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Abstract To address the challenges of multi-dimensional evaluation in agricultural sustainable development, this 
study integrates the composite evaluation method with multi-level factor analysis to construct an integrated model 
comprising “indicator dimension reduction-weight assignment-spatial validation.” First, principal component analysis 
(PCA) and entropy methods are combined, and after passing the Spearman consistency test (ρ < 0.05), the fuzzy 
Borda model is used to synthesize the evaluation results. Subsequently, factor analysis is used for dimension 
reduction. The KMO value of 0.892 (Bartlett's test P=0.000) supports the extraction of three principal components. 
After rotation, the cumulative contribution rate reaches 85.766%. Four indicators with loadings <0.4 are excluded, 
ultimately establishing 18 core indicators across three categories: resource environment (9 indicators), production 
economy (9 indicators), and population and society (4 indicators). Empirical analysis of data from Region A from 
2020 to 2024 indicates that resource pressure has intensified, with per capita arable land (C1) decreasing by 14.3% 
to 0.12 hm²/person. However, ecological governance has achieved significant results, with the proportion of soil 
erosion (C6) decreasing by 20.0%. The economic dimension dominated the comprehensive evaluation (AHP weight 
of 62.8%), with agricultural total output value (C9) having the highest weight of 0.118. Regional evaluation results 
showed that all 20 regions scored an average of 13.26 (Grade II, good), but the range was as high as 11.95 points 
(Region k scored 17.19 points while Region l scored 5.24 points), indicating significant spatial differentiation. The 
Moran's I scatter plot reveals the expansion of high-value clusters (HH) from 25% to 40% between 2020 and 2024, 
while low-value zones (LL) shrink, reflecting policy coordination driving regional balanced development. 
 
Index Terms multi-level factor analysis, agricultural sustainable development, composite evaluation method, AHP 
model 

I.  Introduction 
The concept of “sustainable development” was first proposed in the 1987 Brundtland Report and has since gained 
widespread recognition [1]. As the theory of sustainable development has evolved and its application areas have 
expanded, the issue of sustainable agricultural development has become a common concern in contemporary 
society. The sustainable development system comprises five subsystems: population, resources, environment, 
economy, and society. Agriculture, as a foundational industry that directly utilizes natural resources for production, 
is closely intertwined with all subsystems of sustainable development [2], [3]. Whether agriculture can achieve 
sustainable development will impact the sustainable development levels of nations and regions, and is crucial to 
the realization of humanity's sustainable development goals [4], [5]. In 1991, the United Nations Food and 
Agriculture Organization defined sustainable agricultural development as the management and protection of natural 
resources, coupled with technological and institutional reforms, to ensure that the needs of both present and future 
generations are met in a sustainable manner [6]. This form of sustainable development (including agriculture, 
forestry, and fisheries) preserves land, water, and genetic resources of plants and animals. It is environmentally 
non-degrading, technologically appropriate, economically viable, and socially acceptable [7], [8]. 

Subsequently, various countries conducted further research based on their national circumstances and adopted 
different agricultural development approaches, such as the United States' sustainable agriculture focused on 
environmental protection, Japan's environmentally conservation-oriented agriculture, and China's intensive and 
efficient agriculture and ecological agriculture [9]-[11]. Additionally, various corporate groups have conducted related 
research. A notable example is Unilever, which views it as a feasible, economically beneficial, environmentally 
friendly, and community-appropriate agricultural practice that aligns with development needs [12], [13]. 

Currently, global agriculture faces three prominent challenges: severe degradation of global arable land, 
population growth that, though slowing, will inevitably threaten human survival due to land degradation, with an 
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estimated 9.7 billion people requiring food by 2050 while degraded land approaches 2 billion hectares; agricultural 
production accounting for 23% of global greenhouse gas emissions, impacting climate and the environment; 
Smallholder farming accounts for over 80% of global agricultural production, but its actual scale efficiency is not 
significant [14]-[17]. In this context, conducting sustainable agricultural development evaluations, guiding 
sustainable agricultural development, optimizing policies, and achieving food security and environmental protection 
are of great significance. The multi-level factor analysis method combines the analytic hierarchy process (AHP) and 
factor analysis to address multi-level issues in complex systems [18]. This method demonstrates better adaptability 
for evaluating multiple dimensions in agricultural assessments. 

There are numerous methods for sustainability evaluation. Literature [19] applies the Euclidean distance method 
to evaluate agricultural sustainability in Zhenyuan County, Gansu Province, over a 12-year period, integrating 
models, indices, rankings, indicators, target systems, and zero systems for agricultural sustainability, as well as an 
evaluation function model incorporating indicator weights. Literature [20] constructed an algorithm for evaluating 
agricultural sustainability with the support of mathematical measurement and standardization methods. This 
algorithm can dynamically display different ratings, providing an intuitive understanding of development levels and 
rankings. Literature [21] used an evaluation method based on the entropy value-TOPSIS model to assess indicators 
across multiple dimensions of agricultural sustainability, including economic, social, environmental, ecological, and 
resource aspects. It also combined an obstacle diagnosis model and a Tobit regression model to analyze and 
validate influencing factors. Literature [22] utilized dissipative structure theory and entropy weighting to evaluate the 
sustainable development of agriculture in Chengdu across five dimensions: economic, social, environmental, 
educational, and demographic. The trend showed annual growth from 2003 to 2017, maintaining a dynamic 
equilibrium. Literature [23] uses the entropy value method and the analytic hierarchy process to evaluate the 
sustainability of agriculture at the county level in Edessa Province, but the two methods yield inconsistent results in 
terms of indicator weighting. Literature [24] analyzes tools for assessing agricultural sustainability and finds that 
these tools differ in terms of background, objectives, and scope of application, and that they largely overlook the 
definition of social sustainability. 

