in historical data and apply them to future predictions [7], [8]. Machine learning-based 
electricity demand forecasting is an emerging technology that analyzes large amounts of historical user data to 
uncover correlations between variables, enabling accurate electricity demand predictions [9]-[11]. Common 
machine learning algorithms, including linear regression, decision trees, support vector machines, and random 
forests, can be selected based on specific circumstances for modeling and training [12]-[14]. 

Accurate electricity demand forecasting helps balance electricity supply and demand, avoiding power shortages 
or resource waste caused by supply-demand imbalances [15], [16]. Additionally, by precisely predicting electricity 
demand, power companies can optimize power resource allocation, improve operational efficiency, and provide 
better services [17], [18]. Of course, excellent service cannot be achieved through a single approach; it requires 
power companies to address multiple aspects, including improving power supply quality, introducing intelligent 
power services, providing 24/7 service, enhancing interaction with users, and strengthening information security 
measures [19]-[21]. Only by implementing comprehensive measures can high-quality power services be achieved, 
user needs be met, and the sustainable development of the power industry be promoted [22], [23]. 

Literature [24] aims to improve the accuracy and flexibility of power demand prediction in smart grids using 
machine learning algorithms, verifying the effectiveness of machine learning for energy demand prediction. Its 
greatest advantage lies in improving operational efficiency through more intelligent energy transmission scheduling. 
Literature [25] evaluates the performance of optimization algorithms such as genetic algorithms (GA) and firefly 
algorithms (FF), particularly in electricity demand forecasting, and proposes a hybrid intelligent electricity demand 
forecasting algorithm that integrates wavelet transform (WT) and fuzzy ARTMAP (FA) networks, optimized using 
the FF algorithm. Literature [26] conducted an investigation into practical methods for predicting future electricity 
load demand based on the Preferred Reporting Items for System Reviews and Meta-Analyses (PRISMA) 
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guidelines, finding the superiority of a hybrid approach combining artificial neural networks with meta-heuristic 
techniques and proposing improvement suggestions. Literature [27] examined important user power demand 
forecasting methods based on power big data and neural networks, analyzing the construction of user power 
demand forecasting models by elucidating power big data and neural networks, and verifying the accuracy of 
power demand forecasting models based on big data and long short-term memory networks. Literature [28] 
designed a calculation method for power grid load demand under a multi-energy coupling model, analyzed the 
factors influencing load under this model, and proposed a least-squares support vector machine optimized by the 
minimum redundancy maximum association model and adaptive fireworks algorithm for power demand load 
prediction. The results validated the effectiveness of the aforementioned methods. Literature [29] proposed a 
hybrid algorithm to improve prediction accuracy. This algorithm uses the Non-Dominated Sorting Genetic Algorithm 
II (NSGAII) to select input vectors, with the fitness function being a Multi-Layer Perceptron Neural Network 
(MLPNN). By using the results of NSGAII as input for the Adaptive Neuro-Fuzzy Inference System (ANFIS), the 
high prediction accuracy of the MLPNN-ANFIS system was validated. Reference [30] proposes a short-term 
electricity demand forecasting technique that combines two distinct methods: the Elman neural network (ELM) and 
the adaptive network-based fuzzy inference system (ANFIS). Research indicates that this method outperforms 
advanced methods such as independent ELM and ANFIS. Literature [31] discusses various techniques and 
methods for forecasting electricity demand in residential, industrial, and agricultural sectors and examines the role 
of demand response in managing peak electricity demand and maintaining grid stability by shifting usage to 
off-peak hours. 

This paper designs a data collection process and processing methods for residential electricity consumption 
behavior data based on the principles of electricity big data technology. Resident electricity consumption behavior 
data is processed, and resident user behavior labels are proposed, with a focus on explaining the mathematical 
representation and generation of user behavior labels. Resident electricity consumption behavior data is integrated 
with multiple behavior labels to construct a resident user profiling process. The selection and meaning of electricity 
demand influencing factors are then described, and the Attention-Bi-LSTM model is proposed as a prediction 
model for electricity user demand, forming a prediction method for electricity user demand. Subsequently, select 
the power marketing unit of Y State Grid as the research object, collect user electricity consumption values and 
user behavior data from July 15, 2020, and conduct preliminary user clustering. Based on the power user load 
curve, construct a behavior feature set and calculate the redundancy of each feature, then perform feature 
clustering and analysis of power users. Finally, verify the performance of the proposed prediction model by 
comparing the model prediction values with the original values. 