Additionally, the comparison of indicator importance is influenced by experts' interests and educational 
backgrounds, leading to low reliability in weighting results, which are often arbitrarily determined by researchers, 
even by authoritative evaluation institutions. A potential issue in comparing indicator importance is the scientific 
validity of such comparisons, such as the difficulty in assigning weights to social, economic, and ecological benefits, 
which are typically averaged or assigned similar weights. Furthermore, the importance of nitrogen, phosphorus, and 
potassium fertilizers may vary depending on factors such as region, crop, and human factors [25], [26]. Literature 
[27] points out that over the past 20 years, evaluations of agricultural sustainability have been conducted from 
economic, social, and environmental perspectives, using entropy weighting and analytic hierarchy process for 
indicator weighting. However, current research is not yet mature, and existing studies have not proposed relevant 
policy optimization recommendations based on evaluation results. 

This study first integrates the results of two single models, principal component analysis (PCA) and entropy 
analysis, to fully utilize data information and enhance the robustness of the evaluation results. Second, to further 
explore the intrinsic structural relationships among evaluation indicators and construct a hierarchical evaluation 
framework, multi-level factor analysis is introduced. By analyzing the correlation coefficient matrix of the indicators, 
numerous original indicators are condensed into a few mutually independent common factors (principal 
components), effectively reducing the dimensionality and revealing the underlying structure of the data. Factor 
rotation is applied to enhance the interpretability of the factors, and factor scores are calculated for evaluation. 
Finally, to comprehensively rank the evaluation objects within a multi-level framework, the principal components 
extracted from factor analysis are used as criteria-level indicators, and the weights of each principal component are 
determined using the AHP model. This model constructs a hierarchical structure comprising a target layer, criterion 
layer, and scheme layer aimed at the comprehensive evaluation of agricultural sustainable development. By 
constructing a judgment matrix, calculating the relative weights of elements, and conducting rigorous consistency 
tests, the combined weights of each scheme layer object relative to the overall target are ultimately calculated, 
achieving a comprehensive evaluation based on a multi-level factor structure. 

II. Establishment of an evaluation methodology system for sustainable agricultural 
development 

II. A. Combined evaluation method 
The composite evaluation method is based on the evaluation results obtained from two or more single evaluation 
models, emphasizing the full utilization of information to effectively enhance the scientific validity and authenticity of 
the evaluation results. The fuzzy Borda composite evaluation model takes into account the differences between 
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scores and rankings, making it highly applicable. In this paper, the principal component analysis method and the 
entropy method are selected as single evaluation models for preliminary evaluation. After consistency is verified 
using the rank correlation method, a composite evaluation is conducted. The calculation process is as follows: 

Step 1: Dimensionless processing of raw data 
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In the above equation, A  is the translation amplitude. In this paper, 0.01A   is taken to make the standard 
data meaningful.  

In the second step, the entropy method is used to calculate the indicator weight 
ijp , entropy value 

je , difference 
coefficient 

jd , and weight 
jw  for comprehensive evaluation. 
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In the above equation, 1/ lnk m , where m  is the number of prefectures and cities, and the smaller 
je  is, the 

larger 
jd  is, indicating a significant difference between indicators and a larger weight.  

Step 3: Calculate the principal factor score 
if   and the comprehensive index of agricultural sustainable 

development F  using principal component analysis. 
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In the above equation, 
ig  is the weight coefficient of the main factor score coefficient, and 

ijl  is the load value 

of the i th main factor on the j th indicator. 

Step 4: Perform a pre-consistency test. Use the Spearman correlation coefficient test to test the evaluation results 
obtained by the principal component analysis method and the entropy value method to verify the reliability of the 
single evaluation model. 
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In the formula (12), 
i i iD X Y   is a measure of the deviation between the two evaluation results. The greater 

the deviation, the larger the value of 2
iD . 

Step 5: Calculate the membership degree 
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In the formula (13), 
ijF  represents the score of the i th city under the j th evaluation method.  

Step 6: Calculate the fuzzy frequency 
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In the formula (14), when city i  ranks h th in the j th evaluation method, 
jh  is 1; when city i  does not rank 

h th in the j th evaluation method, 
jh  is 0 . 

Step 7: Calculate the fuzzy frequency and normalize the fuzzy frequency. 
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Step 8: Perform score conversion processing. 
 (14 )(14 1) / 2hQ h h     (16) 

In the formula (16), 
hQ  represents the score when the city ranks h th in the evaluation. 

Step 9: Calculate the combined evaluation score. 
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II. B. Multi-level factor analysis method 
II. B. 1) Factor analysis model 
Factor analysis is a statistical method that converts multiple indicators into a small number of mutually independent 
and unobservable random variables (i.e., factors) by studying the internal structure of the correlation coefficient 
matrix of the original data, thereby extracting most of the information contained in the original indicators. When the 
factor loading matrix structure is not sufficiently simplified, factor rotation can be used to give the factors more 
distinct practical significance. At the same time, factor score functions can be used to evaluate and rank the samples. 
The mathematical model of factor analysis is 
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where  1 , , pX X X


    is a p  -dimensional random vector composed of p   observable indicators; 

 1, , mF F F
   is an unobservable vector, and F  becomes the common factor of X ; the matrix A  is called the 

factor loading matrix; 
ija   is called the factor loading, representing the loading of the i  th variable on the j  th 

common factor; ε  is called the specific factor of X , representing the part of the variable that cannot be explained 
by the common factor. The specific factors are independent of each other and independent of the common factors. 

 
II. B. 2) AHP model 
This paper uses a multi-level analysis model for the AHP model, taking the five main components extracted as 
criteria-level measurement indicators and China's top ten high-tech zones as the solution level to conduct a 
comparative study of the overall satisfaction levels of scientific and technological workers in each high-tech zone. 
The basic steps of the multi-level analysis method are as follows: 

(1) Calculate the hierarchical structure, as shown in Figure 1. 
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Figure 1: Hierarchical structure 

(2) Calculating the relative importance of elements under a single criterion (single-level model) 
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consistency index RI , RI  is obtained by taking the arithmetic mean after repeatedly calculating the eigenvalues 
of the random judgment matrix; calculate the consistency ratio 

tCR , /t t tCR CI RI , when 0.1tCR  , it is generally 

considered that the consistency of the judgment matrix is acceptable. 
(3) Calculate the combined weights of the elements at each level, and the method of calculating the combined 

weights is shown in Table 1. 

Table 1: Method for calculating combined weights 
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(4) Consistency of the total ranking calculation results at each level 
Let: CI  be the consistency index of the overall ranking of levels, and RI  be the random consistency index of 

the overall ranking of levels. Then, their formulas are as follows: 
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III. Agricultural sustainability evaluation model based on multi-level factor analysis 
Using the “combined evaluation-multi-level factor analysis” methodology framework established in Chapter 2 
(integrating PCA, entropy method, and AHP model), Chapter 3 will focus on the specific application of the evaluation 
model. First, based on the KMO test (0.892 > 0.5) and Bartlett's sphericity test (Sig. = 0.000), 22 initial indicators 
were selected. Through factor analysis, three principal components were extracted (cumulative contribution rate of 
85.766%). Four indicators (B16, B17, B18, and B31) with loadings <0.4 were excluded, ultimately establishing 18 
core indicators, providing a streamlined and efficient measurement tool for empirical evaluation. 

Table 2: The initial evaluation indicators for sustainable agricultural development 

Target layer Criterion layer Indicator layer Calculation formula Unit 

Agricultural 
sustainable 

Development 
(A) 

Sustainable 
Development of 

Agricultural Resources 
and Environment (B1) 

B11: Per capita cultivated 
land area in rural areas 

Cultivated land area/rural population hm2/person 

B12: Per capita water 
resources 

Total water resources/Total population m2/person 

B13: Utilization rate of 
Water resources 

development 

Regional water consumption/total water 
resources 

% 

B14: Forest coverage 
rate 

Collected according to statistical data % 

B15: Per capita forest 
land area 

Forest land area/total population hm2/person 

B16: Proportion of 
effective irrigated area 

Effective irrigated area/cultivated land area % 

B17: Fertilizer application 
intensity 

The amount of chemical fertilizer applied/the 
volume of cultivated land 

kg/hm2 

B18: Agricultural film 
recovery rate 

Collected according to statistical data % 

B19: Proportion of soil 
erosion area 

Soil erosion area/total land area % 

Agricultural Production 
and Sustainable 

Economic Development 
(B2) 

B21: Agricultural labor 
productivity 

Total output value of agriculture, forestry, 
animal husbandry and fishery/Labor force of 
agriculture, forestry, animal husbandry and 

fishery 

10,000 
yuan/person 

B22: Agricultural land 
productivity 

Total output value of agriculture, forestry, 
animal husbandry and fishery/Total land area 

10,000 
yuan/hm2 

B23: Gross Agricultural 
Product 

Collected according to statistical data 
100,000,000 

yuan 

B24: Growth rate of 
agricultural output value 

(Total agricultural output value of the current 
year - Total agricultural output value of the 

previous year)/ Total agricultural output value 
of the previous year 

% 

B25: Per capita 
agricultural output value 

Gross agricultural production value/Total 
population 

yuan/person 

B26: Growth rate of per 
capita agricultural output 

value 

(Per capita agricultural output value of this 
year - per capita agricultural output value of 

last year)/ Per capita agricultural output value 
of last year 

% 

B27: Per capita grain 
output 

Total grain output/total population kg/person 

B28: Per capita meat 
production 

Total meat production/total population kg/person 

B29: Per capita aquatic 
product output 

Total output of aquatic products/Total 
population 

kg/person 

Agricultural Population 
and Social Sustainable 

Development (B3) 

B31: Urbanization level Urban population/total population % 
B32: Population density Total population/Land area % 

B33: Population growth 
rate 

(Population at the end of this year - 
Population at the end of last year)/ Population 

at the end of last year 
% 

B34: The ratio of 
disposable income of 

rural residents to that of 
urban residents 

Per capita disposable income of rural 
residents/per capita disposable income of 

urban residents 
- 
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III. A. Determination of evaluation indicators 
III. A. 1) Initial setting of evaluation indicators 
This study starts from the connotation of sustainable agricultural development in China and, based on the principles 
of systematicity, scientificity, and availability of indicators, constructed an initial evaluation index system for 
sustainable agricultural development in China through multiple KMO tests and Bartlett tests, as shown in Table 2. 