II. Analysis of residential electricity consumption behavior and profiling methods 
II. A. Acquisition of residential electricity consumption data 
In order to provide data support for the analysis of residential electricity consumption behavior, power big data 
technology is utilized to obtain residential electricity consumption behavior data from basic electricity consumption 
data, equipment electricity consumption data, advanced electricity consumption data, and electricity consumption 
anomalies. Figure 1 shows the principle of power big data technology. 
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Figure 1: The principle of power big data technology 

Power big data technology involves multiple steps, including data collection, data storage, and data processing. 
The process of collecting residential electricity consumption behavior data is shown in Figure 2. 
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Figure 2: The data collection process of residents' electricity consumption behavior 

The collected resident user behavior data includes electricity consumption data, voltage data, current data, 
specific device electricity consumption data, device usage duration data, switch status data, gear position, and 
operating conditions. Taking electricity consumption data as an example, the collection results can be expressed 
as in Equation (1): 

 ( )E g U Ix x x dt   (1) 

In the equation, 
g  is the data collection coefficient for residential electricity consumption data, whose specific 

value is determined by the operational status of power big data technology. 
Ux  and 

Ix  represent the voltage and 

current data collected by power big data technology, respectively, and t  denotes time. Using the above method, 
data on other residential electricity consumption behaviors can be collected. To ensure the quality of the initial data 
collection and the operability between different types of residential electricity consumption behavior data, the initial 
collected data needs to be processed. The specific processing process is as shown in Equation (2): 
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In the formula,  cy  is the data cleaning function, and 
minx  and 

maxx  correspond to the minimum and 
maximum values of the initial behavior data collection. Finally, the processing results of residential electricity 
consumption behavior data are assigned to the initial values to achieve real-time acquisition of residential 
electricity consumption behavior data. 

 
II. B. Generation of user behavior tags 
The process of constructing a three-dimensional profile of power grid users involves an in-depth analysis of user 
information to extract representative behavioral feature tags. These tags directly reflect user characteristics, and 
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when they are systematically integrated and correlated, they can collectively paint a comprehensive and 
multidimensional picture of power grid users. Based on the quantitative analysis of residential user behavior, 
feature tags are generated from basic and behavioral aspects. Basic tags refer to the collection of fundamental 
attribute information about grid users. These tags are determined by collecting basic user information, including 
key characteristics such as the user's name, age, gender, income level, and occupational position. Residential user 
behavioral tags specifically include electricity consumption behavior tags, payment behavior tags, and complaint 
behavior tags. Electricity consumption behavior tags primarily reflect users' personalized characteristics in 
electricity consumption, encompassing information such as electricity consumption patterns and direct perceptions 
of power supply quality. The generation results of peak electricity consumption periods and electricity consumption 
pattern stability tags in residential electricity consumption behavior tags are as shown in Equation (3): 
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In the equation, 
aE , ( )iE t , and E  represent the total electricity consumption, electricity consumption in the i

th hour, and average hourly electricity consumption, respectively, where 
ht  is the number of hours. In the actual 

label generation process, based on the calculation results of residential electricity consumption behavior analysis 
indicators, certain variables in equation (3) are assigned values, thereby generating the results of electricity 
consumption behavior label components. User payment behavior labels accurately depict the behavioral 
characteristics of users when settling grid fees, covering key elements such as payment tiers and selected 
payment methods. User demand behavior labels focus on the various service needs generated by grid users 
during the period of enjoying power supply services, reflecting users' feedback and expectations regarding the 
service quality and work efficiency of power supply companies. Using the expression in Equation (3), the 
generation results for all other user behavior label components can be obtained. 

 
II. C. Building a profile of residential users 
Combine the generated user behavior tags with the characteristics of changes in captured electricity usage data to 
form the core content of the user electricity usage behavior profile. Figure 3 shows the process of constructing a 
residential user profile. 
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Figure 3: The process of building a resident user profile 

According to the process shown in Figure 3, the results of constructing resident user profiles can be quantified 
as shown in Equation (4): 

 , ,Bt R Z   (4) 
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In the formula, 
Bt , R , and Z  represent the label generation time, label name, and user electricity 

consumption behavior status, respectively. Assigning the label component generation results to the variable Z  
yields the final user profile construction results. In the actual user profile construction process, various user 
behavior characteristics and labels can be classified to ensure the accuracy of the user profile construction. 