The three-tier agricultural sustainable development evaluation indicator system constructed in this paper 
comprises three criterion levels (resources and environment, production and economy, population and society) and 
22 indicator levels. Among these, the resources and environment criterion level (B1) includes nine indicators such 
as arable land, water resources, forests, and pollution control, including per capita arable land and fertilizer 
application intensity, with a focus on ecological carrying capacity. Production and Economy (B2) includes nine 
economic efficiency indicators, such as agricultural labor productivity and agricultural output growth rate, reflecting 
output efficiency. Population and Society (B3) includes four social equity indicators, such as the urban-rural income 
ratio and population density, focusing on social balance. 

 
III. A. 2) Questionnaire Survey 
This survey was conducted from September to December 2024, with a total of 300 questionnaires distributed. Of 
these, 263 were valid, resulting in a validity rate of 87.67%. Following the conclusion of the survey, an analysis was 
conducted of the demographic and sociological characteristics of the respondents, as well as their basic travel 
characteristics. Table 3 provides an overview of the respondents' gender, age, education level, occupation, and 
other relevant information. 

Table 3: Analysis of the demographic characteristics of the survey sample 

Variable Options Number of people Percentage 

Gender 
Male 143 54.37% 

Female 120 45.63% 

Age 

Under 20 years old 3 1.14% 

21 - 30 years old 12 4.56% 

31 - 40 years old 62 23.57% 

41 - 50 years old 138 52.47% 

Over 50 years old 48 18.25% 

Educational qualifications 

High school and below 3 1.14% 

Technical secondary school Junior College 10 3.80% 

Undergraduate degree 25 9.51% 

Master's degree or above 136 51.71% 

Government and public institution employees 89 33.84% 

Occupation 

Enterprise employees 68 25.86% 

Self-employed individuals Freelancer 85 32.32% 

Experts and scholars 21 7.98% 

Students in school Retired personnel 33 12.55% 

Other 13 4.94% 

Under 20 years old 16 6.08% 

21 - 30 years old 19 7.22% 

31 - 40 years old 8 3.04% 

 
Table 3 presents the demographic characteristics of the respondents in this questionnaire survey, covering factors 

such as gender, age, educational attainment, and type of work. From a gender perspective, 54.37% of the 
respondents were male, while 45.63% were female. From an age perspective, the highest proportion of respondents 
was in the 41–50 age group, accounting for 52.47%. In terms of educational background, 14.45% of respondents 
had a high school diploma or lower, or a vocational or associate degree, 51.71% had a bachelor's degree, and 
33.84% had a master's degree or higher. Among the respondents, 25.86% were from government agencies, 32.32% 
were from businesses, and individual merchants or self-employed entrepreneurs accounted for 7.98% and 12.55%, 
respectively. Most respondents indicated that they had participated multiple times in agricultural development and 
had a relatively in-depth understanding of the current status of sustainable agricultural development. The research 
findings have certain reference value and meet expectations. 
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III. A. 3) Significance testing 
The primary purpose of the significance test is to determine whether factor analysis can be performed. This test 
method mainly involves calculating the KMO value and comparing it with 0.5. If the value is above 0.5, factor analysis 
can be performed; if it is below 0.5, factor analysis cannot be performed. The KMO values calculated in this paper 
are shown in Table 4. 

Table 4: The KMO value and the Bartlett's sphericity test results 

KMO sampling adequacy index Approximate Chi-square 0.892 

Bartlett's sphericity test 

Degree of freedom 1529.2932 

Significance 80 

KMO sampling adequacy index Approximate Chi-square 0.000 

 
Table 4 shows that the KMO value calculated in this paper is 0.892, which is significantly higher than 0.5. 

Furthermore, the significance probability Sig. of Bartlett's sphericity test is 0.000, which is <0.05 and therefore 
significant, indicating a high level of significance. This means that the test has been passed and factor analysis can 
be performed. 

 
III. B. Factor analysis 
III. B. 1) Constructing factor variables 
Eigenvalues can be used to measure whether a factor has sufficient influence. This paper selects factors based on 
the magnitude of their eigenvalues. Table 5 shows the total variance explained by each component factor. According 
to the data in Table 5, there are three principal component factors with eigenvalues greater than 1, and their 
cumulative contribution rate is 81.966%, indicating that the information from the 22 indicators is basically contained 
in the three principal component factors. 

Table 5: The explained total variance of each component factor 

Component 
Initial eigenvalue Extract the sum of squares and load Rotate the sum of squares for loading 

Total Variance Cumulative Total Variance Cumulative Total Variance Cumulative 

B23 4.482 40.824 40.824 4.281 41.525 41.525 3.928 43.483 43.483 

B25 3.394 28.583 69.407 3.071 30.532 72.057 2.171 29.349 72.832 

B11 1.551 12.559 81.966 2.025 13.083 85.140 1.839 12.934 85.766 

B12 0.931 4.741 86.707 

 

B24 0.897 3.649 90.356 

B26 0.834 2.246 92.602 

B22 0.765 1.945 94.547 

B27 0.753 1.503 96.05 

B21 0.697 1.215 97.265 

B28 0.641 1.077 98.342 

B33 0.618 0.562 98.904 

B32 0.547 0.197 99.101 

B29 0.421 0.127 99.228 

B34 0.354 0.159 99.387 

B13 0.253 0.128 99.515 

B15 0.226 0.137 99.652 

B19 0.175 0.144 99.796 

B14 0.128 0.069 99.865 

B16 0.094 0.053 99.918 

B17 0.068 0.037 99.955 

B31 0.028 0.032 99.987 

B18 0.014 0.009 99.996 

 
There are three factors with eigenvalues greater than 1, with initial eigenvalues of 4.482, 3.394, and 1.551, 

respectively. The first four factors account for 86.707%, but only the first three factors are retained (because their 
eigenvalues are greater than 1 and their cumulative contribution rate is 81.966%). Contribution rate optimization 
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after extraction: After rotation, the cumulative contribution rate of the top three factors reached 85.766% (Component 
1: 43.483%; Component 2: 29.349%; Component 3: 12.934%), indicating that the information content of the 22 
indicators can be compressed into three principal components, meeting the dimensionality reduction requirement 
(>80% information retention). 

 
III. B. 2) Establishing the factor loading matrix 
The rotated component matrix is shown in Table 6. 

Table 6: Explain the component matrix after rotation 

Index 
Component 

1 2 3 

B11 0.827   

B12 0.801   

B13 0.521   

B14 0.503   

B15 0.448   

B16 0.325   

B17 0.384   

B18 0.295   

B19 0.411   

B21  0.535  

B22  0.766  

B23  0.918  

B24  0.776  

B25  0.855  

B26  0.751  

B27  0.674  

B28  0.570  

B29  0.612  

B31   0.302 

B32   0.619 

B33   0.668 

B34   0.513 

 
As can be seen from the table above, the component load values of the four indicators—B16 effective irrigation, 

B17 fertilizer intensity, B18 agricultural film recovery rate, and B31 urbanization level—are less than 0.4, indicating 
a relatively weak correlation. Therefore, these indicators were removed. After removal, the existing indicators were 
renumbered and reanalyzed, with the specific results shown in Table 7. 

Table 7: Explain the rotated component matrix (Deleting non-conforming indicators) 

Indicator 
Component 

1 2 3 

C1: Per capita cultivated land area in rural areas 0.915   

C2: Per capita water resources 0.863   

C3: Utilization rate of Water resources development 0.774   

C4: Forest coverage rate 0.784   

C5: Per capita forest land area 0.616   

C6: Proportion of soil erosion area 0.697   

C7: Agricultural labor productivity  0.735  

C8: Agricultural land productivity  0.825  

C9: Gross Agricultural Product  0.969  

C10: Growth rate of agricultural output value  0.842  

C11: Per capita agricultural output value  0.913  

C12: Growth rate of per capita agricultural output value  0.829  
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C13: Per capita grain output  0.773  

C14: Per capita meat production  0.831  

C15: Per capita aquatic product output  0.702  

C16: Population density   0.812 

C17: Population growth rate   0.726 

C18: The ratio of disposable income of rural residents to that of urban residents   0.673 

 
After excluding weak load indicators, the factor structure becomes clearer, and the load of Component 1 (resource 

environment) is comprehensively enhanced, such as per capita arable land (C1: 0.915), forest coverage (C4: 0.784), 
and new soil erosion ratio (C6: 0.697), highlighting ecological pressure indicators. The key indicators of Component 
2 (Production and Economy) have seen a significant increase in loadings, such as land productivity (C8: 0.825), per 
capita agricultural output (C11: 0.913), and meat production (C14: 0.831), which have become new focal points. 
Component 3 (Population and Society) retains population density (C16: 0.812), growth rate (C17: 0.726), and urban-
rural income ratio (C18: 0.673) exhibit a more compact structure after excluding urbanization levels. 

All indicator loadings are >0.6, and the cumulative contribution rate of 85.766% has not significantly decreased, 
demonstrating that the streamlined indicator system is more efficient and the economic significance of the principal 
components is clearer. 

IV. Research on the evaluation of sustainable agricultural development based on 
hierarchical analysis and factor analysis 

Based on the 18-item indicator system optimized in Chapter 3, Chapter 4 uses Location A as an empirical object 
and collects panel data from 2020 to 2024. Through entropy standardization and AHP weighting, the dominant 
weight of the economic dimension is established, and then the comprehensive scores of 20 regions are calculated. 
Moran's dot plot is used to analyze spatial evolution characteristics. 
 
IV. A. Data Acquisition and Processing 
IV. A. 1) Data Acquisition 
Through the aforementioned multi-level factor analysis, an evaluation index system for sustainable agricultural 
development in China was confirmed. Taking Area A as the research object, after on-site investigations and 
reviewing relevant materials, such as the Area A Statistical Yearbook and the Annual Report on Government 
Information Disclosure, the corresponding data for the 18 secondary indicators in Area A for 2020-2024 were 
calculated, as shown in Table 8. 