III. Methods for forecasting electricity demand 
III. A. Screening of factors affecting electricity demand 
III. A. 1) Short-term influencing factors 
The factors influencing short-term electricity demand forecasts include meteorological factors, thermal power 
generation, electricity policy factors, time factors, new energy vehicle sales, and other random factors. This study 
categorizes the factors influencing short-term electricity demand into significant factors and non-significant factors. 
Significant factors are those that can cause significant fluctuations in electricity demand within a short period of 
time. The most significant factor is meteorological factors, such as temperature, humidity, and atmospheric 
pressure. The next significant factor is thermal power generation. Thermal power generation, as the primary power 
generation method in China, has historical power generation data that largely reflect historical electricity demand. 
Therefore, in this study, thermal power generation is classified as a significant factor. Next are time factors, 
primarily the number of days during holidays and statutory holidays. Since statutory holidays can also cause 
short-term fluctuations in electricity demand, this is also classified as a significant factor. Non-significant factors are 
those that require prolonged, sustained influence to cause fluctuations in electricity demand. Non-significant 
factors generally include economic factors and policy factors. Since this study aims to improve the accuracy of 
short-term electricity demand forecasts, non-significant factors are assumed to remain stable in this study, with a 
focus on in-depth analysis of significant factors. 

In terms of selecting temperature values, since the data source for this study is provincial power demand, the 
temperature indicator is taken as the average temperature to represent the provincial temperature status. The 
provincial average temperature is obtained by calculating the weighted average of the temperature values of each 
region within the province. Let the provincial average temperature be 

aT , and its expression is shown in Formula 
(5): 
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In the equation,  1, 2, ,iT i n   represents the temperature values of each prefecture-level city, and n  is the 

total number of prefecture-level cities in the province. 
To enhance the validity and scientific rigor of the experimental data, this study collected three types of 

temperature data: maximum temperature, minimum temperature, and average temperature. Additionally, the 
Pearson correlation coefficient was used to verify the correlation between the three types of temperature data and 
electricity demand data obtained from historical data. The Pearson correlation coefficient is calculated as shown in 
Equation (6): 
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In the formula, 
sR  is the correlation coefficient between X  and Y , 

iX  is the value of the independent 
variable, X  is the average value of the independent variable, 

iY  is the value of the dependent variable, and Y  
is the average value of the dependent variable. The value of 

sR  ranges from 0 to 1, with values closer to 1 
indicating a stronger correlation between the two variables. When 0sR  , it indicates that there is no correlation 
between the two variables. 

In the test results, the correlation coefficients of the three types of temperature indicators with electricity demand 
are all greater than 0.3, indicating that the three types of temperature indicators have a significant impact on 
electricity demand. Therefore, all three types of temperature indicators are considered as research factors. 

The GBDT model was used to extract important features from the initially selected significant factors, which 
include maximum temperature, minimum temperature, average temperature, humidity, atmospheric pressure, 
thermal power generation, and the number of holidays and statutory holidays. Since it is currently impossible to 
directly determine whether new energy vehicles are significant or non-significant factors, they are also included as 
influencing factors in the analysis. 

Among the initially selected influencing factors (maximum temperature, minimum temperature, average 
temperature, humidity, atmospheric pressure, thermal power generation, new energy vehicle sales, and the 
number of public holidays and statutory holidays), the feature importance of new energy vehicle sales and 
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atmospheric pressure for short-term electricity demand is 0. The reason atmospheric pressure has a low impact on 
electricity demand may be that it indirectly influences electricity demand through changes in weather conditions, 
resulting in a lower contribution to electricity demand. New energy vehicle sales do not exhibit significant 
short-term trends, and the impact of increased sales on electricity demand is negligible. Therefore, this study 
excludes these two factors and further investigates the remaining factors as influencing factors. 

 
III. A. 2) Medium- and long-term influencing factors 
Ten influencing factors were selected as the initial objects of analysis, including: thermal power generation, crude 
oil processing volume, natural gas production, GDP, population size, industrial added value growth rate, secondary 
industry added value, tertiary industry added value, disposable income of residents, total retail sales of consumer 
goods, and electricity consumption baseline. This section further screens these eleven influencing factors using 
GBDT-LASSO. Since the electricity consumption baseline uses actual historical electricity demand data, the 
remaining ten indicators are screened. First, the GBDT model is used to rank the weights of the above factors, 
determining the extent to which the ten influencing factors affect medium- and long-term electricity demand. Then, 
factors with low influence are removed, and VIF is used to test for multicollinearity. Finally, LASSO regression is 
used to eliminate multicollinearity among the factors, ultimately determining the system of factors influencing 
medium- and long-term electricity demand (thermal power generation, crude oil processing volume, GDP, 
population size, industrial added value growth rate, natural gas production, secondary industry added value, 
tertiary industry added value, disposable income of residents, and total retail sales of consumer goods). 