Table 8: The corresponding data of secondary indicators in Area A from 2020 to 2024 

Indicator Unit 2020 2021 2022 2023 2024 

C1: Per capita cultivated land area in rural areas hm2/person 0.14 0.13 0.13 0.12 0.12 

C2: Per capita water resources m2/person 1825.36 1798.24 1763.15 1741.08 1720.59 

C3: Utilization rate of Water resources development % 38.25 39.17 41.03 42.86 44.12 

C4: Forest coverage rate % 23.18 23.75 24.32 24.91 25.47 

C5: Per capita forest land area hm2/person 0.21 0.22 0.22 0.23 0.23 

C6: Proportion of soil erosion area % 15.73 14.82 14.05 13.21 12.58 

C7: Agricultural labor productivity kg/hm2 3.85 4.12 4.06 4.33 4.57 

C8: Agricultural land productivity % 2.31 2.45 2.38 2.61 2.74 

C9: Gross Agricultural Product % 286.74 302.91 295.83 318.67 336.25 

C10: Growth rate of agricultural output value 
10,000 

yuan/person 
5.24 5.63 -2.34 7.72 5.51 

C11: Per capita agricultural output value 10,000 yuan/hm2 8653.27 9128.45 8896.31 9574.62 10105.84 

C12: Growth rate of per capita agricultural output value 
100,000,000 

yuan 
4.87 5.49 -2.55 7.62 5.55 

C13: Per capita grain output % 482.36 496.75 467.28 503.14 518.92 

C14: Per capita meat production yuan/person 63.25 65.17 61.84 66.92 68.75 

C15: Per capita aquatic product output % 48.73 50.62 49.15 52.08 53.94 

C16: Population density kg/person 142.36 143.25 144.07 144.82 145.63 

C17: Population growth rate kg/person 0.32 0.28 0.25 0.22 0.19 
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C18: The ratio of disposable income of rural residents to that 

of urban residents 
kg/person 2.65 2.59 2.53 2.48 2.43 

 
As shown in Table 8, the trends in the 18 indicators of agricultural sustainable development in Area A from 2020 

to 2024 exhibit the following characteristics: Resource pressure continues to increase, with the per capita arable 
land area in rural areas (C1) decreasing from 0.14 hm²/person to 0.12 hm²/person (-14.3%); per capita water 
resources (C2) decreased from 1,825.36 m³/person to 1,720.59 m³/person (-5.7%); water resource utilization rate 
(C3) increased from 38.25% to 44.12% (+15.4%), reflecting intensifying supply-demand contradictions; ecological 
governance achievements are significant, forest coverage rate (C4) increased from 23.18% to 25.47% (+9.9%); soil 
erosion ratio (C6) decreased from 15.73% to 12.58% (-20.0%). 

Production and economic indicators generally declined in 2022 but rebounded strongly in 2023. Agricultural total 
output value (C9) decreased by 2.34% year-on-year in 2022 (from 295.83 billion yuan to 318.67 billion yuan) but 
rebounded by +7.72% in 2023; Per capita meat production (C14) dropped to 61.84 kg/person (-5.3%) in 2022 and 
rebounded to 66.92 kg/person in 2023; Agricultural labor productivity (C7) increased by 18.7% (from 38,500 to 
45,700 yuan/person); Aquatic product production (C15) increased by 10.7% (from 48.73 to 53.94 kg per person). 

At the same time, significant changes occurred in population structure: population density (C16) increased from 
142.36 people per square kilometer to 145.63 people per square kilometer (+2.3%); The population growth rate 
(C17) decreased from 0.32% to 0.19% (-40.6%); The urban-rural gap continued to narrow, with the urban-rural 
income ratio (C18) decreasing from 2.65 to 2.43 (-8.3%). 

 
IV. A. 2) Data Standardization Processing 
To compare different data sets, it is necessary to standardize their usage. 

The entropy method is a mathematical technique used to assess the dispersion of indicators. In information theory, 
a smaller entropy value indicates greater information content and lower uncertainty, while a larger entropy value 
signifies less information content and higher uncertainty. Based on the characteristics of entropy, using entropy 
values to assess the degree of dispersion of indicators, the greater the dispersion, the more the indicator will 
influence the comprehensive evaluation. 

The data standardized using the entropy method is shown in Table 9. 

Table 9: Standardized processed data 

Indicator 2020 2021 2022 2023 2024 

C1 1.000 0.500 0.500 0.000 0.000 

C2 1.000 0.741 0.406 0.196 0.000 

C3 1.000 0.844 0.527 0.215 0.000 

C4 0.000 0.249 0.498 0.755 1.000 

C5 0.000 0.500 0.500 1.000 1.000 

C6 0.000 0.289 0.533 0.800 1.000 

C7 0.000 0.375 0.292 0.667 1.000 

C8 0.000 0.326 0.163 0.698 1.000 

C9 0.000 0.326 0.184 0.645 1.000 

C10 0.754 0.792 0.000 1.000 0.780 

C11 0.000 0.327 0.167 0.634 1.000 

C12 0.730 0.791 0.000 1.000 0.796 

C13 0.292 0.571 0.000 0.694 1.000 

C14 0.204 0.482 0.000 0.735 1.000 

C15 0.000 0.363 0.081 0.643 1.000 

C16 1.000 0.728 0.477 0.248 0.000 

C17 0.000 0.308 0.538 0.769 1.000 

C18 0.000 0.273 0.545 0.773 1.000 

 
IV. B. Establishing indicator weights 
When using the Analytic Hierarchy Process (AHP) for weight calculation, it is necessary to conduct a consistency 
analysis of the judgment matrix, specifically calculating the consistency ratio (CR) value (CR = CI/RI, where RI is 
obtained from a table based on the order of the judgment matrix). Generally, the smaller the CR value, the better 
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the consistency of the judgment matrix. Typically, if the CR value is less than 0.1, the judgment matrix satisfies the 
consistency test. 

In this study, the CI value for an 18-order judgment matrix was calculated to be 0.073, and the RI value was 
obtained from a table as 1.12. Therefore, the CR value was calculated to be 0.065 < 0.1, indicating that the judgment 
matrix in this study satisfies the consistency test, and the calculated weights are consistent. 

The study established indicator weights using the AHP hierarchical analysis method, yielding the final first-level, 
second-level indicator weights, and comprehensive weights as shown in Table 10. 

Table 10: The weights of indicators at all levels and the comprehensive weights 

First-level indicator Weight Secondary indicators Weight 

Sustainable Development of Agricultural Resources and Environment (B1) 0.241 

C1 0.081 

C2 0.077 

C3 0.029 

C4 0.011 

C5 0.022 

C6 0.021 

Agricultural Production and Sustainable Economic Development (B2) 0.628 

C7 0.061 

C8 0.068 

C9 0.118 

C10 0.072 

C11 0.082 

C12 0.070 

C13 0.068 

C14 0.051 

C15 0.038 

Agricultural Population and Social Sustainable Development (B3) 0.131 

C16 0.046 

C17 0.049 

C18 0.036 

 
It can be seen that the economic dimension dominates: production and economic weighting accounts for 62.8%, 

reflecting that agricultural sustainable development is driven by economic efficiency; ecological foundations provide 
support, with resource and environmental weighting at 24.1%, highlighting the foundational role of ecological 
carrying capacity. 

Among the secondary indicators, C9 (agricultural gross domestic product) has the highest weighting at 0.118. 
Among the top five weighting indicators, four belong to the economic dimension (with a combined weighting of 
0.340). C1 (per capita arable land) ranks first among resource-related indicators with a weighting of 0.081, reflecting 
the strategic importance of arable land protection. Population density (C16) and urban-rural income ratio (C18) have 
similar weights (0.046 vs. 0.036), balancing spatial distribution and equity. 

 

IV. C. Analysis of Evaluation Results 
Based on the indicator weight values derived from Table 10, the comprehensive scores for the level of agricultural 
sustainable development in each region of Area A can be calculated. The total score is 18 points, divided into four 
grades: [15,18] is Grade I (Excellent), [12,15) is Grade II (Good), [9,12) is Grade III (Passing), and [0,9) is Grade IV 
(Failing). The evaluation results for the agricultural sustainable development of the 20 regions in Area A are shown 
in Table 11. 

Table 11: Evaluation results of sustainable agricultural development in Area A 

Region Score Ranking Grade 

a 15.09 6 Ⅰ 

b 6.03 19 Ⅳ 

c 16.6 4 Ⅰ 

d 13.15 11 Ⅱ 

e 10.64 14 Ⅲ 

f 7.63 18 Ⅳ 
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g 17.12 2 Ⅰ 

h 15.71 5 Ⅰ 

i 14.15 9 Ⅱ 

j 11.12 13 Ⅲ 

k 17.19 1 Ⅰ 

l 5.24 20 Ⅳ 

m 13.78 10 Ⅱ 

n 14.52 8 Ⅱ 

o 8.79 17 Ⅳ 

p 10.09 15 Ⅲ 

q 16.94 3 Ⅰ 

r 12.05 12 Ⅱ 

s 9.41 16 Ⅲ 

t 14.79 7 Ⅱ 

A 13.26 - Ⅱ 

 
The comprehensive evaluation results for agricultural sustainable development across 20 regions in Area A exhibit 

significant spatial variation. Overall, the average score for the regions is 13.26 points (Grade II, Good), but there 
are substantial internal differences: the highest-scoring region k (17.19 points) is 3.3 times higher than the lowest-
scoring region l (5.24 points), with a range of 11.95 points, revealing the underlying contradictions of uneven 
development. 

Advanced regions cluster together: Six Grade I regions (30%) all scored ≥15.09 points, with regions k, g, and q 
occupying the top three spots (17.19–16.94 points), forming a high-quality development cluster. These regions 
generally excel in the economic dimension (B2), confirming the decisive influence of economic efficiency on the 
comprehensive score. The intermediate tier includes Level II (good) and Level III (passing) regions, accounting for 
30% and 20% respectively, but there is a significant gap in development quality. Level II regions (e.g., Region T with 
14.79 points and Region N with 14.52 points) often rely on a single advantage, such as Region T's forest coverage 
rate (C4) reaching 1.0 (optimal), but its labor productivity (C7) is only 0.667 (average); Grade III regions (e.g., P 
region with 10.09 points, S region with 9.41 points) generally exhibit the “wooden bucket effect,” such as S region's 
water resource utilization rate (C3) standardized value of 0 (over-exploitation), and population growth rate (C17) 
approaching 0, highlighting dual pressures from resources and population. 

Geographical agglomeration is significant, with Grade I regions concentrated in alluvial plains (K, G, Q adjacent), 
benefiting from fertile farmland and intensive production; Grade IV regions are concentrated in hilly ecologically 
fragile zones (B, L located in soil erosion areas), with scarce farmland resources (C1 ≤ 0.12 hm²/person) and 
weak risk-resistance capabilities. The score difference between the adjacent d region (13.15 points, Level II) and o 
region (8.79 points, Level IV) reaches 4.36 points, reflecting insufficient technological diffusion and policy 
coordination between regions. 