Calculations show that crude oil processing volume and natural gas production have a negligible impact on 
medium- and long-term electricity demand, with a feature contribution of 0, while the remaining eight factors have 
significantly higher feature contributions than these two. Therefore, this study excludes crude oil processing 
volume and natural gas production, making the factor system more scientifically sound and reasonable. 

Therefore, gradient boosting trees were used to calculate the influence of the ten factors on electricity demand. 
After calculation, this study excluded natural gas production and crude oil processing volume as indicators, and 
retained the remaining nine indicators, including electricity consumption base, as the factor system for medium- 
and long-term electricity demand forecasting. 

 
III. B. Attention-Bi-LSTM Model 
To address the issues of gradient explosion and vanishing gradients in recurrent neural networks, LSTM employs a 
gating mechanism to control the updating or discarding of information. It introduces input gates, forget gates, and 
output gates to remove content that is not relevant to the current situation, thereby extending the retention time of 
information and enabling the preservation of information from a longer time span. The gating mechanism 
architecture of LSTM is shown in Figure 4. 
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Figure 4: The gating mechanism architecture of LSTM 
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The inputs to the LSTM gate are the current time step input 
tX  and the hidden state 

1tH 
 from the previous 

time step. The output is calculated by a fully connected layer using the sigmoid activation function   . The 

overall framework is given by equations (7)-(11): 
  1 Input gate t t xi t hi iI X W H W b     (7) 

  1Forget gate t t xf t hf fF X W H W b     (8) 

  1Gate control uni  tant ht t xc t hc cC X W H W b    (9) 

 
1t t t t tC F C I C     (10) 

  1Output gate t t xo t ho oO X W H W b     (11) 

In the equation: 
tX  is the mini-batch input vector at time step t , 

xiW  and 
hiW  are the weight matrices of the 

input gates, 
ib  is the bias term of the input gates, 

xfW  and 
hfW  are the weight matrices of the forget gates, 

fb  

is the bias term of the forget gates, 
tC  is the candidate memory cell to be computed for short-term memory, 

xcW  

and 
hcW  are the weight matrices, and 

cb  is the bias term of the gating unit, 
tC  is the current state of the gating 

unit, 
1tC 
 denotes the previous state of the unit, 

xoW  and 
hoW  are the weight matrices for the output gate, and 

ob  is the bias term for the output gate. The tanh function with a range of  1,1  is used as the activation function, 

and element-wise multiplication   is used to control the flow of information in the hidden state. 

The output gate 
tO  controls the flow of information from the memory cell to the hidden state, and the final output 

tH  is given by equation (12): 

 tanht t tH O C   (12) 

Unlike LSTM, the Bi-LSTM model combines forward LSTM and backward LSTM. The bidirectional mode takes 
into account the overall information hidden in the data, performing feature extraction through both forward and 
backward dimensions, and combining the results extracted in both directions in a specific manner. This effectively 
mitigates the adverse effects caused by the order of input data on the final results in a single LSTM model, 
resulting in more comprehensive outcomes. 

Currently, the Attention mechanism has been widely used in fields such as handwriting recognition and computer 
vision. When applied in deep learning, the Attention mechanism can filter out key information from input data, 
assign higher weights to these key information for effective decision-making, and calculate the probability 
distribution of attention, thereby eliminating the unreasonable influence of input data on output data. This enhances 
the influence of key input data, emphasizes the different influences of input data on output data, optimizes feature 
extraction, and improves prediction performance. Its structure is shown in Figure 5. The structure of the 
Attention-Bi-LSTM model obtained by incorporating the Attention mechanism into the Bi-LSTM model is shown in 
Figure 6. 
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Figure 6: The structure of the Attention-Bi-LSTM model 

IV. Analysis of electricity user behavior data and model performance evaluation 
IV. A. Characteristics of residential electricity consumption behavior 
IV. A. 1) Collection of user electricity consumption data 
This experiment selected a power marketing unit of the Y Country Grid as the research object. In 2020, this unit's 
annual electricity sales reached 1.46x1011kWh. Based on the actual measurement data from its smart meters, the 
daily electricity consumption data of 6,560 users on July 15, 2020, was selected. The daily electricity consumption 
data of each user was collected every 30 minutes, containing 47 collection values. The original data set is shown in 
Figure 7. 

 

Figure 7: Unlabeled Electricity Customer Load Aggregation 

IV. A. 2) Collection of user behavior data 
In terms of user distribution, corporate users are primarily concentrated in the industrial and commercial sectors, 
where they are sensitive to electricity prices, as electricity costs constitute a significant portion of their overall 
expenses. Residential users are spread across both urban and rural areas and represent a key customer base for 
State Grid Power Company. Additionally, the company is committed to enhancing the quality and efficiency of its 
power supply services through measures such as streamlining electricity application processes, reducing costs, 
and improving transparency, all aimed at increasing customer satisfaction. Collecting electricity user behavior data 
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as sample data, as shown in Table 1, this paper categorizes users into the following seven types: (U1) residential, 
(U2) corporate, (U3) commercial, (U4) industrial, (U5) residential, (U6) school, and (U7) government. 

Table 1: Data collection of power user behavior samples 

Serial 

Number 
User type Electricity consumption / kWh Maximum power /kW Voltage level /kV Electricity charge/yuan 

1 U1 850 8 0.35 500 

2 U2 13000 60 12 6500 

3 U3 8500 100 0.51 4500 

4 U4 25000 250 40 13000 

5 U5 700 7 0.35 425 

6 U6 6500 65 0.53 3500 

7 U7 4500 45 15 2500 

 
Observing Table 1, it can be seen that the electricity consumption of resident No. 1 is abnormal, and electricity 

theft is initially suspected. However, after investigation, it was found that the number of people in the user's home 
had increased recently, and electricity consumption had increased due to changes in weather and lifestyle habits. 
The data mining algorithm did not take lifestyle factors into account, leading to a misjudgment of user behavior. 

 
IV. A. 3) User Clustering 
For the aforementioned power dataset, when users are divided into three categories, the aggregation evaluation 
metric contour coefficient reaches its maximum value, while the DBI index reaches its minimum value, indicating 
the best clustering effect. Therefore, 3 is preliminarily selected as the optimal number of categories for this dataset. 
By taking the weighted average of the load curve families for the aforementioned three categories, the average 
load changes for each category of users are obtained, as shown in Figure 8. From the clustering results, users are 
distinguished based on their overall load levels, achieving good classification performance. The peak load times for 
the first and second categories of users are both at 1:15 PM, while the minimum load times are 4:15 AM and 5:15 
AM, respectively. For the third category of users, the minimum load occurs at 12:45 PM, and the minimum load 
occurs at 4:15 AM. The morning load accounts for a larger proportion of the daily load compared to the first and 
second categories of users. 

 

Figure 8: Average load profiles for three types of electricity consumer 

IV. B. Drawing a profile of electricity users 
IV. B. 1) Calculation of power user characteristics 
For the construction of the original feature set T for the load curve of unlabeled power users in this paper, the 
feature set is defined as T = {daily maximum load, time of maximum load occurrence, peak-to-valley difference, 
average load, daily minimum load, time of minimum load occurrence, daily electricity consumption, peak-time 
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electricity consumption rate, off-peak electricity consumption rate, valley-time electricity consumption rate, daily 
load factor, peak-to-valley difference rate}. The 12 features are sequentially numbered as T1 to T12. The 
peak-to-valley difference rate is defined to reflect the user's demand response capability, calculated as the ratio of 
the difference between the maximum and minimum loads to the maximum load. Define peak, off-peak, and valley 
consumption rates as the ratio of electricity consumption during peak, off-peak, and valley periods to total electricity 
consumption, reflecting users' electricity consumption characteristics. Define the load factor as the ratio of average 
load to maximum load, reflecting daily load variations, i.e., demand response regulation capability. Using the 
distance correlation coefficient as the evaluation metric, preliminarily calculate the redundancy of each feature in 
the feature set. The calculation results are shown in Table 2. 