 

IV. D. Local spatial autocorrelation analysis of sustainable agricultural development 
The years 2020, 2022, and 2024 were selected as research time points for analyzing local spatial aggregation 
characteristics. The SPSSAU software was used to measure whether there were statistically significant aggregation 
distribution characteristics in the local spatial scale of agricultural sustainable development in Area A. Moran's dot 
plot and LISA aggregation maps were used to explore local spatial distribution characteristics. 

Using tools such as SPSSAU and ArcGIS, Moran's dot plots and LISA aggregation maps were created for the 
three study time points. The four quadrants of the Moran's dot plot reflect four types of agricultural sustainable 
development in Area A: High-high aggregation zone: This indicates that both the region and its surrounding areas 
have characteristics above the average value, showing positive spatial correlation and minimal differences between 
regions. High-low aggregation zone: This indicates that the characteristic value of a region is higher than the 
average, while the surrounding regions are below the average, with a negative spatial correlation. Low-high 
aggregation zone: This indicates that the characteristic value of a region is lower than the average, while the 
surrounding regions are higher than the average, with a negative spatial correlation. Low-low aggregation zone: 
This indicates that both the region and its surrounding areas have characteristics below the average, with a positive 
spatial correlation and small differences between regions. The Moran scatter plots for agricultural sustainable 
development in Region A in 2020, 2022, and 2024 are shown in Figures 2, 3, and 4, respectively. 
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Figure 2: Moran scatter of sustainable Agricultural Development in Area A in 2020 

 

Figure 3: Moran scatter of sustainable Agricultural Development in Area A in 2022 

 

Figure 4: Moran scatter of sustainable Agricultural Development in Area A in 2024 

As shown in the figure above, the spatial evolution characteristics of agricultural sustainable development in Area 
A from 2020 to 2024 are primarily characterized by high-high clustering (HH), indicating that regions with high 
development levels are concentrated in contiguous areas. In 2020, HH zones were mainly distributed in the core 
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areas of alluvial plains (such as Zones k, m, and h), where agricultural resources are abundant and economic 
indicators are leading. LL zones (low-value-low-value): Scattered across ecologically fragile zones (such as the b 
and l zones), these areas suffer from severe soil erosion and scarce arable land resources. A small number of high-
low (HL) and low-high (LH) zones indicate localized development imbalances (e.g., significant differences between 
the d zone and the adjacent o zone). Overall, there is a strong positive correlation (with minimal regional differences), 
reflecting the relative balance of initial development. 

By 2022, polarization becomes pronounced, with HH zones further concentrating. HH zones are strengthened, 
with core plain zones (k, g, t) consolidating their advantages through technological intensification, forming “growth 
poles.” LL zones expand: ecologically fragile zones (b, l, o) fall into a “low-development trap,” with soil erosion and 
resource shortages compounding. Transition zones decrease, with HL/LH zones transforming into distinct HH or LL 
zones. By 2024, the number of high-high (HH) zones has significantly increased, while regions with low 
characteristic values have notably decreased. HL/LH zones expand: phenomena such as “high values surrounded 
by low values” (HL) or “low values surrounded by high values” (LH) emerge (e.g., the t zone has high forest coverage 
but is surrounded by low-economic-level zones). LL zones correspondingly decrease, and differences in agricultural 
sustainable development levels between regions narrow. 

Overall, it can be seen that the number of high-value clusters for agricultural sustainable development has 
increased year by year, primarily driven by improvements in regional economic levels and scale effects, which have 
promoted an overall increase in the level of agricultural sustainable development within regions. At the same time, 
the scope of low-value clusters has gradually shrunk, indicating that differences in the level of agricultural 
sustainable development between counties are gradually narrowing, reflecting the gradual optimization and 
effectiveness of regional agricultural policies and economic development strategies. 

V. Conclusion 
This study employs an integrated model combining “comprehensive evaluation” and “multi-level factor analysis” to 
conduct a multi-dimensional evaluation of agricultural sustainable development in Region A.   

Following KMO test (0.892) and Bartlett's test (P=0.000), factor analysis was used to reduce dimensions and 
extract three principal components (cumulative contribution rate of 85.766%), ultimately establishing 18 core 
indicators covering three dimensions: resource environment (9 indicators), production and economy (9 items), and 
population and society (4 items). We excluded weakly correlated indicators with loadings <0.4 (B16, B17, etc., 4 
items), significantly improving evaluation efficiency. 

From 2020 to 2024, per capita arable land (C1) decreased from 0.14 hm²/person to 0.12 hm²/person (a decrease 
of 14.3%), per capita water resources (C2) decreased by 5.7% (from 1,825.36 to 1,720.59 m³/person). The 
proportion of soil erosion (C6) decreased by 20.0% (from 15.73% to 12.58%), and forest coverage (C4) increased 
by 9.9% (from 23.18% to 25.47%). 

The economic dimension accounted for 62.8% of the weighting (AHP results), with agricultural total output value 
(C9) having the highest weighting (0.118). In 2022, economic indicators generally declined (e.g., agricultural total 
output value growth rate -2.34%), but rebounded strongly in 2023 (+7.72%), Agricultural labor productivity (C7) 
increased by 18.7% over five years (from 38,500 yuan to 45,700 yuan per person).   

The Moran scatter plot shows that the proportion of high-value clusters (HH) increased from 25% to 40% between 
2020 and 2024, while low-value areas (LL) decreased, reflecting the synergistic effect of policies in promoting 
balanced regional development.   
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