Table 2: Distance coefficient based feature set matrix for power users' electricity usage 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

T1 1 0.243 1.103 0.91 0.651 0.206 0.91 0.275 0.361 0.484 0.472 0.474 

T2 0.243 1 0.246 0.232 0.186 0.196 0.232 0.285 0.382 0.361 0.277 0.285 

T3 1.103 0.246 1 0.851 0.558 0.208 0.851 0.289 0.37 0.505 0.501 0.52 

T4 0.91 0.232 0.851 1 0.931 0.211 1 0.216 0.332 0.345 0.473 0.354 

T5 0.651 0.186 0.558 0.931 1 0.185 0.931 0.242 0.226 0.178 0.534 0.559 

T6 0.206 0.196 0.208 0.211 0.185 1 0.211 0.187 0.264 0.318 0.194 0.215 

T7 0.91 0.232 0.851 1 0.931 0.211 1 0.216 0.332 0.345 0.473 0.354 

T8 0.275 0.285 0.289 0.216 0.242 0.187 0.216 1 0.624 0.466 0.423 0.394 

T9 0.361 0.382 0.37 0.332 0.226 0.264 0.332 0.624 1 0.659 0.301 0.34 

T10 0.484 0.361 0.505 0.345 0.178 0.318 0.345 0.466 0.659 1 0.405 0.487 

T 

11 
0.472 0.277 0.501 0.473 0.534 0.194 0.473 0.423 0.301 0.405 1 0.943 

T12 0.474 0.285 0.52 0.354 0.559 0.215 0.354 0.394 0.34 0.487 0.943 1 

 
Table 2 shows that there is a high degree of redundancy (0.206–1.103) between the peak-to-valley difference 

(T3) and the daily maximum load (T1). Daily electricity consumption is highly correlated with the daily minimum 
load and average load, and it is necessary to filter redundant features using a feature evaluation function. 

 
IV. B. 2) Clustering of characteristics of electricity users 
The average payment amount and load growth coefficient are used as two value characteristics of electricity users 
to assess user value. Using the user profiling method proposed in this paper, electricity users are classified into 
four categories: high-value users (high average payment amount and large growth coefficient), ordinary users (high 
average payment amount and small growth coefficient), potential users (low average payment amount and large 
growth coefficient), and low-value users (low average payment amount and small growth coefficient). After 
obtaining all value characteristics, the K-means algorithm is used to cluster power users based on their 
characteristics, enabling accurate and rapid classification of power users into four categories, as shown in Figure 
9. 

 

Figure 9: K-means clustering results 

Figure 9 clearly shows four distinct clusters. Cluster 1 has a low average payment amount and a small growth 
coefficient, indicating low-value users. Cluster 2 has a low average payment amount but a large growth coefficient, 
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indicating potential users. Cluster 3 has a high average payment amount and a small growth coefficient, indicating 
ordinary users. Cluster 4 has a high payment amount and a large growth coefficient, indicating high-value users. 

 
IV. C. Performance evaluation of prediction models 
Based on the complexity of the dataset and the number of data points, this paper sets up a two-layer LSTM 
network, with each layer having 60 memory units. To find the optimal batch_size and epochs parameters, 
cross-validation is performed using the Grid-SearchCV method, where the batch_size parameter represents the 
number of samples selected for each training run, and the epochs parameter represents the number of times the 
learning algorithm operates on the entire training dataset. The Grid-SearchCV method refers to an exhaustive 
search of specified parameter combinations. Based on the cross-validation results, the optimal batch_size was 
determined to be 50, and the optimal epochs were determined to be 15. These two optimal parameters were used 
to train the LSTM model and applied to the load data set of the power marketing unit of Y State Grid Corporation of 
China for calculation. The prediction performance of the LSTM model is shown in Figure 10, and the prediction 
error is shown in Figure 11. It can be seen that the prediction curve closely fits the original data curve, with the 
prediction error remaining within the range [-5000, 6000], indicating that the model has good prediction 
performance. 

 

Figure 10: LSTM prediction effect 

 

Figure 11: LSTM prediction error scatter plot 

V. Conclusion 
This paper employs power big data technology to collect residential electricity consumption behavior data, 
generate user behavior tags, and proposes a method for constructing residential user profiles. Additionally, power 
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demand influencing factors are categorized into two types: short-term and medium-to-long-term. The 
Attention-Bi-LSTM model is utilized for residential power demand forecasting. This approach achieves precise 
forecasting of residential power demand driven by power user behavior data, providing effective data references 
for optimizing power services. 

In an experiment using Y State Grid Power Marketing Units as a sample, the user profiling method proposed in 
this paper was used to classify power users into four categories: high-value users, ordinary users, potential users, 
and low-value users. The proposed prediction model aligns with the original data curve trends and directions for 
load forecasting of user electricity demand in the dataset, with prediction errors controlled within the range of 
[-5000, 6000]. 
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